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In this paper, the stability analysis and control design of heterogeneous traffic flow is considered. It is
assumed that the traffic flow consists of infinite number of cooperative non-identical vehicular
platoons. Two different networks are investigated in stability analysis of heterogeneous traffic flow: 1)
inter-platoon network which deals with the communication topology of lead vehicles and 2) intra-
platoon network which deals with communication topology of individual platoons. The unidirectional
communication topology is employed to describe the inter-platoon and intra-platoon networks
topologies. By introducing a new decoupling approach, the 3N-order closed-loop dynamics of both
networks is transformed to N third-order dynamical equations. Both inter-platoon and intra-platoon
string stability are performed by presenting new approaches. Several simulation results are provided to

Time Delay show the effectiveness of the proposed approaches.

String Stability doi: 10.5829/ije.2018.31.06¢.14
NOMENCLATURE

h/h Inter/Intra-platoon headway (s) Greek symbols

L Length of vehicle (m) a By Inter-platoon control gains

(I Inter/Intra-platoon safety distances (m) a.p.y Intra-platoon control gains

T Engine’s time constant (s) o Spacing error (m)

5.5, Inter-platoon spacing parameters (m) At Lag and communication delay (s)

1. INTRODUCTION

Increasing in traffic density will reduce safety, increase
air pollution, traveling time, and fuel consumption [1-3].
Vehicular platooning is a useful solution for reducing
the impact of traffic congestion [4]. Cooperative
adaptive cruise control (CACC) as a powerful tool in
vehicular platooning, has received much attention in
recent decades [5, 6].

For vehicular platoons, in addition to internal
stability (asymptotic stability), the string stability should
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be investigated. A vehicular platoon is string stable if
the spacing errors are not propagated along the group
[7]. In general, two policies are employed for spacing
control of vehicular platoons: constant spacing policy
(CSP) and constant time headway policy (CTHP). In
CSP, the distance between vehicles is constant. While,
in CTHP, it varies linearly by velocity [8].

In recent years, a large amount of research works
have been accomplished on control design of vehicular
platoons: robust control [9], adaptive control [4, 10],
model predictive control [5], time delay analysis [1, 11-
13], PDE-based approaches [14] and scalability analysis

[5].
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Centralized control scheme improves the stability
margin but this strategy may lead to undesirable effects
such as communication delay, data losing, switching
network, etc. Therefore, it is necessary to study the
whole traffic flow as interactions between several inter-
connected vehicular platoons.

In this paper, internal and string stability were
studied for both inter-platoon and intra-platoon
networks. The main contributions of this paper are: 1.
presenting a new approach to decouple the infinite
dimension of closed-loop dynamics of heterogeneous
traffic flow, 2. inter-platoon and intra-platoon string
stability analysis of traffic flow, 3. considering both
communication and parasitic delays in stability analysis
of traffic flow with infinite dimension. The rest of this
paper is organized as follows. In section 2, the problem
is introduced. In section 3, internal stability of inter-
platoon and intra-platoon were studied. In section 4, the
string stability problem is investigated for traffic flow.
In section 5, simulation results are provided to show the
effectiveness of the proposed approaches. Finally, this
paper is concluded in section 6.

2. PROBLEM DESCRIPTION

In Figure 1, the traffic flow is considered as the
combination of infinite numbers of inter-connected
cooperative heterogeneous vehicular platoons. Di;.1
illustrates the inter-platoon spacing and d,; , is the intra-

platoon spacing. These assumptions are considered for
this work: 1. The traffic flow consists of inter-connected
heterogeneous vehicular platoons, 2. Each platoon
consists of N following and one lead vehicles, 3. The
communication topology in the whole traffic flow is
unidirectional.

The dynamics of vehicle i in platoon k is as follows:

Ti @+, =Ujg 1)

whereT; ,,a ., U;  are engine’s constant, acceleration
and control input, respectively.

3. INTERNAL STABILITY ANALYSIS

3. 1. Inter-Platoon Internal Stability The
tracking error between consecutive leaders is defined as:

Platoon k+1 \' Platoon & Platoon k-1
AL > AL A

di.1: Intra-platoon spacing

D1 Intra-platoon spacing
Figure 1. Traffic flow as the inter-connected vehicular
platoons

Ok(t) Xok—l(t T) - XOk(t) ZNk1L]k—1
ZN“h Dk hk(VO,k_v*(EO,k))

where Xo, Vo are position and velocity of lead vehicle,
is communication delay, L, is the length of jth vehicle,

)

h, is time constant headway of kth platoon, N is the size
of kth platoon, V,, = sup{v,,,(t):te[0,0)} V'is a

function of inter-platoonspacing which will be defined
later and #&,, is defined as follows:

B (V) =X 1 (t—7) =X, (1) — ZN“L

ZNk b T s=Dyrs 3
To increase the traffic capacity, it is defined that:
0, &.<S;
V(&) =4V (&) S <&y<S, 4)
Viar  €ox > S,

where S;,S;are positive constants and V (g,) is
defined as follows:

V' (@) = Vo | 1-CO8(7(@, S/ (S;-5)) |12 ()

wherev,,, is the maximum velocity of platoon. By
defining new variablesz,, =e,,, 7, =6,,.,2;, =&, and
using Equation (1), the dynamics of each vehicle is as
follows:
il,k =2y
Zz,k =Z3y

ok =8y (t=7) =Ug, [Ty +ag, [Ty —

—hg, / Toy + 0y, /Ty +h V™

(6)

In the control design procedure, I, , (t) is considered as:
Uy, (1) =T, (t) + 0T, ,(t). Where T, (t)and T, ,(t) satisfy
the following expressions:
L]0,|<1 t)+ Uo i, ®/h = _TO,ku;,k ) /h,
L]o,kz ®+ Uo,k, ®/ hk = ao,k O+ A )/ hk + (7
+3g, . (t—7)Ty, /h +V"
By solving Equation (7), 0, (t) will be in the following
form:

if 8o () +ay, (1) /Dy +
g0

. o [N e
+ay o (t=7)Ty, Ty +V ®

Tox t » e B
—hO—: [ us (@6 der+ (ug , (0) + gy, (0) )™
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By defining U*O,k ®= _azxk(t) - ﬂzz‘k(t) - 723,k(t)
a, B,y >0and replacing Equation (8) into Equation (6),
the closed-loop dynamics of k-th leader is in the
following form:

Ly =2y, L = 2y, Ly = Ug (1) 9)

By applying the parasitic delay, Equation (9) resulted in
the following form:

Z,(t) =AZ, (1) +BZ,(t- A,,),

010 0 0 0 10
A=[0o 0 1|B=|0 0 o0 (10)
000 -a -f -y

Theorem 1. Under the control law Equation (8) and
sufficiently small parasitic delay, the inter-platoon
asymptotic stability is assured if:

a,y>0, P>« (11)
Proof. The characteristic Equation (10) is as follows:

CE, =det(sl, - A-Be ™) =
—Ap S —Ag S —A_ .S (12)
s®+ye s + fe s + e 0 =0

Equation (12) after simplification will be in the
following form:

—Ag xS

- =(ys*+ fs+a)e ™ =

13
& -yt — (B - 2ay)d-a? =0, &= (13)
Since only one sign change occurs in Equation (12),
there is only one positive root for @ for any parametric
selection. The phase equality condition of Equation (12)
is in the following form.

_i -1 ﬂ _nE
A= [tan [ 2J+(4k 1)2} (14)

@ o—yw

When delay increases from the value calculated by
Equation (14), when other parameters are kept fixed, the
related imaginary root can cross to the right hand side of
s-plane. Therefore, the minimum value of A, calculated
by Equation (14) is the maximum allowable time delay.

3. 2. Intra-platoon Internal Stability Analysis
The intra-platoon tracking error is defined as

€ (D) =% (1) =%, () — Ly —di -

_ﬁi(vi,k _v*(gi,k)) (15)

where h, is intra-platoon time headway and V'(g,,)is

defined similar to Equation (4).
Theorem 2. Under the following control law, the intra-

platoon asymptotic stability is assured if @,7 >0,78 >a

o @@ +a, (t)/h R
ui,k(t):j[a’ Ora. +Je(at)/h“da—

o+ T, /B 4 w©

Ti tox a-t)/h, —t/h,
—ﬁ—’: Urc(@)e“ N da+(u, (0)+u,, (0)e"™

where, w, = e () w, =€, (1), w; =€, (t) and U, (t) =
_&Wl,k(t)_ﬂ_WZ,k(t)_}7W3,k(t); 515177>0-

Proof. The closed-loop dynamics of each following
vehicle is in the following form

W(t) = AW(t) + BW(t-A,,),

010 0 0 0 17
A=|/0 0 1,B={0 0 O a7
000 -a -B -7

The stability analysis can be completed similar to
previous theorem.

4.STRING STABILITY ANALYSIS

4. 1. Inter-platoon String Stability Analysis
Time derivative of both sides of Equation (1),
employing Equation (8) and taking Laplace transform of
both sides of the resultant equation leads to:

Vo () _
Vor-1(9) -

(53 +ys%+ Bs + oz)e'(”A“*)S (18)
Ths st (-h)(Bs+a)e

Gk (S) =

Time derivative of Equation (2) and then Laplace
transform of it, yields

SEgy =] €7 — (L+N8)G, () Vo 1(5) (19)

By performing the same procedure fore,,_,(t) , we have

SEgi1 = [e_rs 1G4(s) -1+ hk—ls):|V0,k—1(s) (20)
Therefore, the spacing error ratio is as follows:

E, () [¢°-A+hs)G,(5) ]G .(s)

G (s)= Eoia(S) et A+h,_15)G, ,(s)

1)

IfVo:

assured.
Theorem 3. Under the following condition, the inter-
platoon string stability is guaranteed.

G*(ja))|slthe inter-platoon string stability is

TO,k

2
TO,k—l

o> (22)
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Proof. |G*(jco)|=\/a/bsl:b—aZO.According to

Equation (22), it is inferred that:

b-a=>" C,(Aha p)o*

The low frequency region is the most determinant
region in string stability analysis [1, 4, 7]. Therefore, it
is concluded that if C, >0, the inter-platoon network is
string stable. After algebraic manipulations and
simplifications, we have C,=4T,, T/ ,a°-TAa’. SO

that, C, > 0 if Equation (22) holds.

(23)

4. 2. Intra-platoon String Stability Analysis
Theorem 4. Under the following condition, then intra-
platoon string stability is guaranteed

TO,k

2
TO,k—l

(24)

Proof. For each vehicle in the platoon we can write

6 (g u® __ (Sepsrale™
| Vig(s)  hs®+s?+(@L-h)(Bs+a)e ™
G (s) = Ei(s) [1— 1+ I’TiS)Gi‘k (s):|(;i71vk (s)

E(s)  1-@+h_s)G ,(s)

By following the proof of theorem 3, Equation (24) is
obtained.

5. SIMULATION STUDIES

In this section, it is assumed that traffic flow consists of
ten heterogeneous vehicular platoons. The inter-platoon
and intra-platoon spacing errors are defined as

N4
5o,k =Xox-1~ Xok _Zj:ko Lj,k—l -Dyia and B =Xk — X
—Ly,, —d., respectively.

Scenario 1. In this scenario the inter-platoon and intra-
platoon stability analyses were studied. Figure 2-a
shows the stable region of time delay. In this figure, it is
assumed that all control parameters are fixed excepta.
Therefore, by employing the CTCR method the stable
region of delay versus « is presented. Figure 2-b depicts
the unstable behavior of platoon for point ‘b’. Figure 3
shows the inter-platoon spacing error.

According to this figure, amplitude of error
decreases along the platoon indicating the string
stability of platoon. Figure 4 shows the velocity of lead
vehicles. Figure 5 depicts the spacing error of intra-
platoon network. According to this figure, internal and
string stability of platoon 3 are assured. Figure 6 shows
the velocity of platoon 3.

Spacing Error(m)
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Figure 2. Stable region of delay (a) and unstable behavior (b)
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Figure 3. Inter-platoon spacing error
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Figure 4. Inter-platoon velocity
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Scenario 2: In this scenario, the performance of string
stability is studied when a disturbance signal is applied
to lead wvehicle’s motion. Figure 7 shows the
performance of string stability of inter-platoon network.
Figure 8 illustrates the spacing error of platoon 3.

Spacing Error(m)

-15F

2 r r r r L r r
0 20 40 60 80 100 120 140 160 180 200

Time(sec)
Figure 5. Intra-platoon spacing error
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Figure 6. Velocity of platoon 3
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Figure 7. Performance of inter-platoon string stability
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Figure 8. Performance of intra-platoon string stability

6. CONCLUSION

In this paper the problems of internal stability and string
stability were studied for heterogeneous traffic flow. It
was assumed that the traffic flow consists of infinite
number of heterogeneous cooperative vehicular
platoons. A new method was introduced to decouple the
closed-loop dynamics of inter-platoon and intra-platoon
networks. The communication and parasitic delays were
investigated in system modeling and control design
which is based on CTCR method, the stable region of
time delay was introduced. By presenting new
theorems, necessary conditions on control parameters
assuring asymptotic and string stability for both inter-
platoon and intra-platoon networks were presented.
Several simulation studies were presented to show the
effectiveness of the proposed approaches.
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