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A B S T R A C T  
 

 

Free vibration characteristics of polymer composite plates reinforced by graphene nanosheets 

employing the Eringen nonlocal elasticity theory were investigated. Theoretical formulations are 

derived based on Hamilton’s principle implementing linear orthotropic constitutive equations of lamina 
while the behavior of nanostructure points affected by all other nonlocal points is also taken into 

account. For obtaining the mechanical properties, a new modified Halpin–Tsai model is employed. 

Governing equations are solved by developing an efficient analytical solution. The accuracy of the 
presented method is examined, by comparing the results with literature in which a good agreement is 

observed. Effects of different boundary conditions, volume fraction, graphene sheets orientation angle 

and Eringen nonlocal parameter on frequency of nanocomposite are analyzed. Effects of the presence 
of vacancy defects in the nanosheet on the behavior of reinforced composites were also studied. The 

results illustrate that by increasing the nonlocal parameter the natural frequency showed a decreasing 

trend while by increasing the graphene sheet’s volume fraction, natural frequencies significantly 
increased. It could be concluded that the orientation angle variations in graphene sheets, did not play an 

important role on the natural frequency of nanocomposite as well as degradation of properties resulted 

in from vacancy defects. 

doi: 10.5829/ije.2018.31.07a.13 
 

 
1. INTRODUCTION1 
 

Due to increasing the applications of nanocomposites 

reinforced with carbon based nanostructures including 

carbon nanofillers, need for accurate and effective 

analysis of behavior of such nanostructures has been 

increased in recent years. An efficient theory was 

introduced by Eringen [1]. Recently, some research 

works have been reported excellent solution methods 

using the nonlocal theory for nanostructure studies. For 

instance, Karličić et al. [2] used the nonlocal theory to 

examine the influence of in-plane magnetic field on the 

viscoelastic orthotropic multi-nanoplate system 

(VOMNPS) embedded in a viscoelastic medium. 

Pradhan and Phadikar [3] studied nonlocal elasticity 

theory for vibration of nanoplates. They employed both 

classical and FSDT of plates to analyze the vibration of 

single and double layer graphene sheets. 

                                                           

*Corresponding Author Email: asgari@kntu.ac.ir (M. Asgari) 

On the other hand, because of magnificent 

mechanical, chemical, thermal and electrical material 

properties of nanosheets including graphene and also 

it’s widely uses in several advanced industries; lots of 

esearchers have recently paid attention on nanosheets 

[4]. Shariyat et al. [5]employed a molecular mechanics 

approach to investigate the mechanical properties of 

nanosheet using a proper unit cell. Montazeri and Rafii-

Tabar [6] employed different kinds of method to  

compute the elastic constants of a polymeric 

nanocomposite embedded with graphene sheets. 

Kitipornchai et al. [7] examined the vibration and the 

buckling of FGM beams reinforced by graphene 

platelets. Jalali et al. [8] examined the out-of-plane 

defects on vibrational analysis of single layered 

graphene sheets. Nazemnezhad [9] used nonlocal  

Timoshenko beam model and molecular dynamics 

simulations to investigate the free vibration of cantilever 

multi-layer graphene nanoribbons. Arani et al. [10] used 

the third order  shear  deformation  theory  to  study  the  
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instability of axially moving single-layered graphene 

sheet. Accordingly, experimental and theoretical efforts 

have been carried out in order to study various kinds of 

effects on defected graphene sheets, in recent years. 

Allahyari and Fadaee [11] presented the vibration of 

circular double-layer graphene sheets with defect and 

surface effects. They employed an analytical 

investigation to compute the natural frequencies of 

nanoplate. So it is important to focus on vibrational 

behavior of nanocomposites which the graphene 

nanosheets are dispersed in them. For example, Yao et 

al. [12] studied about homogeneous dispersion of 

graphene nanosheets in epoxy. Ragavan et al. [13] 

developed Graphene magnetic nanocomposite as a 

nano-adsorbent. Gharib et al. [14] presented the 

vibrational behavior of polymeric nanocomposite. 

Mohammadimehr et al. [15] developed the free 

vibration of nanocomposite plate reinforced by 

functionally graded single-walled carbon nanotube 

embedded in viscoelastic foundation. While quite a few 

investigations on vibration characteristics of graphene 

reinforced polymer nanocomposite plates have been 

reported; there seems to be a void in studies concerning 

defected graphene nanosheets. Based on Eringen 

nonlocal elasticity theory, the constitutive equations by 

employing transformed orthotropic stiffness 

components were obtained. To estimate the mechanical 

properties of nanocomposite plate reinforced by 

graphene sheets, a new modified Halpin–Tsai model 

was used. In that a special procedure was employed to 

obtain the graphene efficiency parameters according to 

Halpin–Tsai model and the MD simulations. 

 

 

2. THEORETICAL FORMULATION AND 
DEVELOPING ANALYTICAL SOLUTION 
 

A rectangular nanocomposite reinforced by graphene 

sheet with length "a", width "b" and uniform thickness 

"h" is depicted in Figure 1. The origin of the considered 

coordinate system is placed at one end of the nanoplate 

on the mid-plane surface. The (x, y) are in the length and 

width directions of the nanocomposite, respectively. 

The z is placed in the direction of the outward normal to 

the mid-plane surface. 

The differential constitutive equation of Eringen 

nonlocal theory [16] can be presented by the following 

form 

2(1 ) nl lS S    (1) 

where is the Laplacian operator, is the nonlocal 

parameter or small scale coefficient, , are the 

nonlocal and the local stress tensor, respectively. 

 

 

 
Figure 1. Schematic of a rectangular nanocomposite 

reinforced by pristine graphene sheet 

 

 

According to the classical plate theory, displacement 

field for a rectangular single layer plate can be 

considered as follows: 
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Here 0 0 0( , , )u v w  are called the midplane displacement 

and ( , , )u v w are the displacements along x, y and z 

directions, respectively. Using the strain-displacement 

relations, the only nonzero strains are given by 

following experssions: 
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According to Eringen nonlocal theory and using 

orthotropic constitutive equations of lamina, it can be 

represented as follows: 
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Here denote the transformed stiffness components 

and is defined as follows [17]: 
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(5) 

in which cos( )c  , sin( )s   and θ is the orientation 

angle between the global and local Cartesian 

coordinates. Also Tij
 
are the components of stiffness 

tensor in the following form: 

2 
nlS lS

ijT
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It is assumed that the graphene sheets are uniformly 

distributed within the plate thickness. To obtain 

mechanical properties of nanocomposite plate, a new 

modified Halpin–Tsai model is employed [17]: 
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where, ac, bc and hc are the length, width and effective 

thickness of graphene sheet,  respectively.  
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(8) 

where, superscripts G and m represent the graphene and 

matrix, respectively. E1 and E2 are the elasticity 

modulus in longitudinal and transverse directions, 

respectively. G12 is the shear modulus. VG denotes the 

graphene sheet volume fraction and , are Poisson’s 

ratio and density, respectively . Also  (i = 1, 2, 3) are 

called graphene efficiency parameters [18] to consider 

small scale effect.  Now by substituting Equatios (6), (7) 

and (8) into Equation (5), it can be concluded that 
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where, 
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The resultants force and moment components per unit 

length based on nonlocal stress tensors are defined as 

follows:  
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(11) 

The equation of motion can be derived using Hamilton's 

principle as follows: 

0
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Here U is the strain energy, V is the virtual work done 

by external applied forces and K is the kinetic energy. 

The variation of kinetic energy is obtained as follows: 
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For the virtual strain energy, it can be mentioned that 
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The mass moments of inertia are defined as follows: 

 
(15) 

Using integration by parts and vanishing some terms, 

finally the motion equations can be expressed as follows 
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The solution of Equation (16c) for fully simply 

supported rectangular plates (SSSS) can be obtained 

using Navier’s method [19]. In this approach, the 

displacement is expanded in trigonometric series as 
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In which, m and n are mode numbers. Substituting 
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SSSS condition can be concluded  
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Finally, it can be observed that the Equation (18) is in 

terms of ω, so the natural frequencies can be obtained. 

The Lévy method can be used to determine natural 

frequencies of rectangular plates for which two opposite 

edges are simply supported and the other two edges 

have any combination of Clamped (C), simply 

supported (S), and Free (F) boundary conditions. The 

solution is in the form of a single Fourier series as 

follow: 

( )sin(( , , ) ) i tm
W y

x
w x y t e

a


    (19) 

that satisfies the simply supported boundary conditions 

as follows: 

 (20) 

Substituting Equation (19) into Equation (16c), it can be 

obtained:  
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(21) 

The ordinary differential equation (21) obtained in the 

Lévy method can be solved for the natural frequencies 

and mode shapes analytically. The form of the solution 

depends on the nature of the roots δ of the 

characteristics equation is given by following 

experssions: 
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The general solution of Equation (22) is given by 
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 (23) 

Also,  ,  ,  and  are integration constants, 

which are determined using the boundary conditions. 

However, we do not actually determine these constants. 

Instead, the values of ω are determined by setting the 

determinant of the coefficient matrix  ,  ,  and  

to zero. For SSSF boundary condition, it can be stated 

follows: 
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(24) 

For the solution of Equation (23) in this case, the 

boundary conditions in Equation (24) and yield 

. Setting the determinant of the coefficient 

matrix to zero, we obtain the following characteristic 

equation for the natural vibration of SSSF plates. For 

SSCC boundary condition, it can be mentioned below: 
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Substitution of Equation (23) into Equation (25) yields 

the following characteristic equation: 
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3. RESULTS AND DISCUSSIONS  

 
In this part, in order to show the convergence and 

accuracy of the presented method, a comparison study 

for variation of natural frequencies ratio with length of a 

square nanoplate for various nonlocal parameter is 

illustrated in Figure 2. The results obtained from the 

developed analytical method has been compared with 

results of Pradhan and Phadikar [3]. The mechanical 

properties are supposed to be the same as, elastic 

modulus, 1.02 TpaE   , thickness of the graphene plate, 

0.34 nmh   , density, 
32750 kg/m   and the Poisson’s 

ratio, 0.3.   Results depicted in Figure 2 shows that an 

exceptional convergence and agreement with different 

value of nonlocal parameter is obtained. 

Based on this fact, in order to examine the accuracy 

of the developed method, another comparison study for 

the effect of volume fraction on the dimensionless 

fundamental frequency of an CNT reinforce 

nanocomposite plate is summarized in Table 1. It is 

obvious that the present results have good agreement 

with literature. According to Table 2, it can be observed 

that as the nonlocal parameter increases, the stiffness of 

nanocomposite decreases thus the natural fundamental 

frequencies decrease. It can be clearly seen that the 

frequency is significantly increased by increasing a 

small amount of graphene nanosheets into the polymer 

matrix. Table 3 reports the natural fundamental 

frequencies of nanocomposites reinforced with 

graphene sheets for various orientation angles and 

volume fractions with SSSF boundary condition. Figure 

3 shows that as the nonlocal parameters increases the 

natural frequencies decrease. 

Schematic representation of a defect-free graphene 

sheet and with the presence of vacancy defects are 

shown in Figure 4. Based on the results obtained 

through molecular dynamics simulations reported by 

Hao et al. [20], dependency of Young’s modulus of a 

monolayer graphene sheet with monatomic vacancies to 

the concentration of monatomic vacancies could be 

realized. For the mechanical properties, it can be seen 

that Young’s moduli of defected graphene sheets feature 

a linear dependence on the defect concentration. 

 

 
Figure 2. Natural frequencies ratio with the length of a square 

nanoplate for various nonlocal parameter obtained by 

numerical and analytical solutions 
 

 

TABLE 1. Effect of volume fraction on the nondimensional 

fundamental frequency of CNT reinforced composite square 

plate  for SSSS condition 

CNTV 
Modes

 ,m n 
Zhu et al. 

[21] 

Alibeigloo 

[22] 

Wu & 

Li [23] 
Present 

0.11 (1,1) 19.223 19.168 19.155 19.486 

 (1,2) 23.408 23.270 23.273 23.387 

 (1,3) 34.669 34.054 34.038 34.049 

0.14 (1,1) 21.354 21.328 21.317 21.807 

 (1,2) 25.295 25.199 25.188 25.466 

 (1,3) 36.267 35.679 35.667 35.808 

0.17 (1,1) 23.679 23.622 23.607 23.994 

 (1,2) 28.987 28.825 28.810 28.927 

 (1,3) 43.165 42.386 42.367 42.357 

 

 

TABLE 2. Natural frequencies  (GHz) of nanocomposite plate 

for SSSS condition 

 2nm VG 
 ,m nnumbersMode  

(1,1) (1,2) (2,1) (2,2) 

0 0.03 158.491 398.644 401.822 633.965 

 0.07 222.219 561.756 564.536 888.876 

 0.11 239.861 599.105 603.165 959.454 

1 0.03 154.720 376.118 379.116 579.358 

 0.07 216.931 530.013 532.636 812.312 

 0.11 234.155 565.251 569.082 876.811 

2 0.03 151.205 357.024 359.870 536.799 

 0.07 212.003 503.106 505.596 752.641 

 0.11 228.836 536.556 540.192 812.401 

3 0.03 147.920 340.571 343.285 502.423 

 0.07 207.397 479.921 482.296 704.443 

 0.11 223.846 511.829 515.298 760.376 
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TABLE 3. Natural frequencies  (GHz) of nanocomposite plate 

for SSSF condition  

 2nm VG 
̂ 

0 30 60 90 

0 0.03 158.491 398.644 401.822 633.965 

 0.07 222.219 561.756 564.536 888.876 

 0.11 239.861 599.105 603.165 959.454 

1 0.03 154.720 376.118 379.116 579.358 

 0.07 216.931 530.013 532.636 812.312 

 0.11 234.155 565.251 569.082 876.811 

2 0.03 151.205 357.024 359.870 536.799 

 0.07 212.003 503.106 505.596 752.641 

 0.11 228.836 536.556 540.192 812.401 

3 0.03 147.920 340.571 343.285 502.423 

 0.07 207.397 479.921 482.296 704.443 

 0.11 223.846 511.829 515.298 760.376 

 

 

 
Figure 3. Natural frequencies of nanocomposite with pristine 

graphene sheets and orientation angle ˆ 0  for various 

nonlocal parameter, volume fractions and SSSS boundary 

condition 

 

 

  
(b) (a) 

Figure 4. Schematic representation of a) defect-free pristine 

graphene sheet b) presence of vacancy defect 

 

 

Young’s modulus of a defect-free graphene sheet is 1.1 

TPa when a thickness of 3.2 nm is used. The curve can 

be fitted into a linear function for monatomic vacancies 

as  121.8 10 0.994 0.027d
vE f   , which can be explained as 

that it contains two heptagons and two pentagons, which 

preserve interatomic sp2 bonding, while monatomic 

vacancy breaks the integrity of pristine sheet that results 

in a higher formation energy in comparison with the 

nucleation energy for Stone-Wales dislocation. A linear 

fitting for the Stone-Wales dislocations fails here as is 

hard to define the concentration. Figure 5 shows the MD 

simulation results as well as a fitted liner curve. 

Figure 6 shows the effects of nonlocal parameter 

versus the vacancy concentration of defected graphene 

sheets on natural frequencies of nanocomposite. The 

vacancy concentration is considered between 0-4% 

while the Eringen nonlocal parameter is taken 0-9 nm2. 

 

 

 
Figure 5. Young’s modulus of defective graphene sheet 

versus concentration of monovacancy defect percent 

 

 

 
Figure 6. Effects of vacancy concentration in conjuring with 

the nonlocal parameter on natural frequencies of 

nanocomposite reinforced with defected graphene sheets for 

SSSS boundary condition. 

 

 

4. CONCLUSION 
 
In this work, an analytical investigation to examine the free 

vibration of nanocomposite reinforced by graphene sheets 

employing Eringen nonlocal elasticity theory was carried out. 

An effective analytical solution is developed for solving the 

complicated governing equations which is much more 

efficient in comparison to common numerical solutions. The 

accuracy of the presented method is examined, by comparing 

the results with literature in which a good agreement was 

observed. To show the novelty of the presented approach 

Eringen nonlocal theory as well as various orientation angles 

of defected and pristine graphene sheet reinforcement were 

considered together and solved base on an analytical method. 

It is also suggested that nonlocal parameter and volume 

fraction have a specific effect on natural frequencies, while 
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various orientation angles of graphene sheets in 

nanocomposites have a slight effect on natural frequencies. By 

increasing the graphene sheets volume fraction, 

nanocomposite gets stiffer and the frequencies increase 

significantly, while as the nonlocal parameter decreases the 

nanocomposite frequencies increase. 
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 چکیده

 

 

محلی تیسیته غیروری الاساند با استفاده از تئهای گرافن تجهیز شدههای کامپوزیت پلیمری که با نانوورقارتعاش آزاد ورق

دلایه اری چناند. روابط تئوری با بکارگیری اصل همیلتون و معادلات خطی و ساختارینگن مورد بررسی قرار گرفته

ور به منظست. بهاشده  باشد استخراجتروپیک که نیز در آن رفتار نقاطی از نانوسازه تحت تاثیر دیگر نقاط غیرمحلی میارتو

ش ده از یک روفته شده است. معادلات پایه با استفاتسای بکار گر-دست آوردن خواص مکانیکی، فرم ارتقاء یافته هالفین

ق خوبی ه تطابکه با مقایسه نتایج آن با دیگر مقالات بررسی شده است اند. دقت روش ارائه شدتحلیلی به دست آمده

یرمحلی غهای گرافن و پارامتر گیری ورقمشاهده شده است. اثرات شرایط مرزی مختلف، درصد حجمی، زاویه جهت

وی رفتار رر رق باند. اثرات وجود عیوب شبکه در نانووارینگن بر روی فرکانس نانوکامپوزیت مورد بررسی قرار گرفته

لی فرکانس تر غیرمحدهد که با افزایش پاراماند. نتایج نشان میهای تقویت شده نیز مورد بررسی قرار گرفتهکامپوزیت

 بیعی به طورطهای طبیعی تمایل به نشان دادن رفتاری نزولی دارد درحالیکه با افزایش درصد حجمی نانو گرافن، فرکانس

فت خواص های گرافن همچنین اگیری ورقوان نتیجه گرفت که زوایای مختلف جهتتیابند. میمحسوسی افزایش می

 ایجاد شده به واسطه عیوب شبکه، نقش مهمی در فرکانس طبیعی نانوکامپوزیت نخواهند داشت.

doi: 10.5829/ije.2018.31.07a.13 

 


