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A B S T R A C T  
 

 

In this paper an emergency service vehicle (ESV) location problem has been considered in which it is 

assumed that each emergency call may require more than one ESV. In ESV location problem two 
factors should be known; the location of stations and the number of ESVs at each station. Hence, a 

nonlinear mixed integer programming model is presented in order to maximize the total response rate 

to the emergency calls. Moreover, a solution method based on genetic algorithm is provided and 
efficiency of the algorithm is evaluated with regard to the results from an exhaustive enumeration 

method. The model is applied to the real case study based on the data from Mashhad city to find the 

emergency gas stations and the required ESVs. Finally, a sensitivity analysis on the main parameters of 
the model is conducted and the managerial insights were reported. The results indicate that considering 

the fact that each call may require more than one ESV is very influential on the response rate and the 

assumption of each call requires just one ESV makes the results unrealistic. 

doi: 10.5829/ije.2018.31.08b.12 
 

 
1. INTRODUCTION1 
 
Every year a large number of people lose their lives due 

to accidents such as explosions caused by gas leaks, 

fires, etc. Although accidents are unavoidable, we can 

minimize their disastrous damages by taking preventive 

actions and proper planning such as locating fire 

brigades, emergency service stations, ambulances and 

police stations. Accordingly, ESV location problems are 

one of the most important decisions which influence the 

efficiency of relief operations. In relief operations, 

response time (time elapsed between an emergency call 

and its assistance) is a critical factor when deciding 

about emergency service system configurations. In 

particular, if the system cannot provide service 

immediately, injured people’s lives will be endangered. 

Ideally, public expects immediately response in 

emergency situations; but this expectation is hard to be 

achieved regarding limited available resources such as 

vehicle and budget. Therefore, finding an optimal 

configuration for ESVs becomes an important issue [1]. 

                                                           
*Corresponding Author Email: f.dehghanian@um.ac.ir (F. 

Dehghanian) 

Given demand zones and potential emergency 

service stations, two major decisions should be made in 

ESV location problem: 1) which potential stations 

should be opened as stations for ESVs and 2) how many 

ESVs should be placed in each station. ESV location 

model determines how to optimally coordinate and 

locate ESVs in order to reduce damages caused by 

accidents. 

Generally, responding to an emergency accident is 

done through a call center. Call center receives 

emergency calls and gets information about the location 

and severity of corresponding accident. Then the 

required number of ESVs are dispatched from the 

nearest station. The response time to an emergency call 

from a specific demand zone is highly dependent to 

availability of the number of required ESVs which 

cover that zone. A demand zone can be covered if its 

distance/time to a station is equal or less that a 

predefined value. This value is called coverage distance 

or coverage radius [2]. Moreover, total number of 

ESVs, number of incoming calls and the required ESVs 

per call influence the availability of ESVs for 

responding to a call. So in this paper we aim to provide 

a model which determines the  location  of  stations  and 
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the number of ESVs in each of them, simultaneously. 

The goal is to maximize emergency call coverage in all 

demand zones. Such model has been categorized in the 

maximum expected covering location problem 

(MEXCLP) model, which has been widely used to 

conveniently locate servers for general public services 

such as emergency medical services [3]. The common 

assumption in MEXCLP models is that each call 

requires just one ESV. However in reality, emergency 

calls may have different specifications and priorities 

that require different types and/or numbers of 

emergency services/vehicles [1]. Firefighting and gas 

emergency relief operations can be the examples in 

which more than one ESV would be required for relief 

operations. In this paper we develop a MEXCLP model 

that can assign more than one ESV to each call. 

The remainder of this paper is organized as follows. 

Section 2 presents a brief review of the related 

published models and highlights the contributions of 

this research that positions our study in the existing 

literature. In section 3, problem definition is provided. 

In section 4, queuing system with batch arrival is 

applied to calculate the available probability of the 

ESVs in each station. Furthermore a non-linear mixed 

integer programming model for maximizing the 

expected covering is provided. In section 5, a genetic 

algorithm is presented and evaluated for solving the 

provided nonlinear model. The applicability of the 

proposed model is didcussed in section 6. The model is 

applied to gas emergency relief stations as a case study 

which arrives at important practical implications and 

managerial insights.. Section 7 concludes the paper with 

summary of the study and the results and guidance for 

future research. 

 

 

2. LITERATURE REVIEW 
 
The ESV location problem is an extension on Location 

Set Covering Problem (LSCP), which the first was 

proposed by Toregas et al. [4]. The LSCP is a 

compulsory coverage model and aims to find the 

minimum number of facilities to cover all demand 

zones. However, due to limited resources, full coverage 

is actually hard. In order to eliminate this defect, the 

Maximal Covering Location Problem (MCLP) was 

proposed by Church and ReVelle [5]. With a limited 

number of facilities, this model aims to maximize 

demand coverage. Chung et al. [6] proposed capacitated 

versions of the MCLP. They are considered only one 

fixed capacity level for all of the facilities sites. Yin and 

Mu [7] proposed modular capacitated maximal covering 

location problem (MCMCLP). In this model emergency 

facility sites could have different possible capacity 

levels due to varied numbers of stationed emergency 

vehicles. The LSCP and MCLP have a common 

shortcoming; once a facility is busy, demand zones 

under its coverage are not covered. In the literature, 

there are two research areas to overcome this defect. 

One of them provides multiple coverage, such as the 

Double Standard Model (DSM), proposed by Gendreau 

et al. [8]. The DSM intends to allocate facilities among 

potential sites to provide a full coverage over a longer 

standard distance, while providing maximum coverage 

in a shorter distance. The objective function of the 

proposed model maximizes the demands that are met at 

least twice within shorter standard distance. Thus, 

demand areas are covered by two facilities as much as 

possible, so if their facilities are busy, they can provide 

service with the second facility. The second research 

area considered the busy probabilities and reliabilities of 

facilities which resulted in the Maximum Expected 

Covering Location Problem (MEXCLP) and the 

Maximum Availability Location Problem (MALP), 

proposed by Daskin [3] and ReVelle and Hogan [9], 

respectively. In the MEXCLP all facilities are assumed 

to have the same busy rate and operate independently. 

The objective function of this model is to maximize the 

expected coverage by a limited number of facilities. In 

MALPall facilities operate independently. The aim is to 

maximize the covered demands at a specified 

confidence level. Due to given confidence level and 

probability of engagement of facilities, the minimum 

number of facilities for servicing a demand zone can be 

determined. In the other words, the proposed model is 

going to maximize the demands that are satisfied with at 

least equal or greater facilities than the computed lower 

level for number of facilities. MALP models assume 

facilities are independent and the numbers of those are 

limited.  

In all of these models, facilities are assumed to be 

independent and therefore busy probabilities are 

independent, but in reality, many of the demand zones 

are covered by several facilities. These facilities have 

preferences, so they cannot be assumed independent 

with the same priority. To eliminate the assumption of 

independence of facilities, Q-MALPand AMEXCLP are 

proposed by Marianov and ReVelle [10] and Batta et al. 

(1989) [11], respectively. Q-MALP is an extension of 

MALP. In this model lower level for the number of 

facilities is computed, using queuing theory. 

AMEXCLP embedded the hypercube queuing theory 

into the MEXCLP and studied the dependent busy 

probability using the correction factor derived in Larson 

[12]. Two assumptions of the basic hypercube model of 

Larson [12] are: (i) any server can travel (respond) to 

any call location and (ii) only one server is dispatched to 

a call defined by Iannoni et al. [13]. MEXCLP2 

proposed by McLay [14] is the other model that uses 

hypercube. MEXCLP2 considered two types of 

facilities. Other extensions of hypercube models include 

Galvao et al. [15] and Toro-Díaz et al. [16]. A review 
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related to the use of hypercube queuing was defined by 

Galvao and Morabito [17].  

Recently, Zhang et al. [18] employed uncertainty 

programming to cover uncertainty involved in LSCP 

and MCLP model. Unluyurt and Tuncer [19] used 

discrete event simulation to estimate the performance of 

emergency medical service location. Akdogan et al. [20] 

considered the location of ESVs in which multiple 

ESVs can be located in a single location with different 

service rates. They applied genetic algorithm to 

minimize mean response time of ESVs based on 

approximate queuing model. Belanger et al. [21] 

reviewed models and trends in location, relocation, and 

dispatching of emergency medical vehicles. Based on 

their reviews the main assumption in all papers is that 

each call requires just one vehicle. Souza et al. [22] and 

Rodrigues et al. [23] extended the hypercube model to 

analyze emergency medical services with different 

priorities in queues. 

In this paper we introduced a mathematical model 

as an extension to MEXCLP with the following 

contributions: 

1.  The proposed model uses two radiuses to cover 

demand zones; minimum and maximum radiuses. The 

minimum radius equals to the standard time to meet 

urgent calls and the maximum radius equals to the 

standard time to respond ordinary calls. All demand 

zones should be covered within maximum radius and 

the number of them that are covered within minimum 

radius should be maximized as much as possible 

2.  More than one ESVs may be required for responding 

a call. The proposed model uses the queue system with 

batch arrival to dedicate more than one ESV to calls. 

3.  We consider both of complete and partial response. 

Partial response occurred when the number of available 

ESVs are less than the number of required. 

4.  The proposed model simultaneously determines the 

optimal location of the stations and the number of ESVs 

in each of them. 

 

 

3. PROBLEM DEFINITION 
 

There are a number of points which are potential 

locations for emergency service stations as well. In 

order to respond to calls, stations should be placed in 

such a way that all demand zones are covered in a 

specific time. Each demand zone has a stochastic 

number of emergency calls which should be responded 

by available ESVs in the stations. Each call includes a 

number of demands and one ESV is assigned to each 

demand. Two types of response are considered: 

emergency and ordinary. Accordingly two types of 

covering distances are defined, namely minimum and 

maximum covering distances. Minimum covering 

distance is based on the vital time required for servicing 

an emergency call and the maximum covering distance 

is determined based on maximum acceptable time for 

servicing an ordinary call. Covering all demand zones 

within minimum covering distance is so costly that may 

cost more than the available budget, in addition 

emergency conditions often occurs occasionally. So, it 

is assumed that all demand zones should be covered in 

maximum covering distance. The objective is to 

maximize the expected immediately response to the 

emergency calls of demand zones which covered in 

minimum covering distance. 

Each call may require more than one ESV. 

Accordingly, based on the number of available ESVs 

which cover specific demand zones, we may respond to 

a call completely or partially. Complete response occurs 

when the number of available ESVs is equal or greater 

than the number of required and partial response arises 

when the number of available ESVs is less than the 

number of required. In partial response all available 

ESVs are dispatched and it means that corresponding 

call is partially serviced. Due to importance of time in 

emergency response, each demand zone is allocated to 

its nearest emergency station. If there is no idle ESV, 

the call remains in queue until an ESV will be available. 

The calls in queue will be serviced in first in first out 

order. Other assumptions are as follows: 

 The arrival rate of calls for each demand zone is 

known and arrives according to Poisson process. 

 Call arrival rate of each station is equal to the 

summation of the arrival rate of calls for all demand 

zones in which this station is the nearest one for 

them. 

 All ESVs are identical and the number of ESVs 

which assigned to a station is restricted due to space 

limitation. 

 The service time of each ESV has exponential 

distribution.  

 The number of ESVs required for a call is a random 

variable. 

 

 

4. MATHEMATICAL MODELLING 
 
This problem is in accordance with queuing system with 

batch arrival. A call, a demand and an ESV are batch, 

customer and server of a batch arrival queuing system, 

respectively. The following notations are required for 

calculating available probability of ESVs: 

𝜆 arrival rate of call 

𝜇 expected service time of an ESV 

t number of ESVs required for a call,  t = 1, 

2,…, m 

𝑝𝑡  probability that a call requires t number of 

ESVs 

Em mean batch size,Em=∑ 𝑡𝑝𝑡
𝑚
𝑡=1  

v number of ESVs which cover a demand zone 

https://www.sciencedirect.com/science/article/abs/pii/S0377221714007954#!
https://www.sciencedirect.com/science/article/pii/S0305054817300539#!
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𝜋𝑐,𝑣 probability that c EVSs of v EVSs are busy 

Ρ Occupation rate of the system, 𝜌 =
𝐸𝑚𝜆

𝑣𝜇
 

In a queuing system with batch arrival 𝜋𝑐,𝑣 is calculated 

according to following equations [1]: 

(1) 𝜋𝑐,𝑣 = 𝑞𝑐𝜋0,𝑣  

(2) 𝑞𝑐 =
𝛼

𝑚𝑖𝑛(𝑐,𝑣)
∑ 𝑞𝑖 ∑ 𝑝𝑡

∞
𝑡=𝑐−𝑖

𝑐−1
𝑖=0   ;   𝑐 ≥ 1  

where, 𝑞0 = 1 and 𝛼 =
𝜆

𝜇
. According to Equation (1), 

𝜋𝑐,𝑣depends on 𝜋0.𝑣. By using the average number of 

available ESVs, 𝜋0.𝑣 can be obtained as follows: 

(3) 𝑣(1 − 𝜌) = ∑ (𝑣 − 𝑐)𝜋𝑐,𝑣
𝑣−1
𝑐=0   

According to Equations (1) and Error! Reference 

source not found. we have: 

(4) 𝑣(1 − 𝜌) = ∑ (𝑣 − 𝑐)𝑞𝑐𝜋0,𝑣
𝑣−1
𝑐=0   

Now 𝜋0.𝑣 can be calculated as follows: 

(5) 𝜋0,𝑣 =
𝑣(1−𝜌)

∑ (𝑣−𝑐)𝑞𝑐
𝑣−1
𝑐=0

  

Now, expected immediate response to a call can be 

calculated based on available probability of ESVs. 

Assume that a call from a demand zones requires t 

ESVs while v ESVs placed in its nearest station. 

Expected immediate response can be calculated as 

follows: 

𝐸𝑥𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡,𝑣 = [(100%) ∑ 𝜋𝑐,𝑣
𝑣−𝑡
𝑐=0 ] + [∑ (𝑐

𝑡⁄ ) ×𝑡−1
𝑐=1

𝜋𝑣−𝑐,𝑣]  
(6) 

In Equation (6), the first term calculates complete 

response. If there are at least t idle ESVs, all of required 

ESVs are dispatched and demands are responded 

completely. The probability that there are at least t idle 

ESVs is determined by ∑ 𝜋𝑐,𝑣
𝑣−𝑡
𝑐=0 . This probability is 

multiplied by 100% which means that 100% of demand 

of t ESVs is satisfied. The second term in Equation (6) 

stands for partial response. Partial response occurred 

when there are c idle ESVs in which c<t.  In this case 

just c/t of the demand is satisfied. Multiplying this 

fraction into probability that exactly c ESVs are idle 

gives us expected immediate partial response. 

Now we can present a mathematical model to 

determine the location of stations and the number of 

ESVs in each station, simultaneously. The objective 

function of the model is to maximize the expected 

number of calls that are responded immediately within 

minimum covering distance. The following list 

summarizes the parameters used in the model: 

I Set of demand zones, 

J Set of potential locations for locating emergency 

stations, 

i Index for demand zones 

j Index for potential locations 

𝑅𝑢 Maximum covering distance 

𝑅𝑙
 Minimum covering distance, 

Ji Subset of locations which can cover demand zone  

i within minimum covering distance, 

 i ij lJ j d R   

J'i Subset of locations which can cover demandzone i 

within maximum covering distance, 

 i ij uJ j d R    

𝑇𝑖𝑗
𝑅𝑢  Subset of locations which can cover demand zone 

i within maximum covering distance and located 

at least as close as j to i, 

 
ijiki

R

ij ddJkkT u  ,|  

N Total number of ESVs, 

Vmax Maximum number of ESVs which can be placed 

at a station, 

m Maximum number of ESVs which are needed for 

responding a call, 

𝑝𝑡  Probability that a call requires t ESVs 

, 𝑡 = {1,2, … , 𝑚} 

λi
 

Arrival rate of calls from demand zone i, 

λit
 

Arrival rate of calls from demand zone i which 

need exactly t ESVs, 𝜆𝑖𝑡 = 𝑝𝑡𝜆𝑖 

The variables in the model are as follows: 

Xj Number of ESVs which is placed at location j 

Yiv
Rl 1, if exactly v ESVs cover demand zone i 

within minimum covering distance and 0 

otherwise 

Fj 1, if an emergency station places at location j 

and 0 otherwise 

Lij
Rl 1, if demand zone i is assigned to station j 

within minimum covering distance and 0 

otherwise 

Lij
Ru 1, if demand zone i is assigned to station j 

within maximum covering distance and 0 

otherwise, 

𝜋𝑐,𝑣,𝑗
 

Probability that c ESVs of v ESVs are busy at 

station j 

λ'j Arrival rate of calls to station j 

Based on above parameter and variables non-linear 

mixed integer programming model for maximizing 

expected immediate response to calls with batch arrival 

of calls is presented as follows: 

(7) 

𝑀𝑎𝑥𝑧 =

∑ ∑ ∑ ∑ 𝐿𝑖𝑗
𝑅𝑙𝑌𝑖𝑣

𝑅𝑙𝜆𝑖𝑡[(∑ 𝜋𝑐,𝑣,𝑗
𝑣−𝑡
𝑐=0 ) +𝑚

𝑡=1
𝑉𝑚𝑎𝑥
𝑣=1𝑗∈𝑗′𝑖𝑖∈𝐼

(∑ (𝑟
𝑡⁄ )𝜋𝑣−𝑟,𝑣,𝑗

𝑡−1
𝑟=1 )]  

s.t. 

(8) ∑ 𝑋𝑗 ≤ 𝑁𝑗∈𝐽   

(9) 𝑋𝑗 ≤ 𝑉𝑚𝑎𝑥∀𝑗 ∈ 𝐽 

(10) ∑ 𝐿𝑖𝑗
𝑅𝑢 = 1                                 ∀𝑖 ∈ 𝐼𝑗∈𝐽𝑖
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(11) 𝐿𝑖𝑗
𝑅𝑢 ≤ 𝐹𝑗∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽  

(12) 𝐿𝑖𝑗
𝑅𝑙 ≤ 𝐿𝑖𝑗

𝑅𝑢∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽′𝑖  

(13) ∑ 𝐿𝑖𝑘
𝑅𝑢 ≥ 𝐹𝑗𝑘∈𝑇

𝑖𝑗
𝑅𝑢 ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽𝑖  

(14) ∑ 𝑌𝑖𝑣
𝑅𝑙𝑉𝑚𝑎𝑥

𝑣=0 = 1                             ∀𝑖 ∈ 𝐼
  

(15) ∑ 𝑣𝑌𝑖𝑣
𝑅𝑙𝑉𝑚𝑎𝑥

𝑣=1 = ∑ 𝑋𝑗𝐿𝑖𝑗
𝑅𝑙

𝑗∈𝐽′𝑖
∀𝑖 ∈ 𝐼  

(16) ∑ 𝜆𝑖𝐿𝑖𝑗
𝑅𝑢 = 𝜆′𝑗𝑖𝜖𝐼 ∀𝑗 ∈ 𝐽  

(17) 𝐸𝑚𝜆′𝑗 < 𝑋𝑗𝜇∀𝑗 ∈ 𝐽

  
(18) 𝑋𝑗 ≥ 0 , 𝑖𝑛𝑡𝑒𝑔𝑒𝑟∀𝑗 ∈ 𝐽

  
(19) 𝜆′𝑗 ≥ 0                                      ∀𝑗 ∈ 𝐽

  
(20) 𝐹𝑗 ∈ {0,1}∀𝑗 ∈ 𝐽  

(21) 𝑌𝑖𝑣
𝑅𝑙 ∈ {0,1}∀𝑖 ∈ 𝐼 , 𝑣 = 0, 1, … , 𝑉𝑚𝑎𝑥

  

(22) 𝐿𝑖𝑗
𝑅𝑢 ∈ {0,1}∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽𝑖  

(23) 𝐿𝑖𝑗
𝑅𝑙 ∈ {0,1}∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽′𝑖  

The objective function definrd by constraint (7) 

maximizes expected immediate response to calls within 

minimum covering distance. Constraint (8) determines 

the total number of ESVs to be located. Constraint (9) 

limits the total number of ESVs located at each station. 

Constraint (10) ensures that each demand zone must be 

assigned to one station within maximum covering 

distance. Constraint (11) states the logical relationship 

between the location decisions and assignment of 

demand zones. Constraint (12) enforces that if a demand 

zone is assigned to a station within minimum covering 

distance, it should be assigned to the same station in 

maximum covering distance. Constraint (13) stands for 

assignment of demand zone to its nearest available 

station. Constraints (14) and (15) determine the exact 

number of ESVs that cover a demand zone. Constraint 

(16) calculates arrival rates for each station. Constraint 

(17) guarantees that queuing system stability condition 

is satisfied. Constraints (18)-(23) enforce restrictions on 

decision variables. 
 

 

5. SOLUTION METHOD 
 
The objective function of the presented model cannot be 

converted to the linear mode due to complexity of 𝜋𝑐,𝑣,𝑗. 

With known locations of stations, allocation of the 

demand zones to the stations based of nearest station is 

known and 𝜋𝑐,𝑣,𝑗 can be calculated. Then we have a 

linear model to determine the number of ESVs in each 

station. In this paper, genetic algorithm (GA) is used to 

locate stations. In GA, for each solution, corresponding 

linear model has been solved using CPLEX to find the 

number of ESVs in each station. 
 

5. 1. Solution Representation     Binary chromosome 

is used for solution representation. Gene with the value 

of "1" means that there is stations in the potential 

location, and "0" otherwise. Furthermore, the number of 

potential locations determines the number of genes in a 

chromosome. For example, Figure 1 shows a solution 

representation in which the length of the chromosome 

demonstrates that there are 10 candidate locations and 

binary values shows that we have four stations in 

locations 1, 4, 6 and 7, respectively. 
 

5. 2. Mutation Operator     The mutation operator 

used in this paper randomly chooses a gene of a selected 

chromosome and change its value. To select 

chromosomes for mutation, a random number between 0 

and 1 are assigned to all of chromosomes in solution 

pool. The selected chromosome is mutated if its 

assigned value is greater than mutation rate. 
 

5. 3. Crossover Operation      The two point crossover 

is used in the proposed genetic algorithm where two 

distinct random integer numbers are generated. These 

two numbers will divide the selected chromosomes 

(parents) into three segments. Then the new 

chromosome is created by exchanging the first and third 

segment of the parents. Roulette wheel selection is used 

to select chromosomes for crossover. Figure 2 

represents an example for two point crossover in which 

parents 1 and 2 are two parents which generate 

offspring1 and offspring 2.  
 

5. 4. Population Initialization      To reduce solving 

time, the following lemmas are presented. These two 

lemmas define the upper and lower bounds for the 

number of stations, respectively. 

Lemma 1: The minimum number of stations 

required to cover all of demand zones is equal to the 

number of stations obtained from solving the LSCP 

using the maximum coverage radius. 

Proof: The objective function of the LSCP is to 

find the minimum number of facilities to cover all 

demand zones. In this research all of the demand zones 

should be  covered  within  maximum  coverage  radius.  

 

 

 
Figure 1. Chromosome representation 

 

 

 
Figure. 2. Two point crossover 
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Thus, the number of required stations cannot be less 

than the number of stations obtained from solving the 

LSCP using the maximum coverage radius. 

Lemma 2: The maximum number of stations 

required to maximize the objective function is equal to 

the number of stations obtained from solving the LSCP 

using the minimum coverage radius. 

Proof: The objective function of the model 

maximizes the average of calls that are responded 

immediately within a minimum coverage distance. The 

upper bound for the number of stations is equal to the 

number of stations obtained from solving the LSCP 

using the minimum coverage radius in which at least 

one ESV should be placed in each station. In case that 

the total number of ESVs obtained from solving the 

LSCP is less than the number of stations, the upper 

bound for the number of stations is equal to the total 

number of ESVs. 

 

5. 5. Tuning the GA Parameters     A tuning 

procedure is carried out to find adequate values for 

parameters of the GA. There are three parameters that 

need to be set up: mutation rate, crossover rate and 

population size. We consider three levels for each 

parameter. Accordingly, 20, 60 and 100 are considered 

for population size, 0.6, 0.7 and 0.8 for crossover rate, 

and 0.01, 0.05 and 0.08 for mutation rate. 10 instances 

with different size have been established to set the 

parameters. Table 1 shows the rules for establishing 

instances regarding real world cases. Each instance is 

solved with all 27 combinations of GA parameters. 

Based on the gap percent between the best solution and 

the obtained solution the best values for crossover rate, 

mutation rate and population size are 0.7 , 0.08 and 20, 

respectively. 

 

5. 6. Determine the Optimum Number of ESVs in 
Each Station      Each GA solution corresponds to a 

number of selected stations. For a solution of the GA, 

the following model determines the optimum number of 

vehicles in each station. The following list summarizes 

the notations. 

 

 
TABLE 1. Rules of established instances 

Values Parameters 

{10, 15, 20, 25, 30, 35, 40, 45, 50, 55}  |I|, |J| 

U(0,2|I|) x, y 

U(0,2) 
i  

0.7
i

 
1i  

0.2
i

 
2i

 

0.1
i  

3i
 

1.5|J| N 

𝐽𝑖𝑛𝑠𝑡    Subset of selected stations in the GA 

solution, 

𝐽′𝑖
𝑖𝑛𝑠𝑡    Subset of 𝐽𝑖𝑛𝑠𝑡 that can respond to the 

demand zone i within minimum coverage 

distance, i=1, 2, …, I; 

𝜋𝑐,𝑣,𝑖   Probability that c out of v ESVs in station i 

are busy when demand zone i is allocated, i = 

1, 2,…, I. 

𝑘𝑖   Index of nearest stations to demand zone i 

that cover i within minimum coverage 

distance, i=1, 2, …, I; 

{
𝑘𝑖 ∈ 𝐽′

𝑖
𝑖𝑛𝑠𝑡

 , 𝑑𝑖𝑘𝑖
≤ 𝑑𝑖𝑗  ;  ∀𝑗 ∈ 𝐽′𝑖

𝑖𝑛𝑠𝑡 , 𝐽′𝑖
𝑖𝑛𝑠𝑡 ≠ ∅              

𝑘𝑖 ∈ (𝐽\𝐽𝑖𝑛𝑠𝑡) , 𝑑𝑖𝑘𝑖
≤ 𝑑𝑖𝑗  ; ∀𝑗 ∈ (𝐽\𝐽𝑖𝑛𝑠𝑡) , 𝐽′𝑖

𝑖𝑛𝑠𝑡 ≠ ∅
  

The Linear Mixed Integer Programming (MIP) model to 

determine the optimal number of vehicles in a station is 

as follows (MODEL(II)): 

(24) 

 

max

1 1

, ,

0

1

, ,

1

[

]

s. t .

l

V m

R

iv it

i I v t

v t

c v i

c

t

v r v i

r

Maxz

Y

r
t

 



  













 
 
 

 
 
 

 



 

(25) 
inst

j

j J

X N



 

(26) max

inst

jX V j J    

(27) 
max

0

1l

V
R

iv

v

Y i I


    

(28) 
max

1

l

i

V
R

iv k

v

vY x i I


    

(29) 1, integer inst

jX j J    

(30)  0 \ inst

jX j J J    

(31) 
 

max

0,1 ,

0,1,2,...,

lR

ivY i I

v V

  



 

The objective function maximizes the average of calls 

that are responded immediately within a minimum 

coverage distance. Constraints (25-28) are similar to the 

Model (I). Constraints (29-31) ensure that the variables 

either binary or integer values. 

 

5. 7. Computational Results     To evaluate the 

quality of the solutions obtained from the proposed GA, 

exhaustive enumeration method and the simplification 

method have been used. All of the instances are solved 

using ILOG CPLEX 12.3 on a computer with an Intel 

core i7 2.93 GHz processor with 3.49 GB of RAM. 
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5. 7. 1. Exhaustive Enumeration Method      In order 

to evaluate the GA performance, 10 instances have been 

generated based on Table 1. We run the GA five times 

in each instances and report the best objective. Results 

of GA have been compared with the one obtained from 

exhaustive enumeration in 2 hours (7200 seconds). 

Table 2 shows the results.  In this table the column 

%GAP shows the gap percent between the objective 

functions obtained from GA and enumeration method. 

All of the gaps are less than or equal to zero. Negative 

values of the gap indicate that the GA obtained a better 

solution in shorter time.  
 

5. 7. 2. Simplification Method      In this section, we 

have simplified the model by assuming that the 

maximum number of ESVs in each potential station is 

one and all of emergency calls only require one ESV. 

So each station is a M/M/1 queuing system. Then we 

have 𝜋0,1,𝑗 = 1 − 𝜌 = 1 −
𝜆𝑗

′

𝜇
  and the decision variables 𝑋𝑗 

and 𝑌𝑖𝑣
𝑅𝑙are eliminated the objective function is 

simplified as: 

(33) 
 
















Ii Jj

c

j

i

R

ij

i

lLMaxz



 1

 

In the simplified model, constraints (9), (14) and (15) 

are redundant constraints, constraint (8) convert to (34) 

and other constraints are the same as in Model (I). 

(34) j

j J

F N


  

The objective function of the simplified model is non-

linear. 𝛼𝑖𝑗 = 𝐿𝑖𝑗
𝑅𝑙𝜆𝑗

𝑐 is proposed for linearization the 

objective function. Equation (35) with additional 

constraint (36-38) is the linear objective function. 

 (35) 

Max Z

l

i

ijR

i ij

i I j J

L



 

 
  

 


 

(36)  1 ,,lR

ij j ij i
M L i I j J         

(37) ,lR

ij ij iML i I j J      

(38) 0 ,ij i I j J    
 

The results of the GA and simplified model for different 

instances are shown in Table 3. CPLEX is used for 

obtaining the exact solution of the simplified model. In 

all instances GA provides a gap close to zero which 

means GA can provide exact or near exact solution for 

the problem.  
 

 

6. ILLUSTRATIVE EXAMPLE 
 
To evaluate the applicability of the proposed model, in 

this paper, locating the gas emergency stations in 

Mashhad is considered as a case study. There are 13 

districts in Mashhad. Additionally each district is 

divided into several zones which constitutes 45 zones. 

The number of calls from each demand zone are directly 

related to the number of households. Historical data 

shows that the number of monthly calls at each zone are 

approximately equal to 2.5% of the number of its 

households. Each call may require one, two or three 

ESVs with probability of 0.7, 0.2 and 0.1, respectively. 

Minimum and maximum coverage radius are equal to 5 

and 15 minutes, respectively. Service rate equals to 5 

services per hour for each ESV. Total number of ESV is 

15. According to Lemma 1, the minimum number of 

stations is equal to 8. Moreover, according to Lemma 2, 

the maximum number of stations is equal to 37.  
 

 

TABLE 2. Comparison between complete enumeration method and genetic algorithm 

%GAP 
GA Exhaustive Enumeration 

|J| Instance No. 
Time(s) Best Objective Time(s) Best Objective 

0 463 5635.75 17 5635.75 10 1 

0 475 8721.89 512 8721.89 15 2 

-1.84 568 13406.61 7200 13164.57 20 3 

-2.87 620 14411 7200 14009.21 25 4 

-1.57 704 18053.31 7200 17774.14 30 5 

-3.87 791 20559.61 7200 19794.4 35 6 

-5.20 854 23713.23 7200 22541.74 40 7 

-1.42 918 25066.27 7200 24716.27 45 8 

-4.41 1013 30699.14 7200 29402.61 50 9 

-1.95 1037 33556.57 7200 32914.67 55 10 
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Figure 3 illustrates the result of GA. 2 ESVs are located 

in station 7, and other stations have one ESV. The 

number of ESVs at each station is very low. In this 

situation 28.89% of calls are immediately responded 

within minimum covering distance. This value (28.89%) 

is called response rate and obtained bydividing the 

objective function value to total calls. This situation 

may be made because of the low number of available 

ESVs. Results of simplified model which is illustrated 

in Figure 4. 

Within simplified model,43.72% of calls is 

immediately responded within shorter distance and 

configuration of stations are different from the previous 

situation. 14.83% difference in the level of immediate 

response between two situations is very important. Thus 

it can be concluded that the simplifying assumption 

caused a dramatic deviation from the real world 

situation. 
 

 

TABLE 3. Comparison between exact solution and genetic 

algorithm 

%GAP GA Exact  |J| 
Instance 

No. 

0 3205.01 3205.01 10 1 

0 4697.35 4697.35 15 2 

0 6879.82 6879.82 20 3 

0 8513.21 8513.21 25 4 

0 10034.65 10034.65 30 5 

0 13367.51 13367.51 35 6 

0.13 12938.3 12955.27 40 7 

0 15625.49 15625.49 45 8 

0.26 16931.21 16976.09 50 9 

0.25 19804.85 19854.83 55 10 
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Figure 3. Result of GA 
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Figure 4. Result of GA when each call required one ESV 

 

 
6. 1. Sensitivity Analysis of Effective Parameters     
In this section we evaluate the impact of the number of 

ESVs, the arrival rate, and the service rate on the 

objective function value. 

 

6. 1. 1. Impact of the Number of ESVs      Figure 5 

shows the effect of the number of ESVs on response 

rate. Increasing the number of ESVs, improves the 

response rate. Regarding Figure 5, appropriate number 

of ESVs can be obtained according to the desired 

response rate. Figure 5 can be divided into three 

regions. In region (I), a gradual increase in the number 

of ESVs up to 50, can significantly improve the 

response rate up to 80%. Regarding region (II) there 

will be only 18% improve by increasing the number of 

ESVs from 50 to 100. One managerial insight is that 

increasing the number of ESVs in region (II) would be 

appropriate in case of existing extra budgets. Finally, as 

we can see in region (III), with 115 ESVs the response 

rate closes to 100%. 

 

6. 1. 2. Impact of Service Rate      High quality 

equipment, better manpower utilization and other 

technical issues can reduce the service time and increase 

the response rate. Figure 6 shows the response rate by 

changing the service rate from 2 to 20 services per hour. 

By increasing the service rate from 5 to 10 services per 

hour, response rate increases from 29 to 40%. 

Moreover, response rate is %44.5 if service rate equal to 

20 services per hour. It is clear that improving the 

service rate incurs more costs. So efforts to increase the 

service rate up to the 10 services per hour will be very 

effective. 

 

6. 1. 3. Impact of Arrival Rate      This section 

evaluates the impact of various arrival rates on the 

response rate by changing the fraction of the number of 

households from 0.5 to %4. Figure 7 demonstrates the 

results. 
 

 

 : Demand zone 

 : Stations 

 : Demand zone 

 : Stations 
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Figure 5. Response rate as a function of number of ESVs 

 

 

 

Figure 6. Response rate as a function of service rate 

 

 

Obviously, response rate has a declining pattern by 

increasing the arrival rate. Figure 7 shows 20% 

increases in response rate by decreasing the fraction of 

the number of household from 2.5 to 0.5%. Moreover 

we have 6% decrease in response rate by increasing the 

fraction from 2.5 to 4%. The managerial insight is that 

decreasing emergency calls via increasing the 

community's awareness to follow safety requirement in 

using urban gas could increase service levels. 

 

 

 
Figure 7. Response rate as a function of percent of arrival rate 

 

 

7. CONCLUSION  
 
In this paper an emergency vehicle locations problem 

has been considered. The underlying assumption in the 

literature is that each emergency call requires just one 

ESV. However, this assumption contradicts what is 

happening in reality. For this reason, in this paper it is 

considered that in case of necessity it is possible to use 

more than one ESV for any call. In addition, in the 

proposed model, two radius of coverage are considered 

in which the minimum coverage distance related to the 

best response rate, and the larger one is related to the 

minimum service provision. The objective function is to 

maximize the response rate in the minimum coverage 

radius.  

An exhaustive enumeration method has been used 

to solve the model. In this method, all possible 

combinations for station locations are considered, and 

then the proposed model for determining the number of 

ESVs of each station is optimally solved using CPLEX. 

Finally, the locations with the best objective function 

have been selected. However, despite the proposed 

lemmas to reduce the number of possible combination 

of stations location, it is not possible to get the optimal 

solutions for large instances at the satisfactory time. 

Therefore, a GA has been developed to solve the model. 

Computational experiments showed the efficiency of the 

provided GA algorithm. Finally in this paper, sensitivity 

analysis on the important parameters of the model have 

been conducted in Mashhad city as a case study.  

Results show that spending cost on providing more 

available ESVs, improving the service rates and the 

growing safety awareness of the society could have 

major effect on the level of response rate. This work can 

be extended by considering different types of ESVs and 

variable service rate. 
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 چكيده

 

 

تواند قاله جایابی خودروهای خدمات اضطراری در نظر گرفته شده است که در آن هر تماس اضطراری میدر این م

 پاسخ به تماسها بسيار تاثيرگذار بوده در نظر نگرفتن این فرض نتایج را غيرواقعی خواهد کرد.

 

doi: 10.5829/ije.2018.31.08b.12 

 

بيشتر از یک خوردو نياز داشته باشد. در این مساله دو فاکتور باید مشخص شوند: مكان ایستگاهها و تعداد خودرو در 

هر ایستگاه. به این منظور یک مدل برنامهریزی عدد صحيح مختلط غيرخطی به منظور ماکزیمم کردن نرخ پاسخ به 

تماسهای اضطراری ارائه میشود. علاوه بر این یک روش حل مبتنی بر الگوریتم ژنتيک ارائه شده و کارایی الگوریتم 

با مقایسه با یک الگوریتم شمارش کامل مقایسه ارزیابی خواهد شد. مدل برای یک مسئله واقعی مبتنی بر ااطلاعات 

شهر مشهد پياده شده که هدف آن پيدا کردن ایستگاهها امداد گاز شهری و تعداد خودروی مورد نياز هر ایستگاه 

است. در انتها تحليل حساسيت روی پارامترهای اصلی مدل انجام شده و بينشهای مدیریتی گزارش میشوند. نتایج 

نشان میدهد که در نظر گرفتن این فرض که هر تماس میتواند نياز به بيش از یک خودرو داشته باشد روی نرخ 


