
IJE TRANSACTIONS B: Applications  Vol. 31, No. 5, (May 2018)   799-804 
 

 

Please cite this article as: A. M. Jadidi, M. Jadidi, An Algorithm based on Predicting the Interface in Phase Change Materials, International 
Journal of Engineering (IJE), IJE TRANSACTIONS B: Applications  Vol. 31, No. 5, (May 2018)   799-804 

 
International Journal of Engineering 

 

J o u r n a l  H o m e p a g e :  w w w . i j e . i r  
 

 

An Algorithm based on Predicting the Interface in Phase Change Materials 
 

A. M. Jadidi*a, M. Jadidib 
 
a Department of Mechanical Engineering, Semnan University, Semnan, Iran 
b Department of Mechanical Engineering, Griffith University, Australia 

 
 

P A P E R  I N F O  

 
 

Paper history: 
Received 29 May 2017 
Received in revised form 13 February 2018 
Accepted 08 March 2018 

 
 

Keywords:  
Phase Change Material 
Numerical Simulation 
Finite Difference 
Stephan Problem 
 
 
 
 
 
 
 

 

A B S T R A C T  
 

 

Phase change materials are substances that absorb and release thermal energy during the process of 

melting and freezing. This characteristic makes phase change material (PCM)  a favourite choice to 

integrate it in buildings. Stephan problem including melting and solidification in PMC materials is an 
practical problem in many engineering processes. The position of the moving boundary, its velocity 

and the temperature distribution within the domain are important for these applications. Well known 

numerical techniques have difficulties with time-dependent boundary conditions. Therefore, fine mesh 
and small time steps are needed to obtain accurate solutions. There are two main approaches to solve 

the Stefan problem: front-tacking and variable grid method. The most existing methods are not 

applicable to all situations and they cannot be easily implemeted in two-dimensional or three-
dimensional geometries and all boundary conditions. In this paper, we proposed an algorithm to solve 

one-dimensional Stefan problem in all kind of boundary condition; also it can be easily extended for 

2D and 3D Stephan problems using finite difference method. For validation, the results are compared 
with exact solution of constant boundary condition. Afterward, periodic boundary condition is 

considered. The results showed significant relationship between numerical and exact solution, and the 
maximum error was approximately  0.4%. 

doi: 10.5829/ije.2018.31.05b.15 

 

 

NOMENCLATURE 

T  Temperature k  Time index 

0T  Temperature at x=0 n  Position index 

mT  PCM  melting temperature  * Predicted value  

bT  Boundary temperature N  Number of time steps 

t  Time step t  Time 

x  Space step x  Position 

x* Position predicted value A, D matrices 

s  Interface location between solid and liquid phases Greek Symbols  

k  Conductivity (Wm/K)   Density (kg/m3) 

r  Latent heat (kj/kg)   Convergence criteria 

a  Thermal diffusivity   ,   Coefficient  

 
1. INTRODUCTION1 
 
Increasing demand for thermal comfort can result in 

rising energy consumption in buildings and many other 

applications. PCM are substances that absorb and 
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release thermal energy during the process of melting 

and freezing. This characteristic makes PCM a suitable 

choice to integrate it in building walls. The use of PCM 

integrated into walls is a way to enhance the thermal 

storage capacity of buildings. 

Stefan problems involving melting or solidification 

are important in many engineering applications [1-3]. 
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This problem is generally referred as phase-change or 

moving-boundary problem. The position of the moving 

boundary, its velocity and the temperature distribution 

within the domain are important for these applications.  

Since the solid-liquid interface is time-dependent 

and must be determined as a part of the solution, the 

problems are highly nonlinear and become complicated 

except for a limited number of special cases. Therefore, 

these problems in the most cases are required to be 

solved numerically. 

Due to difficulties in obtaining an analytical 

solution, various numerical techniques have been 

developed over last decades (including finite element, 

finite difference and integral methods) to solve moving 

boundary problem. Generally, in terms of accuracy and 

efficiency, the choice between various finite element, 

finite difference and integral methods for the solution of 

a particular Stefan problem is not always clear, due to 

their specific advantages and limitations.  

A two-dimensional transient axi-symmetric model 

has been developed to study the effect of thermal and 

geometric parameters on cyclic heating and cooling 

modes of a phase-change thermal energy storage system 

by Adami [4]. The Gauss-Seidel iterative method with 

over-relaxation is used to solve the non-linear 

simultaneous difference equations [4]. 

A numerical simulation of refrigeration cycle with 

PCM heat exchanger carried out by Bakhshipour et al. 

[5] in cylindrical coordinate using finite volume 

approach. They investigated the effects of type of 

refrigerant, PCM heat exchanger length, PCM heat 

exchanger tube diameter, PCM thickness and mass flow 

rate of refrigerant. Costa et al. [6] have used the 

enthalpy formulation with a fully implicit finite 

difference method to analyse numerically the thermal 

performance of latent heat storage. The method takes 

into account both conduction and convection heat 

transfer in a one-dimensional model. The method used 

was validated by comparing the results with other 

analytical and numerical results found from the 

literature. The conclusion is that the method is useful for 

designing a thermal energy storage [6]. To obtain 

physical validation in PCM material, the numerical 

simulation has been carried out using enthalpy method 

and effective heat capacity method [7]. The numerical 

results compared with the experiment results achieved 

by thermocouples mounted inside the PCM. 

Optimal homotopy asymptotic method (OHAM) has 

been used to solve one dimensional stefan problem by 

Rajeev et al. [8]. An approximate solution is obtained 

using the OHAM to find the solutions of temperature 

distribution in the domain  0  ≤x≤s(t) and interface’s 

tracking or location with the help of Taylor series.  

Numerical techniques are specially known to have 

difficulties with time-dependent boundary conditions. 

Therefore, fine mesh and small time steps are needed to 

obtain accurate solutions. Unfortunately, there is not 

enough  research  about  the  Stefan  problem with time- 

dependent boundary conditions [9].  

There are two main approaches to the solution of the 

Stefan problem [9]. One is the front-tracking method in 

which the position of the phase boundary will be 

tracked continuously. Alternatively, variable grid 

methods provide the way to track the phase front 

explicitly [10]. In variable grid methods, time step and 

space grid are variable. 

For moving boundary problems, numerical methods 

have been compared in various studies [11].  

In one algorithm proposed in literature [12], instead 

of front tracking, moving interface locations is preset 

and use these location coordinates as the grid points to 

find out the arrival time of moving interface. Applying 

this approach can help to avoid the difficulty in mesh 

generation. This algorithm encounters serious 

challenges in time-dependent boundry conditions 

because of presetting interface location and finding 

arrival interface time. 

A mathematical model is proposed to simulate the 

coupled heat transfer equation and Stefan condition 

occurring in moving boundary problems like the 

solidification process in the continuous casting 

machines [13].  

In this study, the finite difference approach and the 

boundary immobilization method has been selected to 

find the position of moving interface and the 

temperature distribution. Most of the proposed methods 

cannot be easily implemeted in two / three-dimensional 

geometries and all boundary conditions. In this paper, 

we proposed an algorithm to solve one-dimensional 

Stefan problem in all kind of boundary conditions. This 

method can be easily extended for 2D and 3D Stephan 

problems. For this reason, this method presets arbitrary 

time steps and then it finds interface location.  

To evaluate this new algorithm, both constant and 

time-dependent periodic boundary conditions have been 

considered, and the finite difference approach has been 

used in order to determine the temperature distribution 

and phase boundary during the process. Under constant 

boundary conditions, there is a significant relationship 

between the present numerical solution results and the 

exact solution one. To achieve qualitative results, grid 

independency is checked to find a suitable grid number 

with minimum error. The algorithm is also very 

straightforward and efficient for its finite difference 

formulation. 
 

 

2. NUMERICAL ALGORITHM 
 

In this section, a new algorithm will be numerically  

presented to solve Stephen problem in phase change 

material with arbitrary boundary conditions. The base of 
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this algorithm is predicting the boundary between the 

solid and liquid phase in each non-uniform time step. 

Also, at the same time steps can be selected. The 

discretization is based on finite difference schemes. The 

governing equation for one-dimensional heat transfer 

through a PCM is: 

2

2

1 0

1

1

1

( , ) at   x = 0    and t > 0

. . ( , ) at   x = s(t) and t > 0

at   x = s(t) and t > 0

m

T T

x a t

T x t T
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T s
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 


   
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  
   

 

 

(1) 

where, T is temperature, t is time, T0 is the temperature 

at x=0, Tm is the PCM melting temperature,   is the 

PCM density, k is thermal conductivity, a is thermal 

diffusivity, r is latent heat of PCM and s is the interface 

location between solid and liquid phases. The first 

boundary condition is constant temperature and third 

boundary condition is a nonlinear boundary condition 

coupled with governing equation. One of the main 

advantages of this algorithm is its ability to execute in 

every boundary condition like periodic and other types 

of boundary conditions. It is assumed that time steps are 

given as follows: 

1

1 1 0
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(2) 

Also, the interface in each time step defines as 
k

ns  that 

k is time index and n is the position index.  If the PCM 

warms up at x=0 by T0 temperature, and heat will be 

diffused through PCM and melting process will start. 

This process is illustrated in Figure 1.  

Central scheme and Euler's first order scheme  are 

used for discrete diffusion terms , and  time derivative 

terms respectively. In the first time step, the length of 

melted zone can obtain discretizing  the third boundary 

condition as Equation (3): 

1 1 1 0

1 0 1 1
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    

 
(3) 

The interface between liquid and solid phases at first 

time step will be easily predicted using only Stephen's 

boundary condition. But, in the next time steps to 

achieve this purpose, one dimensional heat transfer 

equation must be discretized based on Equation (4). As 

seen, a non uniform grid is used because of the non 

linear nature of Stephen's problem. 
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(4) 

Simplifying Equation (4), a relation like 
2

1T   will 

be obtained that α and β are as Equation (5). 
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(5) 

The * index indicates predicted values. With a similar 

procedure as mentioned in the first time step, the Δx2 

can be found as Equation (6).  

2

2 2 1( )m

k
x t T T

r
   

 
(6) 

 

 

 

 

 
Figure 1. Schematic profile of temperature in a PCM material 

when melting process started 
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At the second time step, to start solution procedure, first 

a guess for *

2x  is necessary. After predicting *

2x , α 

and β will be calculated explicitly using Equation (5).  

Afterward 2

1T  will be obtained from 
2

1T  . 

Substituting 2

1T in Equation (6) results in a new value 

for 
2x . The error criteria now can be found 

subtracting *

2x  from
2x .  

*

2 2Error x x epsilon     (7) 

If error value was smaller than epsilon, convergence 

criteria are met and this step will be finished, otherwise, 
*

2 2x x   and this procedure repeats until the 

convergence criteria are met.  

In the next steps, as the temperature of nodes 

couples together, the previous methods do not work 

correctly. Discretization of 1D heat equation results in 

Equation (8). Spatial derivative of Equation (1) is 

replaced with central difference approximation at n-1'th 

grid position. The n varies from 2 to k and k is current 

time step.  
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(8) 

In the other hand, the above equations can be 

summarised as a system of the linear equation like AT = 

D. A and D are matrices which elements can be found in 

Equation (8) and T is the nodes temperature matrix. The 

convergence criteria at current time step can be found 

from third boundary condition at the interface of two 

phases, as expressed in Equation (9):  

1( )new k k k

k k k

k
x t T T

r



    (9) 

The algorithm of solving such a system can be listed as: 

 A guess for 
kx and solving AT = D according to 

Thomas algorithm based on Equation (8). 

 Finding new

kx  based on Equation (9). 

 Checking convergence criteria new old

k kx x    . 

 If convergency happened, this algorithm finishes, 

else new

k kx x   and this algorithm repeats from 

the first line. 

The advantages of this algorithm are: 

1. Grid generation has removed completely. 

2. Compatible with different kinds of boundary 

conditions like time dependent and etc.  

3. The algorithm can be easily extended to solve 

Stephan problem in 2D and 3D. 

4. This algorithm is flexible and easy to use. 

 

 

3. RESULT 
 

In this section, our algorithm results have been 

presented. Initially, to validate and verify the proposed 

algorithm, the analytical results of melting an aluminum 

wall under constant temperature are compared with 

numerical results. Then, two different boundary 

conditions (periodic boundary condition and constant 

boundary condition) are numerically investigated during 

a day. The PCM wall type is CaCl2.6H2O. 

In Figure 2, the length of melted zone is shown at 

different times and the analytic solution is presented to 

validate the numerical model. Melting process of 

aluminum is considered. The melting temperature of 

aluminum is Tm=931 K and boundary temperature is 

Tb=1073 K. The other physical properties of aluminum 

are given as follow: r = 396 kJ/kg, ρ = 2380 kg/m3 , k = 

215 Wm/K , c = 1130.44 J kg/K. The convergence 

criteria are ε = 1e-5. As shown in Figure 2, numerical 

results are in good agreement with an exact solution that 

confirms the high accuracy of the numerical method. 

The maximum error happened in the first time and 

maximum error is approximately 0.4%. 

In Figures 3 and 4 grid independency for two 

different boundary conditions (Figure 3 shows grid 

independency in Tb=cte and Figure 4 presents it when 

periodic B.C. applied) are shown. 

For this reason, a PCM wall with CaCl2.6H2o is 

selected. It is completely clear that in both states grid 

independency happens when the number of grid is N = 

96. The temperature periodic function is as equation 

(10). Where Tb is boundary temperature, Tm presents 

melting temperature, N is the number of time steps and 

n = 1, 2, …, N. It should be mentioned that all next 

results obtained with N = 96 when grid independency 

happens. 
 

 

 

Figure 2. The comparison of numerical results with exact 

solution in melting process of aluminum under constant 

boundary condition 

0

0.02

0.04

0.06

0.08

0.1

0.12

0 50 100 150 200

S 
(m

)

time (sec)

N…



803                                      A. M. Jadidi and M. Jadidi / IJE TRANSACTIONS B: Applications  Vol. 31, No. 5, (May 2018)   799-804 

 

 

Figure 3. grid independency for constant boundary condition 
 

 

 

Figure 4. grid independency for periodic boundary condition 
 
 

 

0 sin(2 )b mT T T n N    (10) 

In Figure 5, temperature profile versus PCM melting 

zone length is shown in all day long (tfinall = 24 h). The 

boundary temperature is Tb = 314 °C and PCM 

(CaCl2.6H2O) melting temperature is Tm =304°C. Other 

physical properties of CaCl2.6H2O are: k = 0.53 W/mK, 

r = 187 kJ/kg, ρ = 1530 kg/m3 and cp = 2200 kJ/kg.K. 

As shown in Figure 5 melting zone will be expanded 

when time increases. The maximum length of the 

melting zone is 5.51 cm and maximum rate of melting is 

in the first 6 hours where 2.64 cm of PCM melted. It can 

be easily understood that because of the nonlinear 

character of Stephen problem, PCM rate of melting is 

not the same in the same time steps. Therefore, using an 

algorithm based on non-uniform grid can result in more 

accurate results as this algorithm captures accurate 

melting zone length in PCM. 

In Figure 6, temperature profile versus interface of 

the liquid and the solid region is shown. In this stage, 

periodic boundary condition is applied. As described in 

Equation (10) Tm  is 304°C and T0 is 10 °C. Also, N is 

the number of time steps and n = 1, 2, …, N. Simulation 

is done in all day long. In first twelve hours, melting 

process (as Tb is greater than Tm) and in the second 

section of the day freezing process (because Tm is 

greater than Tb) are applied based on periodic boundary 

condition. As illustrated in a Figure 6, the rate of 

melting in first six hours is greater than second six hours 

and interface length (between solid and liquid region) is 

3.17 cm. 

 

Figure 5. Temperature profile in melting process of 

CaCl2.6H2O when boundary temperature is T0 = 314° C 

 

 
 

 

Figure 6. Temperature profile in CaCl2.6H2O when 

boundary condition is periodic 
 

 

 

In the other hand, optimum length for CaCl2.6H2O is 

3.17 cm when periodic boundary condition is applied. 

But in the second twelve hours, PCM will be frozen. 

It is obvious from Figures 4 and 6 that the interface 

length is the same in times having the same distance 

from t=12 hours. It can be found that in periodic 

boundary conditions, melting and freezing process in 

PCM happen at the same interface exactly. Also, 

temperature profiles are completely symmetry in 

freezing and melting process. This confirms that the 

results are obtained under periodic boundary condition. 

The inverse of melting process, the freezing rate in the  

second six hours is greater than first six hours. 
 
 

4. CONCLUSION 
 

A new algorithm was proposed in this paper to solve 

one-dimensional Stephan problem based on finite 

difference method. This algorithm main features 

capturing moving interface in arbitrary time steps 

without mesh generation and it was easy to apply in 

different boundary conditions.  

To evaluate this algorithm, two different boundary 

conditions (BC) have been considered. First, constant 

temperature BC was applied that numerical results had 

well coincident with analytical solution in an aluminum 

0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 10 12 14 16 18 20 22 24

S 
(m

)

Time (hour)

N = 24
N = 48
N = 96

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 2 4 6 8 10 12 14 16 18 20 22 24

S 
(m

)

time (hour)

N=12
N=24
N=48
N=96

302

304

306

308

310

312

314

316

0 0.02 0.04 0.06

Te
m

p
e

ra
tu

re

s(m)

t=24 hour
t=18 hour
t=12 hour
t=6 hour
t=3 hour
t=2 hour
t=1 hour

294

298

302

306

310

314

0 0.01 0.02 0.03 0.04

Te
m

p
e

ra
tu

re

S (m)

t=2 hour
t= 14 hour
t= 4 hour
t= 16 hour
t=6 hour



                                             A. M. Jadidi and M. Jadidi / IJE TRANSACTIONS B: Applications  Vol. 31, No. 5, (May 2018)   799-804                    804 

  
wall.  Then, time-dependent periodic BC was used in all 

day long and melting and solidification process in a 

PCM studied. The optimum PCM length captured 

approximately 3.17 cm for CaCl2.6H2O based on 

periodic boundary condition. Temperature profile versus 

interface location is linear in both boundary conditions. 

In melting and freezing process, the temperature profile 

was symmetry which confirms the validity of periodic 

boundary condition results. Also, Grid independency 

was checked to guaranty quality of numerical results.  

The proposed algorithm can be easily developed for 

two-dimension and 3D applications. Algorithm 

accuracy was remarkable and maximum error was 

approximately 0.4% in the initial time step when 

constant temperature boundary condition was applied.  
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چكيده
 

 

را به  ه این موادن مشخصکنند. ایمواد تغییر فاز دهنده موادی هستند که انرژی گرمایی را در طی پروسه های ذوب شدن و انجماد آزاد می

-غییر فاز دهنده میت مواد کند. مساله استفان که شامل فرآیند ذوب و انجماد دریک انتخاب مطلوب در کاربردهای ساختمانی تبدیل می

ی ر کاربردهادنه حل باشد، یک مساله کاربردی در بسیاری از کاربردهای مهندسی است. مکان مرز متحرک، سرعت آن و توزیع دما در دام

رای لی بن مسایین چنیاین مواد اهمیت دارد. تکنیهای عددی شناخته شده مشکلاتی در مسایل مرز متحرک وابسته به زمان دارند. بنابرا

روش، روش  ست. یکداشتن حلی دقیق نیاز به شبکه ریز و گامهای زمانی کوتاه دارند. دو روش عمده برای حل مساله استفان موجود ا

توان از آنها در آسانی نمی روند جامع نیستند و بهباشد. اکثر روشهایی که در این حوزه بکار میردیابی لبه و دیگری روش شبکه متغیر می

ی استفان که برای همه برای حل مساله یک بعد  رایط مرزی و مسایل دوبعدی یا سه بعدی استفاده کرد. در این مقاله یک الگوریتمهمه ش

ستفاده از روش تفاضل بعدی را با ا3بعدی و 2شروط مرزی قابل اجرا می باشد، ارائه شده است که به آسانی قابلیت تعمیم برای مسایل 

یک مورد پریود سنجی، نتایج حاصله با حل دقیق در شرط مرزی دما ثابت مقایسه شده اند و سپس شرط مرزی محدود دارد. برای صحت

کزیمم خطا د و ماتوجه قرار گرفته است. نتایج حاکی از آن است که تطابق بسیار خوبی مابین نتایج حل عددی و حل دقیق وجود دار
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