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A B S T R A C T  
 

 

In this paper, unique approach is presented for the electroencephalography (EEG) signals analysis. 

This is based on Eigen values distribution of a matrix which is called as scaled Hankel matrix. This 
gives us a way to find out the number of Eigen values essential for noise reduction and extraction of 

signal in singular spectrum analysis. This paper gives us an approach to classify the EEG signals 

between normal condition (Controlled) and meditation condition, the extraction of various patterns, the 
EEG signal filtering and the noise removal from the signals. Different parameters are used as features 

for classification during subject’s normal EEG segments and at the time of practicing Meditation. The 

results showed positive approach for noise removal in both EEG signals. 

doi: 10.5829/ije.2018.31.04a.06 

 

 
1. INTRODUCTION1 
 

Nowadays technological advancement in the science 

and technology field and advancement of lifestyle 

revolutionized human life at the extremely surprising 

level. But as every coin has two sides, these leads to 

great emotional and mental stress. Even the same 

situation seen in developed countries. 

Poverty, racial discrimination, threats due to war and 

terrorism, drug addictions are the problems face by each 

and every country of the globe.  

Is there a way to come out of all these threats for 

mental peace? Undoubtedly, the answer is yes. 

Vipassana Meditation is among such a method. This is a 

type of mindfulness meditation. 

Electrical activity of the brain signals is called 

Electroencephalograph. Brain is the most complex 

computing system in the world. EEG signal is one of the 

important non-invasive methods for determining the 

behaviour of human brain. 
It is useful for analysis of various neurological 

abnormalities. It is not only showing us brain function 

but also giving us the mental state of the human being 

and all body functions [1]. Moreover, the recorded EEG 
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plays a vital role in the study of impact of meditation on 

human. Even with the help of EEG signal doctor be able 

to diagnose brain death [2].  

These EEG signals are used as an important tool for 

study and research related with brain; but recorded 

signals always affected by different artifacts and noises, 

which is the main hurdle in the correct analysis of brain 

waves. Since, EEG signal’s amplitude are very low (in 

the order of few microvolt’s), it can be easily affected 

by noise. These noises can be generated due to electrical 

interference, or because of our body conditions [2]. 

Furthermore, muscle activities, blinking of the eyes are 

the different artifacts which are responsible for noise in 

EEG recording. It is always a complex task of detecting 

and reducing such noise from EEG recording. Even 

though Noise can affect EEG Signals, which has, 

unknown characteristics but they can be detected if the 

signal and noise subspaces are accurately separated. It is 

essential to remove noises and artifacts from the EEG 

signals for analysis and classification of EEG signals 

during Meditation and controlled states. There are 

various method implemented for reducing or removing 

noise from EEG signals such as independent component 

analysis (ICA) [3-5], principle component analysis 

(PCA) [6-8]and wavelet transforms (WT) [9]. 
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The complex dynamical systems are described by 

complex mathematical theory such as Chaos theory. In 

all Nonlinear Dynamical System, Chaotic behaviour can 

be observed [10]. Brain is also considered to be such 

nonlinear dynamical system of the body. An EEG 

signals is considered as a nonlinear time series, 

particularly when subjects are doing meditation, hence it 

can be considered as being chaotic in nature [10, 11]. 

Therefore, there are condemnatory chances to segregate 

unusual attractors in brain signals [12]. Furthermore, 

brain signal decomposition is also an important tool for 

identifying state of Meditation and control state from 

EEG signals. The extracted details from recorded EEG 

signals helpful for the identification of state of 

meditation. It is also a great challenge in analysing EEG 

signals when subject is in state of meditation, since 

recorded data is mostly non-stationary, especially when 

an unusual event is observed within the signals. Various 

methods have been employed for the analysis and 

discrimination of different categories of EEG signals. 

However, many of those available methods mainly 

depend on the limited known assumptions of the 

normality and linearity of the observed data. Thus, 

development of a new method, which is robust for 

analysing nonlinear, non-stationary time series data, is 

of prime importance in precise identification of state of 

Meditation. The singular spectrum analysis (SSA) 

technique can be useful for modelling and Analysis of 

physiological signals, since it is not based on these 

assumptions [13, 14].  

Singular spectrum analysis is a comparatively new 

technique, which is used and developed specially for 

solving several problems related with biomedical field. 

One of the best example for this method is, it has been 

used for extracting weak ECG signals from Raw ECG 

signals contaminated by several noises [13]; 

discrimination of physiological signals such as 

electromyography (EMG) contaminated by 

electrocardiogram (ECG) [14]; various applications in 

image processing [15]; gene expressions from 

microarray of DNA [16]; detection of seizure from EEG 

signals of the infant [17]; and drowsiness and sleep 

detection from EEG data [18]. 

The primary focus of singular spectrum analysis is 

to analyse the main time series. Then, for further 

analysis, reconstructing this time series free from noise. 

It mainly relies upon two things for reconstruction; 

namely, the required number of Eigen values, 

represented by r and the window length represented by 

L. Thus, for accurate analysis and separability between 

time series components, proper selection of Eigen 

values (r) and window length (L) is essential. Here, it is 

necessary to select large value of window Length (L) 

but the condition is, it should be smaller than half of the 

time series[13]. As such there are no direct method for 

selection of optimal L and r; hence trial and error 

procedure can be adopted for obtaining optimal values 

of L and r.  

In this paper, we have proposed an approach for the 

selection of the Eigen values (r) for filtering and 

reduction of noise from actual signal. This method 

mainly used to find out the required number of singular 

values/ Eigen values that correspond to the signal 

components. Those signal components mainly rely on 

Eigen value distribution using a matrix termed as scaled 

Hankel matrix. The statistical parameters such as 

kurtosis and skewness coefficients along with variation 

in the Eigen values distributions are used in this method. 

It is proved to be a new and efficient way, which can 

separate signal and noise components as it, divides the 

Eigen Values (r) into two groups. Several real time 

signals as well as simulated signals are used during this 

approach. The effectiveness of this method for Eigen 

values (r) selection is verified using these signals.  

Here, in this paper, we developed a unique way for 

distinction of EEG signals during meditation and 

controlled states. It is also used for EEG signal filtering, 

reduction and elimination of noise from the signals.  

This paper is organised as follows: Section 2 brief 

about the proposed method along with its algorithm. 

Section 3, presents the approach can decompose the 

synthetic data into two different subspaces. Section 4 

describes how this method filters noise from EEG 

signals, extracting various patterns and features, and 

distinction between EEG signals during meditation and 

controlled states. Section 5 brief the conclusion and 

ideas for future. 
 

 

2. THE PROPOSED METHOD 
 

2. 1. Brief Description       In this part, brief 

introduction of the method used in this work is 

explained. A Singular Spectrum Analysis is used for 

decomposing time series signal into a sum of its 

components either as noise or as actual signal. In the 

proposed method, our primary focus is to consider the 

complete signal to identify the proper Eigen Values (r) 

related to the signal component. Hence, selection of L is 

least important rational to the periodicity of the signal 

components [15]. Therefore, the method mostly focuses 

on the selection of Eigen Values (r) for identification 

the signal subspace. 

Let us consider a one-dimensional series be 

represented as  1 2, ,.....N NY y y y  having length N. As 

the above series shifted into a multi-dimensional series 

as
1 2, ,...., KX X X ,where  1 2 1, ,...,

T L

i i LX y y y R  

provides ,

, , 1( )L K

i j i jX x  .This L is an integer whose value 

varies as  2
2

NL  whereas the value of K is given as 

1K N L   . This X is called a Hankel matrix. All 
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diagonal elements of the Hankel matrix are i j   

constant are same. Consider TB XX , and its Eigen 

values are denoted by 
i where  1,2,....,i L . The Eigen 

values of the matrix B is taken in decreasing order of its 

magnitude  1 2 .... 0L      and the orthonormal 

system of Eigen Vectors of Matrix B corresponding to 

these Eigen Values are represented by 
1 2, ,..., LU U U . 

The Single Value Decomposition (SVD) of Hankel 

Matrix X can be stated as: 

1 2 .... LX X X X   
 

 (1) 

where, .T

i i i iX U V This combination of  , , T

i i iU V is 

called the Eigen triple of Single Value Decomposition. 

The Hankel Matrix Xi has rank 1. The left and right 

Eigen Vectors of Hankel Matrix are denoted by 
iU  and 

iV  respectively. Here, we have to note that Frobenius 

Norm of Hankel Matrix is given by 2

1

( )
L

T

iF
i

X tr XX 


 
 

and 2

i iF
X  . 

In Eigen Value behavior, series size is directly 

proportional to the Eigen values (
i ). This indicates if 

series size increases then Eigen values also increases. 

This trouble can be overcome by dividing matrix B by 

its trace, 
( )

BA
tr B

 , which leads to several important 

properties. Consider, 
1 2, ,...., L    indicates Eigen 

values of Matrix A in decreasing order of magnitude 

 1 21 ... 0L       . Hence, the simulation 

technique is used to get distribution of 
i  and to 

regulate the responses of each Eigen Value which will 

help us to find out the value of r. Here, main aim is to 

set up distribution and related form of 
i  which is 

helpful for selecting correct value of r for removing 

noise from EEG signal. 

The data reported in literature [14] shows that, the 

largest Eigen value has a positive skewed dispersal for a 

white noise process. Thus, for high skew  c

  1,2,....,c L , and identical pattern in skew ( )c to 

skew ( )L , the same may be revealed for the white 

noise, then the initial (r = c – 1) Eigen values 

corresponds to the signal components and remaining to 

the noise. Same method can be use for the coefficients 

of kurtosis and variation of
i . If  1,s c c  

is the 

minimum, and the pattern for the set   1,s i i i c
    

 is 

identical to what was observed for the white noise, then 

we select the first r = c−1 Eigen values for the signal 

and the remaining for the noise component. 

In this paper, the concentration is mainly based on 

the distributed 3rd and 4th measures moments. Those are 

the Skewness (Skew) and kurtosis (Kurt). Skewness is 

actually a measure of the asymmetry of the probability 

distribution of a real- valued random variable about its 

mean and kurtosis is a measure of the "tailedness" of the 

probability distribution of areal-valued random variable. 

Kurtosis is a descriptor of the shape of a probability 

distribution. These are used for selecting the values of r, 

which can be calculated for m simulation as follows: 

 

 

3

,

1

3
22

,

1

1

( )

1

1

m

i n i

n
i

m

i n i

n

m
Skew

m

 



 









 
  




 

(2) 

 

 

4

,

1

2
2

,

1

1

( ) 3
1

m

i n i

n
i

m

i n i

n

m
Kurt

m

 



 







 
 

 
 




 

        (3) 

The ratio of the standard deviation of Eigen Value ( )i   

to the average of Eigen value (
i ) is termed as 

coefficient of variation (CV). Mathematically it is given 

by following formula: 

 
( )

i

i

i

CV
 






 
(4) 

The cut-off point of separability is given by the 

measures of difference between the Eigen values of 

Signal and Noise components. These give the number of 

Major SVD components that are separated from 

residual.  

With the help of above criteria, the Eigen values can 

be divided into two groups; the first in Signal 

component and other in noise component. Moreover, for 

supporting the outcome obtained by above measures, 

the Spearman correlation   between 
i  and 

j  is also 

calculated. The absolute value of the correlation 

coefficient is considered 1 which shows that 
i and 

j  

has exact positive correlation, but when it is 0, then it 

shows that there is no correlation between them. The 

matrix obtained from the Spearman correlation (  ) of 

its absolute value is helpful in the complete analysis of 

the trajectory matrix. During the analysis, each Eigen 

value belongs to each elements of the SVD elementary 

matrix. It is observed that, if the absolute value of 

Spearman correlation   is close to zero, then the Signal 

and Noise component are almost orthogonal; however, 

if it is close to one, then these two components are not  

orthogonal, which can be tedious task to separate them. 

Thus, if Spearman correlation 0   between two 

components which is reconstructed from two main 

components, then these two reconstructed series are 

separable. The results of Spearman correlation    

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Random_variable
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between the Eigen values are fairly large for the white 

noise, which can easily segregate signal and noise. 

As Eigen Values ( )r  is decided from the above 

method, then the matrices 
iX  can be split into signal and 

noise components. Equation (1) can be rewritten as: 

X S E   (5) 

where, the

1

r

i

i

S X


 is signal component in matrix form 

and 

1

L

i

i r

E X
 

 
is the noise component in matrix. Matrix 

S is then transformed into new series of size N using 

average of diagonal elements of matrix S [13]. 
 

2. 2. Algorithm This algorithm is implemented in two 

main steps. In first step, coefficients of kurtosis, 

skewness, correlation and variation are taken into 

consideration for finding the optimal value of r. This 

value is then used to separate signal and noise 

component as the Eigen values splits into two groups as 

signal and noise component. In the second step, noise 

free series is reconstructed. 

 
2. 2. 1. First step 
1. 1-D time domain signal 

1 2( , ,..., )N NY y y y  is map 

into multidimensional series 
1 2, ,...., KX X X  having 

vector 
1( ,....., )T L

i i i LX y y R   , where L denotes 

integer window length. The value of L varies from

2
2

NL  and 1K N L   .We gets Hankel Matrix

   
,

1 2 , 1
, ,...,

L K

K ij i j
X X X X x


   using this step. 

2. Then we need to calculate matrix
( )

T

T
XXA

tr XX
 . 

3. Decompose matrix A as TA P P  , where 

 1 2, ,..., Ldiag     is the diagonal matrix of the 

Eigen values of A that has the order 

 1 21 ,..., 0L    
 

and  1 2, ,..., LP P P P  is an 

orthogonal matrix whose columns are the 

corresponding Eigen vectors. 

4. Eigen values are calculated by simulating original 

series m times. Then using uniform distribution with 

boundaries 
iy a  and

iy b , we simulate 
iy  where 

1i ia y y   and 
1i ib y y   . 

5. Skewness Coefficient of every Eigen value is 

computed, skew  i . For maximum skew  c , we 

get identical pattern to white noise for skew  c  to 

skew  L , then we need to select 1r c  . 

6. Kurtosis coefficient is calculated for all Eigen 

values, kurt (
i ). For maximum value of kurt (

c ), 

select 1r c  . 

7. Calculate the CV (
i ). Eigen values gets divided 

into two parts using the result of coefficient of 

variation, one from 
1  to 

1c 
correspond to the 

signal, and the other which have a U shape, leading 

to the noise. 

8. In the last step, correlation matrix is calculated using 

Eigen values along with its absolute values. Then it 

needs to be indicated using a grey scale (of 20-

grade) from white to black. This is analogous to the 

values of the correlations from 0 to 1. The derived 

matrix also divides Eigen values into two parts, from   

1  to 
r  leading to the signal, and rest to the noise. 

 

2. 2. 2 Second Step 
1. The Approximated signal matrix S  is evaluated as

1

r

i

i

S X


 . The r is obtained from the first step, and 

iX  is calculated as T

i i i iX U V . The 
iU  and 

iV  

present in this equation represents left and right 

Eigen vectors of the matrix.  

2. After taking mean of diagonals of matrix S , one-

dimensional series is generated. This is the 

approximate signal S . 

This was one of the criteria for distinction between 

controlled and meditated EEG signals. Later we used 

one more criterion for distinction, which is different 

from previous one with the help of highest Eigen value. 
 
 

3. SYNTHETIC DATA ANALYSIS 
 

3. 1. Example 1        Let us discuss this validity of 

proposed method using some examples. An EEG signal 

contains several components such as noise, other 

interfering signals and sum sinusoidal components 

responsible for chaotic behavior. Following two 

examples is useful for understanding the above two 

steps procedure. 
To verify the relevance of the method, it is used to 

decay the synthetic series produced from the Rossler 

system known to us: 

( )

dx
y z

dt

dy
x ay

dt

dz
b z x c

dt


  




 



  
  

(6) 

Figure 1a explains  
1

N

N t t
S s


 of length N = 5000. This 

Signal originated from the Rossler series. Figure1b 

illustrates  
1

N

N t N Nt
Y y S E


   ,where  

1

N

N t t
E


   is called as 

white noise operation.  
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(a)                                       (b) 

Figure 1. (a) Rossler Signal. (b) Rossler Signal with noise 

component 
 

 

In this section noise affected Rossler signal has been 

shown. Here 
NS and

NE represent signal and noise 

respectively. SNR is an important phenomenon on 

which entire property of the system depends. In this 

case, the ratio of square of variance of the signal to 

square of variance of noise is called SNR (SNR = 2 2

s 
) 

[18]. Here, SNR is = 14 dB. Analysis using different 

SNR values are appraise in Section 3.3. In this way, 

performance of the method and its relevance in 

recognizing the value of r with respect to all noise 

components are evaluated. Here, proposed method can 

help us to determine number of Eigen values (r) 

required to eliminate the noise from EEG signal for 

appropriate analysis. 

Addition of m-copies of noise in the Rossler signal, 

the proposed method is verified. In this case, time series
m

NY  (where m = 1,...,105) was analyzed which is not 

dependent on any other parameter; The window length 

is initially kept at L = 100. The independent signal or 

series in time domain was studied in depth using pattern 

of 
i  (i = 1 . . ., L) and its concerned forms of matrix A. 

Figure 2a shows the mean of the Eigen values on 

logarithmic scale. It can be seen that the first three 

Eigen values have given excellent result and rest of the 

Eigen values are seems to be almost close to each 

others. This is happening because embedding dimension 

of Rossler system should be minimum three. Each and 

every singular value (Eigen value) contributes in the 

decomposition of trajectory matrix. One of the key 

feature of matrix Hi is the ratio 100i  to Equation (1). 

Hence, the
1

100
r

i

i




 is considered as the features of the 

best approximation of H by matrices of rank r. 

 

 

 
(a)                                          (b) 

Figure 2. (a) Logarithm 
i
 of noise added Rosseler Series  

(b) Results of ( )iSkew   versus Eigen values 

Here, the analogous Eigen triples to the first three Eigen 

values can be considered as the key parameters for the 

original signal, as their ratio is 99. Figure 2b explains 

the results of ( )iSkew   versus the Eigen Values.  

Figure 3a explains the results of ( )iKurt  , Figure 3b 

explains ( )iCV  and Figure 3c the matrix of the absolute 

value of   also called correlation matrix between the 

Eigen values. 

The curve of skewness versus Eigen values divides 

the singular values into two parts. It is observed that at 

4c 
 have maximum value of skew. It is also noted that, 

from 
4( )Skew  to ( )LSkew  has the pattern of noise 

component [19]. Hence, initial three Eigen values are 

related to the signal component and the remaining to the 

noise components. Similar results observed with the 

Kurt and CV parameters. It is also observed from the 

Figure 3b that second part of the results has a shape that 

is related to the noise part [19]. It is clear from Figure 

3c that the correlation matrix of first three Eigen values 

related to Rossler signal and remaining large carbonated 

square reflecting white noise. Thus, the results of 

correlation matrix of Eigen Value can give us clear idea 

for separation of noise and signal component.  

The above discussed results are also calculated using 

the RMSE (root mean square error) between the actual 

signal (Rossler) and the reconstructed signal using 

Eigen triples 1− i, (i = 1,….,100) as shown in Figure 4a 

The result shows, that the least value of RMSE obtained 

for r=3, between the reconstructed and the actual signal 

by Eigen triples 1–3. The blue line in Figure 4b 

indicates noise free signal by Eigen triples (1-3). The 

black line indicates original Rossler signal. 
 

3.2. Example 2   In the second example, two signal 

components (one is Exponential signal and other is 

cosine signal) is mix with white noise: 
(1) (2)

t t t ty s s  
 

(7) 

 

 
(a)                                    (b) 

 
(c) 

Figure 3.   (a) Results of ( )iKurt   Versus Eigen values  

(b) Results of ( )iCV   versus Eigen values (c) Results of 

Correlation matrix. 
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(a)                                     (b) 

Figure 4. (a) RMSE between the actual series (Rossler) and   

its reconstructed series using Eigen Triples (b) The 

reconstructed and original series. 
 

 

where, (1) ( )t

ts e  , (2) cos(2 / )ts t T , 2(0, )t N  , 0.03 

, 2 5  , 12T  , and t = 1.....96. In this problem, the 

total signal consists of exponential component and 

harmonics. Figure 5a shows a signal component 

(exponential + cosine series) represented as (1) (2)

t ts s

.Figure 5b shows total signal component
ty , for SNR = 

4.5dB. 

In Figure 6a the mean of Eigen values is described 

using logarithmic scale for L=36. It is clear from the 

Figure 6a that the value of 
1
 is excellent, while that of 

2 and 
3 are near to each other. This is also presume 

that, the initial Eigen value belongs to Exponential 

signal and other two (second and third) belongs to 

harmonic component. In this case, the analogous Eigen 

triples to 
1 2,   and 

3  can be appraise as the main 

components for the original signal as their ratio is 

approximately 99. Figure 6.b shows the results of 

( )iSkew   between Eigen values. 

Figures 7a, 7b, and 7.c show the results of ( )iKurt  , 

( )iCV   and matrix of 
s between the Eigen values, 

respectively. 

 

 
(a)                                      (b) 

Figure 5. (a) (1) (2)

t ts s  (exponential + cosine series) Signal  

(b) Total signal (1) (2)

t t t ty s s     with   white noise 

 

 
(a)                                        (b) 

Figure 6. (a) Logarithm of 
i as described in second example 

(b) Results of ( )iSkew   between Eigen  values 

 
(a)                                         (b) 

 
(c) 

Figure 7. (a) Results of ( )iKurt  between Eigen Values (b) 

Results of ( )iCV  between Eigen values (c) Results of 

Correlation matrix between Eigen values 

 

 

From the Figure 8a, results shown in this paper are also 

investigated using Root Mean Square Error between the 

original signal which is mathematically indicated by 
(1) (2)( )t ts s  and the reconstructed signal by Eigen triples 

1–i, (i = 1... 36). The result derived from RMSE curve 

proved that the value of r is 3. Figure 8b illustrates the 

reconstructed noise free signal by Eigen triples 1-3 

which is shown by blue line, and the original signal 

mathematically given by (1) (2)( )t ts s by black line. As 

per the above discussion and result, optimal value of r is 

selected for the reconstruction and thus this method can 

be best suited for removing noise from EEG signals. 

 

3. 3. The Impact of Noise Level         In context to the 

foregoing results and for better interpretation of the 

impact of noise using proposed method, we also 

consider different SNR’s. Here the SNR is the ratio of 

square of variance of the signal free from noise to 

square of variance of noise. Figures 9a to 9e show 

measure parameter Skew (
i ) versus Eigen values curve 

for different SNR values (SNR’s =1dB, 5dB, 10dB, 15dB 

& 20dB) for Rossler signal. It is also confirmed from 

Figures 9.a. to 9e that for distinct values of SNR, the 

highest value of Skew is noticed for 
4c 
, which proved  

that value of r is 3. 

 

 
(a)                                   (b) 

Figure 8. (a) RMSE between the actual and reconstructed    

Components using Eigen Triples for second Example (b) The 

reconstructed signal (blue line) and the original signal series 

(black line) for second Example 
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(a)                                     (b) 

 
(c)                                   (d) 

 
      (e) 

Figure 9. (a) Skewness coefficient Value of Eigen valuesfor 

Rossler signal when SNR=1dB (b) Skewnesscoefficient Value 

of Eigen values  for Rossler signal when SNR=5dB (c) 

Skewness coefficient Value ofEigen values for Rossler signal 

when SNR=10 dB (d) Skewness coefficient Value of Eigen 

values for Rossler signal when SNR=15 dB (e) Skewness 

coefficient Value of Eigen values for Rossler signal when 

SNR=20dB 

 

 

Identical results are observed by   using other measures 

such as Kurt, CV, and  , thus they aren’t described 

here. This result support that the new method works for 

any signal that is contaminated by all types of noise. 
 

 

4. ANALYSIS OF REAL TIME EEG DATA 
 

4. 1. EEG Data Acquisition         Real time EEG data 

signal were used for this research study. The data 

required for this study were acquired from 8-channel 

Enobio data acquisition device manufactured by NE, 

Barcelona, Spain. The reference electrode is connected 

to ear lobe. The sampling frequency of this device is 

500 Hz. This data is acquired from 20 healthy subjects. 

These subjects include age group from 20 to 60 years 

with an average age of 40 years of 10 healthy male and 

10 healthy female. 
The data is recorded for duration of 60 seconds for 

20 trials each. The first data set is recorded from Expert 

meditator (which have more than three 10 days of 

mediation experience) were doing Vipasanna meditation 

with eyes closed using a standardized 10-20 electrode 

placement approach as shown in Figure 10. The second 

data set contains control signals from the same 

volunteers when seating at normal position. 

Two specimens of the meditation and controlled 

signals are shown in Figure 11a and their distribution 

densities in Figure 11b. It is obvious that the distribution 

of the controlled EEG signals is symmetric, while it is 

skewed for the meditation EEG signal. It is worth 

mentioning that all 400 segments of the controlled set 

have a symmetrical distribution, whereas the meditation 

signal distribution can be skewed to the right or to the 

left. 

 

4. 2. Noise Elimination from EEG signals     The 

main aim of the method is to separate EEG signal and 

noise present in it. Once the optimal value of  r is 

selected, we discriminated an Eigen triple which is 

responsible for noise in signal components. In this part, 

only two segments, from the controlled and meditation 

signals, were used. It is then simulated 104 times and 

then analyzed for eliminating noise from the EEG 

signal. 

 

 

 
Figure 10. EEG recording during Meditation practice 

 

 

 
(a) 

 
(b) 

Figure 11. (a) Specimen of the controlled signal (left) 

andMeditation EEG signals (right) (b) Density of Meditation 

and Controlled Signal 
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The purpose in this section is to illustrate the application 

of proposed approach for each segment separation 

(Normal and meditation) though it will be applied to all 

segments as described in result section. To create 

simulated noisy signal with same form, appearance and 

distribution to the real signal segment we specifically 

obey the approach already explained in Section 2.2. 

Even though signal segments are moderately differing 

from one another, the results obtained in the form of 

number of Eigen values are same. Initially we examine 

a signal segment from each subject for learning each 

EEG signal. On account of this, each signal copy was 

simulated 104 times. Even the same method can be 

applicable for other segments too. Identical results were 

observed by taking each signal segment individually. In 

this work, the impact of the noise and artifacts are 

considered. 

Figures 12a, 12.c and 12e show the results of the 

statistical parameters belongs to the normal condition 

and Figures 12b, 12d, and 12f belongs to Meditation 

condition. It is sure that the three parameters divide the 

Eigen values or Eigen triples into two distinct parts 

(signal and noise). It is clear from Figure 12a that the 

Skew
52( )c 

is maximum for normal signal, while it is 

maximum for meditation signal for Skew 
48( )c 

.  

 

 

 
(a)                                 (b) 

 
(c)                                   (d) 

 
(e)                                    (f) 

Figure 12. (a) Results of measure between Skew(
i ) and   

Eigen values for Normal EEG signal (b) Results of measure 

between Skew(
i
) and Eigen   values for  EEG signal during 

Meditation (c) Results of measure between ( )iCV   and Eigen 

values  during normal EEG signal (d) Results of measure 

between ( )iCV   and Eigen values of  EEG signal during 

Meditation (e) Results of correlation matrix of Eigen values of 

normal EEG  signal (f) Results of correlation matrix of Eigen 

values of EEG signal during Meditation 

Moreover, for both conditions, the figure of the 

skewness measure versus Eigen values belonging to the 

noise components has a slowly decreasing order. From 

the Figure 12c and 12d of CV measure versus Eigen 

value shows that the starting point of U shape is point of 

separation between the noise and signal spaces and U 

shape is a part of noise component. The graph of matrix 

of correlation between Eigen values shown in Figures 

12e and 12f. guaranteed that the number of Eigen values 

belongs to Controlled state is 51 and that of Meditation 

state is 47. Thus, signal is reconstructed by using Eigen 

triples belonging to these Eigen values after removing 

noise part. Figures13a, 13b, 13c and 13.d show the 

extracted signal and the noise series for normal and 

meditation signals. 

 
4. 3. Discrimination of EEG signals       In this 

section, the proposed method is validated for examining 

its capability of differentiating EEG signals into Normal 

and Meditation classes using 400 segments from each 

class. 
i  was calculated by analyzing each channel of 

each class. Subsequently, matrix A was obtained from 

statistical analysis of each Eigen value. Then the similar 

measures used in previous sections were applied. These 

measures used as features for categorizing normal and 

meditated EEG signal. The results of those measures are 

quite identical as shown in Figures 12a to 12f. 

It is clearly seen that value of Skew for the normal 

and meditation state are different, especially between 

the initial two values. Same results observed for both 

conditions using another statistical measure known as 

kurtosis. ( )iKurt  was identical for first value during 

both conditions, whereas it is different for last 50 values 

(Figures 12.c and 12d). As shown in Figures 14a to 14c, 

it is clear that CV increases for the mediation signal for 

last 10 values, while it decreases for the normal signal. 

 
 

 
(a)                                        (b) 

 
(c)                                      (d) 

Figure 13. (a) Extracted normal EEG signal (b) Extracted 

EEG signal during Meditation (c) Extracted noise for normal 

EEG signal (d) Extracted noise for EEG signal during 

Meditation 
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(a)                                           (b) 

 
(c) 

Figure 14. (a) Plot of Skewness for Normal and meditation 

Condition (b) Plot of Kurtosis for Normal and meditation 

condition (c) Plot of CV for Normal and meditation condition 

 
 
5. CONCLUSION 
 
Novelty has been included in the approach for 

decomposing EEG signal, which ultimately depends on 

the Eigen values distributions of a scaled Hankel matrix. 

The approach was specially utilized for noise 

elimination and bifurcating normal and Meditation EEG 

signal. At the beginning of this approach, only one 

specimen from each set were analyzed for finding  the 

value of r which is then used for separating noise and 

EEG signals. After obtaining the value of r, signal 

component has been extracted.  

In the later stage, all signals from each condition 

were used. Various plots and measures were applied to 

distinguish between Normal and meditation signals. The 

potentionality of the examined statistical measures 

depends on their values to differentiate between the two 

conditions. The results proved that there is obvious 

difference between the values of statistical measures 

used for the normal and meditating signals, which is an 

obvious solution for distinguishing normal and 

abnormal (Meditating) physiological condition using 

EEG signals. 

In addition to above stages, several criteria have 

been introduced which is based on the highest Eigen 

value.  These are then used as unique features to 

distinguish EEG signals and detect chaotic behavior. 

Several statistical parameters are used to show that the 

distribution of the highest Eigen value for the 

meditation signal is same for Rossler signal (chaotic). 

This is totally different from the normal EEG signal. 

Thus, the recommended features can be important for 

distinguishing EEG signals for any mental condition as 

well. 

As a result of this, all our outcomes confirm the 

good performance of the proposed approach in 

distinguishing EEG signals during normal and 

meditating condition. This also performing better for 

separating noise and signal component from noisy time 

signal using r. The important point noted here is that, 

this approach does not base on any assumptions (such 

stationarity or linearity of the signal). This proved that, 

approach could be a useful for extraction of any 

physiological signal contaminated by noise or any other 

unwanted signal. 
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چكيده
 

 

ن براساس توزیع ( ارائه شده است. ایEEGدر این مقاله روش منحصر به فرد برای تحلیل سیگنال الکتروانسفالوگرافی )

مکان می دهد نامیده می شود. این ماتریس به ما ا Hankelیک ماتریس است که به عنوان ماتریس مقیاس  Eigenارزش 

یدا کند. به فرد را پ مورد نیاز برای کاهش نویز و استخراج سیگنال در تجزیه و تحلیل طیف منحصر Eigenتا تعداد مقادیر 

استخراج  بین وضعیت عادی )کنترل شده( و شرایط مراقبه، EEGاین مقاله روشی را برای طبقه بندی سیگنال های 

ه عنوان ویژگی و حذف نویز از سیگنال ارائه می دهد. پارامترهای مختلف ب EEGالگوهای مختلف، فیلتر کردن سیگنال 

 یج نشان داد کهطبیعی و در زمان تمرین مدیتیشن استفاده می شود. نتا EEGهایی برای طبقه بندی در بخش های طبیعی 

 مثبت است. EEGروش حذف صوتی در هر دو سیگنال 

doi: 10.5829/ije.2018.31.04a.06 

 

 


