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Free vibration characteristics of polymer composite plates reinforced by graphene nanosheets
employing the Eringen nonlocal elasticity theory were investigated. Theoretical formulations are
derived based on Hamilton’s principle implementing linear orthotropic constitutive equations of lamina
while the behavior of nanostructure points affected by all other nonlocal points is also taken into
account. For obtaining the mechanical properties, a new modified Halpin—Tsai model is employed.
Governing equations are solved by developing an efficient analytical solution. The accuracy of the
presented method is examined, by comparing the results with literature in which a good agreement is
observed. Effects of different boundary conditions, volume fraction, graphene sheets orientation angle
and Eringen nonlocal parameter on frequency of nanocomposite are analyzed. Effects of the presence
of vacancy defects in the nanosheet on the behavior of reinforced composites were also studied. The
results illustrate that by increasing the nonlocal parameter the natural frequency showed a decreasing
trend while by increasing the graphene sheet’s volume fraction, natural frequencies significantly

increased. It could be concluded that the orientation angle variations in graphene sheets, did not play an
important role on the natural frequency of nanocomposite as well as degradation of properties resulted

in from vacancy defects.
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1. INTRODUCTION

Due to increasing the applications of nanocomposites
reinforced with carbon based nanostructures including
carbon nanofillers, need for accurate and effective
analysis of behavior of such nanostructures has been
increased in recent years. An efficient theory was
introduced by Eringen [1]. Recently, some research
works have been reported excellent solution methods
using the nonlocal theory for nanostructure studies. For
instance, Karli¢i¢ et al. [2] used the nonlocal theory to
examine the influence of in-plane magnetic field on the
viscoelastic ~ orthotropic ~ multi-nanoplate  system
(VOMNPS) embedded in a viscoelastic medium.
Pradhan and Phadikar [3] studied nonlocal elasticity
theory for vibration of nanoplates. They employed both
classical and FSDT of plates to analyze the vibration of
single and double layer graphene sheets.
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On the other hand, because of magnificent
mechanical, chemical, thermal and electrical material
properties of nanosheets including graphene and also
it’s widely uses in several advanced industries; lots of
esearchers have recently paid attention on nanosheets
[4]. Shariyat et al. [5]employed a molecular mechanics
approach to investigate the mechanical properties of
nanosheet using a proper unit cell. Montazeri and Rafii-
Tabar [6] employed different kinds of method to
compute the elastic constants of a polymeric
nanocomposite embedded with graphene sheets.
Kitipornchai et al. [7] examined the vibration and the
buckling of FGM beams reinforced by graphene
platelets. Jalali et al. [8] examined the out-of-plane
defects on vibrational analysis of single layered
graphene sheets. Nazemnezhad [9] used nonlocal

Timoshenko beam model and molecular dynamics
simulations to investigate the free vibration of cantilever
multi-layer graphene nanoribbons. Arani et al. [10] used
the third order shear deformation theory to study the
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instability of axially moving single-layered graphene
sheet. Accordingly, experimental and theoretical efforts
have been carried out in order to study various kinds of
effects on defected graphene sheets, in recent years.
Allahyari and Fadaee [11] presented the vibration of
circular double-layer graphene sheets with defect and
surface effects. They employed an analytical
investigation to compute the natural frequencies of
nanoplate. So it is important to focus on vibrational
behavior of nanocomposites which the graphene
nanosheets are dispersed in them. For example, Yao et
al. [12] studied about homogeneous dispersion of
graphene nanosheets in epoxy. Ragavan et al. [13]
developed Graphene magnetic nanocomposite as a
nano-adsorbent. Gharib et al. [14] presented the
vibrational behavior of polymeric nanocomposite.
Mohammadimehr et al. [15] developed the free
vibration of nanocomposite plate reinforced by
functionally graded single-walled carbon nanotube
embedded in viscoelastic foundation. While quite a few
investigations on vibration characteristics of graphene
reinforced polymer nanocomposite plates have been
reported; there seems to be a void in studies concerning
defected graphene nanosheets. Based on Eringen
nonlocal elasticity theory, the constitutive equations by
employing transformed orthotropic stiffness
components were obtained. To estimate the mechanical
properties of nanocomposite plate reinforced by
graphene sheets, a new modified Halpin—-Tsai model
was used. In that a special procedure was employed to
obtain the graphene efficiency parameters according to
Halpin—Tsai model and the MD simulations.

2. THEORETICAL FORMULATION AND
DEVELOPING ANALYTICAL SOLUTION

A rectangular nanocomposite reinforced by graphene
sheet with length "a", width "b" and uniform thickness
"h" is depicted in Figure 1. The origin of the considered
coordinate system is placed at one end of the nanoplate
on the mid-plane surface. The (x, y) are in the length and
width directions of the nanocomposite, respectively.
The z is placed in the direction of the outward normal to
the mid-plane surface.

The differential constitutive equation of Eringen
nonlocal theory [16] can be presented by the following
form

1—uvA)s™ =s' (1)

where VZis the Laplacian operator, uis the nonlocal

parameter or small scale coefficient, S™, S'are the
nonlocal and the local stress tensor, respectively.

/

Figure 1. Schematic of a fectangular nanocomposite
reinforced by pristine graphene sheet

According to the classical plate theory, displacement
field for a rectangular single layer plate can be
considered as follows:

u(x,y,z.t)=uy(x,y,t)-z(w /ox)

V(X,y,z,t)=vy(x,y,t)—-z(ow /oy) 2)
w(X,y,z,t)=w,(x,y,t)

Here (u,v,w,) are called the midplane displacement

and (u,v,w)are the displacements along x, y and z
directions, respectively. Using the strain-displacement
relations, the only nonzero strains are given by
following experssions:

ou, 0w _ V0w
e = (50 -2(23) .Syy—(ay) Z(ayz) o
&, *1(%+%—22 o )

Y20y ox ox oy

According to Eringen nonlocal theory and using
orthotropic constitutive equations of lamina, it can be
represented as follows:

S anl Tgl Ez Tge 2 :>I<
(1_ﬂvz) S;J = T712 T£2 Tje g;yl (4)
S xnyl T T Tes g:yl

Here T, denote the transformed stiffness components
and is defined as follows [17]:

=T C)+2(T, + 2T ) C%2 +T,s*

L, =T, +T,,—4T,)Cc%2+T,(s*+c%)

, = (T8 +2(T, +2T ) c%s%+(T,,cf) 5)
6 =T —2Tg)C% + (T Ty +2Tg) 5%

6= (T Ty, —2Tge) 0%+ (Tyy —T 5, + 2T ) sc°

o6 =Ty +T,, = 2T, = 2T ) e’ 2 +T (s* +¢*)

in which ¢ =cos(9), s =sin(¢) and 0 is the orientation
angle between the global and local Cartesian
coordinates. Also Tj are the components of stiffness
tensor in the following form:

_‘
o el e
[T

P
o



1097 E. Allahyari and M. Asgari / IJE TRANSACTIONS A: Basics Vol. 31, No. 7, (July 2018) 1095-1102

El T — V12E2 T - EZ
’ 122
1- (V12V 21) 1- (V12V 21) 1- (VizV 21)

2=
V12E2

1=

(6)
T =GV =
1

It is assumed that the graphene sheets are uniformly
distributed within the plate thickness. To obtain
mechanical properties of nanocomposite plate, a new
modified Halpin—Tsai model is employed [17]:

e 2@ Th)AV 1420 /hg) AV
E,=(E"p) (o el ) E =(E ") (el
1 =(E"m)( -4V E) ) E,=(E"m,)( 1=V %)

)=V S 1V S 0

)

- m l
G,=(G 773)(717%2\/ S
p=(V °p®)+ (1V ©)p"

where, ac, bc and hc are the length, width and effective
thickness of graphene sheet, respectively.

(ES/E™)-1
(EZTE™)+2(ag /'hg)
~ (ES/E™)-1
ﬂ"zz_((Ef/E"‘)+2(bG/hG)) ®)

_ (GfZ/Gm)—l
2“'{ GS/G™) j

A =( )

where, superscripts G and m represent the graphene and
matrix, respectively. E; and E, are the elasticity
modulus in longitudinal and transverse directions,
respectively. Gio is the shear modulus. VC denotes the
graphene sheet volume fraction and v,,, p are Poisson’s

ratio and density, respectively . Also n, (i =1, 2, 3) are

called graphene efficiency parameters [18] to consider
small scale effect. Now by substituting Equatios (6), (7)
and (8) into Equation (5), it can be concluded that

Ty =2c0s? (0)sin®(O) [ xnz + Lo Cviy + (W-V © ™))
+ym,sin®(0) + wi cos* (6)
T1p =cos?(0)sin®(0)(-2 173 + i) + <y
+[cos*(8) +sin® (@), Ve +@-v E ™)
T 2o =2¢c0s” (0)sin®(O) [ xn3 + Lo Cviy + (W-V © ™))
+¢mysin(0) + ¢, cos*(6)
T16 = Cos(0)sin®(O)x73 +wim — $n,) )
+¢0s>(0)sin(O)[— s +ym — WV Cvi + (1-V ™)
T 6 = C0s>(0)sin(0)Lx773 + i — {112
+cos(0)sin* (O)[—xns +ym — S vz + -V C ™))
Tes = 73lcos® ()sin®(6)]
+cos?(0)sin® () xns + S G +@-V C ™)
+Cmy = Cnp S + @V C ™)

where,
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The resultants force and moment components per unit
length based on nonlocal stress tensors are defined as
follows:

h/2 h/2
= | sMdz, M,, SMzdz
Vo ,J/z -,
hi/2 hi/2
_ I _ i
= [ spdz, My, = [ spadz (11)
-h/2 -h/2
hj.Z hj.Z
= | sydz, M, = | syzdz
xy Xy
-h/2 -h/2

The equation of motion can be derived using Hamilton's
principle as follows:

:
[(U +& —sK)dt =0 (12)
0

Here U is the strain energy, V is the virtual work done
by external applied forces and K is the Kinetic energy.
The variation of kinetic energy is obtained as follows:

5K :%pja(uhv%wz)dv
)

= pj SUSU +V SV +w dw )dV

\%

oW oW oo (13)
:;[ (T - )5u+(—|1u—lza—x)a—x
w1y - )&/+( 1\/+I2%)a(;yﬁ+(I0W)&N]dA

For the virtual strain energy, it can be mentioned that

Q0 =[["" (s115e,, +5]13z, +25 ] b, ) dzdA
A

_j [N;;5°—M”'5&N+N"'5° (14)
2
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The mass moments of inertia are defined as follows:

I, =[pz'dA,i =012

[ (15)
Using integration by parts and vanishing some terms,
finally the motion equations can be expressed as follows

[3]:

N ON & any+aN o

oty Aty @
2 6M 8M
(6 Mxx+ ‘/Y) 7( ﬂﬁ-N %) (b) (16)

ox? 6x<?y yr T o M Yoy
0 ow ow o

+5(ny67+Nyy6y) ph—- e ©

The solution of Equation (16c¢) for fully simply
supported rectangular plates (SSSS) can be obtained
using Navier’s method [19]. In this approach, the
displacement is expanded in trigonometric series as

wx,y =3 3W, sin)sin 2Ly g'e! an
n=lm=1 a b

In which, m and n are mode numbers. Substituting

Equation (17) into Equation (16c¢), the final equation for

SSSS condition can be concluded

a'inr*2cos? (O)sin” () zms + gl oy + 1V )]

+¢psin(60)+ ny00s* (6)]+ 227 In 2 (h om? 2(cosz( )sm (0)F-2m+ym]

+( +cos*(0)+sin Oyl CvSy + 0V W) + 2L ymeos’ (0)sin” (0]

#0082 (0)sin”(O)L g+ ol v+ LV W]+ = ol ©u + LV O )]

a0+ ‘I (2oos” (O)sin’ (9 )[szw v+ )]

+y1psin ( )+y/171005 - 124 (a miz y)pa)z] 0

(18)

Finally, it can be observed that the Equation (18) is in
terms of w, so the natural frequencies can be obtained.
The Lévy method can be used to determine natural
frequencies of rectangular plates for which two opposite
edges are simply supported and the other two edges
have any combination of Clamped (C), simply
supported (S), and Free (F) boundary conditions. The
solution is in the form of a single Fourier series as
follow:

W (X,y 1) =W (y)sin(%)e‘“‘ (19)
that satisfies the simply supported boundary conditions
as follows:
ow ow
=0,M,, ==(D, =5 +D, =) =0

w ) XX ( 116X2+ 1zay2) (20)
Substituting Equation (19) into Equation (16c), it can be
obtained:

[h?m*7* (2cos” (B)sin? () ns + o © V1z+(1 )
+ymysin' (6) +ymycos (0) ~12a% @+ m 7 ) p® W (y)

+al (-2 *m %7 (cos? (0)sin® (O)1-2 715 + yrg]+ ¢np)
+oos*(6) +sin* (@)l Cvy + AV C ™)
+2(ynglcos? (0)sin®(6)] + cos? (6)sin? (6) (21)
[h?m** (2cos” (B)sin(O) ns + Sna Cvi + A=V © ™)
¢ =¢ngly Sy + LV C)M)]-6a% oo’ W (y)
+a?h?[2cos?(8)sin? (0)(h*m** (2cos?(9)sin(6)
Ling + ngld Cviy + -V © W)+ Cmsin (6) + Gy cos* @)W Oy ))]=0
The ordinary differential equation (21) obtained in the
Lévy method can be solved for the natural frequencies
and mode shapes analytically. The form of the solution
depends on the nature of the roots & of the
characteristics equation is given by following
experssions:

h?m *z*[2c0s*(0)sin® (O) 713 + {npW Cvi +(L-V C ™))
+yn, sin4(9) +ym COS4(<9)] 12a2(a2 +m Zﬂz,u)pwz

~2a%(h’m?z? (cos?(9)sin? (8) (-2 15 +ymy) + {10
+{cos* (6) +sin* 01¢n, ¢ vy +(@-V C ™)
+2(yms[cos? (6)sin2(8)] + cos?()sin (0) (22)
Leng +¢moW Sz + -V © ™M)+ ¢
¢l Vi + (- G M) -6a° upor®] 8
+a%h2[2cos?(0)sin?(0) [ yng + ¢ CvS + -V C ™)
+¢mysin®(6) + ¢, cos* (6)] 5% =0
The general solution of Equation (22) is given by

W (y)=Acosh(R,y)+Bsinh(R, y) -
+C cos(R, y)+Dsin(R, y) (23)
Also, A ,B ,C and D are integration constants,
which are determined using the boundary conditions.
However, we do not actually determine these constants.
Instead, the values of » are determined by setting the
determinant of the coefficient matrix A ,B ,C and D
to zero. For SSSF boundary condition, it can be stated
follows:

ow ow
W:O,MW:—(D12¥+DH?):O on y=0
P 24
y =0V, = (Duﬂa"w +D,, QW) 0on y=b (24)
ax %oy oy’

For the solution of Equation (23) in this case, the
boundary conditions in Equation (24) and yield
A =C =0. Setting the determinant of the coefficient
matrix to zero, we obtain the following characteristic
equation for the natural vibration of SSSF plates. For
SSCC boundary condition, it can be mentioned below:
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ow
=0,(—)=0 =0,b
w (ay) on y (25)

Substitution of Equation (23) into Equation (25) yields
the following characteristic equation:

2[1—cosh(R,b)cos(R,b)]+ (R, /R, —R, /R,)

sinh(R, b)sin(R, b) =0 (26)

3. RESULTS AND DISCUSSIONS

In this part, in order to show the convergence and
accuracy of the presented method, a comparison study
for variation of natural frequencies ratio with length of a
square nanoplate for various nonlocal parameter is
illustrated in Figure 2. The results obtained from the
developed analytical method has been compared with
results of Pradhan and Phadikar [3]. The mechanical
properties are supposed to be the same as, elastic
modulus, E =1.02Tpa, thickness of the graphene plate,

h=0.34nm, density, p=2750kg/m’and the Poisson’s

ratio, v =0.3. Results depicted in Figure 2 shows that an
exceptional convergence and agreement with different
value of nonlocal parameter is obtained.

Based on this fact, in order to examine the accuracy
of the developed method, another comparison study for
the effect of volume fraction on the dimensionless
fundamental frequency of an CNT reinforce
nanocomposite plate is summarized in Table 1. It is
obvious that the present results have good agreement
with literature. According to Table 2, it can be observed
that as the nonlocal parameter increases, the stiffness of
nanocomposite decreases thus the natural fundamental
frequencies decrease. It can be clearly seen that the
frequency is significantly increased by increasing a
small amount of graphene nanosheets into the polymer
matrix. Table 3 reports the natural fundamental
frequencies of nanocomposites reinforced  with
graphene sheets for various orientation angles and
volume fractions with SSSF boundary condition. Figure
3 shows that as the nonlocal parameters increases the
natural frequencies decrease.

Schematic representation of a defect-free graphene
sheet and with the presence of vacancy defects are
shown in Figure 4. Based on the results obtained
through molecular dynamics simulations reported by
Hao et al. [20], dependency of Young’s modulus of a
monolayer graphene sheet with monatomic vacancies to
the concentration of monatomic vacancies could be
realized. For the mechanical properties, it can be seen
that Young’s moduli of defected graphene sheets feature
a linear dependence on the defect concentration.

if R = It tE = SEPEE x EP P - STt
[ B e o~ i
- —
0.9 A /g -
;o
2 e
osf S
ouf
= & sy — -0~ - p=0nm’ Ref. [3]
3 o7k ‘0 — G- = p=0 nm’ Present
“F 0 — A~ - p=1nm’ Ref. [3]
‘7 — A~ — p=1nm’* Present
sk @ — <O~ - p=2nm* Ref. [3]
o / — = p=2 nm’ Present
& — <O - p=3nm* Ref. [3]

I — =G~ — p=3nm’ Present
osf ¥

I RIS ENAIIE STATATTIN SRR SR
04 5 10 15 20 25 30

Lengh (nm)
Figure 2. Natural frequencies ratio with the length of a square
nanoplate for various nonlocal parameter obtained by
numerical and analytical solutions

TABLE 1. Effect of volume fraction on the nondimensional
fundamental frequency of CNT reinforced composite square
plate for SSSS condition

Modes  Zhyetal.  Alibeigloo  Wu &

VT (mn) [21] [22] Li[g] resent
0.11 Ly 19223 10.168 19155  10.486
(L2) 23408 23270 23273 23387
(13) 34669 34.054 34038  34.049
0.14 L1 21354 21328 21317 21807
(L2 25295 25199 25188  25.466
13 36267 35679 35667 35808
0.17 WLl 23679 23622 23607 23994
(L2) 28987 28825 28810 28927
(L3) 43165 4238 42367 42357

TABLE 2. Natural frequencies (GHz) of nanocomposite plate
for SSSS condition

Mode numbers (m,n)
uom?) v

11) 1,2) 2.1) (2,2)

0 0.03  158.491 398.644  401.822 633.965
0.07 222219 561.756 564.536 888.876
0.11  239.861 599.105 603.165 959.454
1 0.03  154.720 376.118 379.116 579.358
0.07  216.931 530.013 532.636 812.312
0.11  234.155 565.251 569.082 876.811
2 0.03  151.205 357.024  359.870 536.799
0.07  212.003 503.106 505.596 752.641
0.11  228.836 536.556 540.192 812.401
3 0.03  147.920 340.571 343.285 502.423
0.07  207.397 479.921 482.296 704.443
0.11  223.846 511.829 515.298 760.376
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TABLE 3. Natural frequencies (GHz) of nanocomposite plate
for SSSF condition

ulom) v

0 30 60 90

0 0.03 158491  398.644  401.822 633.965
0.07 222219  561.756  564.536  888.876
011  239.861  599.105 603.165 959.454
1 0.03 154720  376.118  379.116 579.358
0.07 216931  530.013 532,636  812.312
0.11 234155  565.251  569.082 876.811
2 0.03  151.205  357.024  359.870  536.799
0.07 212003 503.106  505.596 752.641
0.11  228.836  536.556 540.192 812.401
3 0.03 147920 340571  343.285 502.423
0.07 207397  479.921  482.296 704.443
0.11 223846  511.829  515.298 760.376

Figure 3. Natural frequencies of nanocomposite with pristine

graphene sheets and orientation angle 6=0for various
nonlocal parameter, volume fractions and SSSS boundary
condition

Figure 4. Schematic representation of a) defect-free pristine
graphene sheet b) presence of vacancy defect

Young’s modulus of a defect-free graphene sheet is 1.1
TPa when a thickness of 3.2 nm is used. The curve can
be fitted into a linear function for monatomic vacancies
as E? =1.8x107(0.994-0.027f, ), which can be explained as
that it contains two heptagons and two pentagons, which

preserve interatomic sp? bonding, while monatomic
vacancy breaks the integrity of pristine sheet that results

in a higher formation energy in comparison with the
nucleation energy for Stone-Wales dislocation. A linear
fitting for the Stone-Wales dislocations fails here as is
hard to define the concentration. Figure 5 shows the MD
simulation results as well as a fitted liner curve.

Figure 6 shows the effects of nonlocal parameter
versus the vacancy concentration of defected graphene
sheets on natural frequencies of nanocomposite. The
vacancy concentration is considered between 0-4%
while the Eringen nonlocal parameter is taken 0-9 nm?,

@ D simulation results [51]
Fitted curve

o
T

‘Young modulus (Tpa)

2
K
T

159 F °

156 |

| N TN PR PR ST FEAES SN SENeS Sww Suw p
0 04 08 12 16 2 24 28 32 36 4
f,

Figure 5. Young’s modulus of defective graphene sheet

versus concentration of monovacancy defect percent

160
158
156
154
152
150
148
F s
et
142
140
138
136
134
132
130

vacancy concentration f (%)

Figure 6. Effects of vacancy concentration in conjuring with
the nonlocal parameter on natural frequencies of
nanocomposite reinforced with defected graphene sheets for
SSSS boundary condition.

4. CONCLUSION

In this work, an analytical investigation to examine the free
vibration of nanocomposite reinforced by graphene sheets
employing Eringen nonlocal elasticity theory was carried out.
An effective analytical solution is developed for solving the
complicated governing equations which is much more
efficient in comparison to common numerical solutions. The
accuracy of the presented method is examined, by comparing
the results with literature in which a good agreement was
observed. To show the novelty of the presented approach
Eringen nonlocal theory as well as various orientation angles
of defected and pristine graphene sheet reinforcement were
considered together and solved base on an analytical method.
It is also suggested that nonlocal parameter and volume
fraction have a specific effect on natural frequencies, while
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various
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orientation angles of graphene sheets in

nanocomposites have a slight effect on natural frequencies. By

increasing  the

graphene  sheets volume fraction,

nanocomposite gets stiffer and the frequencies increase
significantly, while as the nonlocal parameter decreases the
nanocomposite frequencies increase.
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