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A B S T R A C T  
 

 

A novel data-driven soft sensor is designed for online product quality prediction and control performance 

modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic 
auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-

based elimination method is introduced in this work. The soft sensor performance validation is tested by 

data set of an industrial SRU. The comparative study indicated the result associated with more robust 
soft sensor and more appropriate performance index values compared to other methods for SRU soft 

sensor design in diverse achievements. Due to high prediction accuracy, the low complication of the 

model and also saving of time, this technique can be very noticeable in industrial processes control. 

 

doi: 10.5829/ije.2018.31.04a.02 
 

 
1. INTRODUCTION1 
 
In the recent decades, the process control and monitoring 

have been affected by modern control methods. Due to 

high importance of some key variables that are hardly 

measurable in divers’ processes, it is indispensable the 

use of new techniques with high precision. With this 

approach, one can overcome to time wasting and several 

major problems caused by process of non-linearity and 

multivariate nature [1, 2]. In modern control, there is a 

valuable technology based on mathematical model and 

process technological knowledge under name of “soft 

sensor” that is veryless costly compared to expensive 

hardware sensors. Also, it can be a good alternative 

technology work in parallel. Furthermore, the soft 

sensors can introduce as algorithms that resolve the 

control problems related to variables are hardly 

measurable through variables which are easily 

measurable [1, 3]. The new versions of soft sensors in 

addition to monitoring and process control can apply for 

key variable prediction from process data measurements. 

Off-line lab analysis or data achieved from GC have 

higher financial burden for control process and soft 

sensor can reduce these costs [4].  

                                                           
*Corresponding Author Email: fshahraki@eng.usb.ac.ir (F. Shahraki) 

Two classes of soft sensors based on process model 

or process data are defined and also, there is a hybrid 

model being a combination of two mentioned types 

consisting of fundamental process knowledge and 

process inputs and outputs data [5]. 

There are different methods in the field of statistical 

or soft computing for data-driven soft sensors design that 

have pros and cons. Multivariate statistical regression 

(MSR) techniques including multiple linear regressions 

(MLR) [5], least square regression (LSR) [6] and partial 

least squares (PLS) [7-9] are the most popular techniques 

for soft sensor model design. The LSR is the simplest 

method but in systems with highly correlated nature, the 

results may not be true; hence in different research to 

build an inferential model and overcome to co-linearity 

problem, the PLS-based models, principal component 

analysis (PCA) model [10-12] and PLS/PCA model [13] 

are applied. The PCA is a dimension-decrement 

mathematical method for decrease the size of variables 

set such that primary set information to be preserved. 

However, the latest methods mentioned is unable in 

prediction of a process with abrupt changing situations. 

Artificial neural networks (ANN) [14] are another 

methods to describe the linear relationship between the 
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inputs and outputs data are useful in process control [15]. 

Locally weighted regression (LWR) compared to ANN 

led to fewer complexes linear model, by pre-processing 

algorithms [16]. Also, it should be noted that some of 

ANN models such as multi-layer perceptron (MLP) by 

applying pre-processing algorithm can solve problems 

caused by missing value and outliers [17, 18]. Another 

difficulty about ANN is the problems with the 

approximation of networks appropriate topology [4]. 

Categorizing the process state into the local data subsets, 

which is able to identify both time-varying characteristics 

and process nonlinearity situations can be introduced. 

Another method for soft sensor modeling that is Just-in-

time learning (JITL) [19, 20]. But to remove the problems 

caused by the correlation between the process variables, 

the correlation-based on just-in-time learning (CoJIT) 

method can be more desirable [21]. Despite the above 

mentioned, sometimes an unfit model conformity from 

the relation between data sets may be obtained [22, 23]. 

Extended Kalman filter (EKF) algorithm is widely used 

as analytical approximation observer and online 

estimator that by the first-order linearization in a 

nonlinear system, distributes the parameters [24, 25]. 

Dual Extended Kalman filter (DEKF) is a modified form 

of EKF that can estimate the parameters and states of the 

process. It is very appropriate algorithm related to data-

based systems and identification manners [26]. The data-

based mechanistic (DBM) with the recorded data 

availability extending in the industrial process and 

computational power attracted more and more interest of 

researchers to test the method [4, 27-30].  

This paper introduces a new DBM approach for soft 

sensor design in sulfur recovery unit (SRU) that is 

appropriate for dynamic systems modeling. This soft 

sensor is based on recorded data and DARX model (some 

time series algorithms such as recursive KF that predict 

and update the process state vector and parameters and 

yield the optimum parameters). The nonlinear correlation 

analysis and criterion-based elimination integrated by 

“CAPTAIN” toolbox that is successfully utilized and 

developed in recent decades, at Lancaster University. 

The model prediction capability is evaluated by missing 

data existence in observed industrial data and also by 

comparison with diverse methods. 

 

 

2. PRELIMINARIES 
 

2. 1. Data- based Mechanistic (DBM) Description  
In this approach, the TVP and or state dependent 

parameters (SDP) methods are applied for stochastic 

models identification and estimation in diverse non-

linear and non- stationary processes. To achieve the 

mentioned algorithms in DBM, unobserved components 

(UC) stochastic state-space formulation, the recursive 

Kalman filter (KF) and also fixed interval smoothing 

(FIS) algorithms are required. The construction of TVP 

regression model is commonly applied [31]. The final 

parameters estimation step of non-linear modeling 

relying on Gaussian suppositions, is performed by least 

squares or maximum likelihood (ML) estimation as non-

linear optimization methods [32]. 
 
2. 2. State Space Model Structure      It is essential to 

consider some assumptions for TVP related to their 

temporal variation situation. The observation and states 

equations in the state space can be constructed by: 

Equation of observation:   𝑦𝑡 = 𝐻𝑡𝑥𝑡 +  𝑒𝑡 (1) 

Equation of state:  𝑥𝑡 = 𝐹𝑥𝑡−1 + 𝐺𝜂𝑡 (2) 

𝑥𝑡 = [𝑥1,𝑡
𝑇 𝑥1,𝑡

𝑇 …   𝑥𝑛+𝑚+1,𝑡
𝑇 ]𝑇   (3) 

𝐻𝑡 = [−𝑦𝑡−1   0   − 𝑦𝑡−2   0  …   −
𝑦𝑡−𝑛    0   𝑢𝑡−𝛿    0  …   𝑢𝑡−𝛿−𝑚   0]  

(4) 

𝑦𝑡  ,𝑥𝑡 ,𝑒𝑡and 𝜂𝑡 are the scalar stochastic observed 

variable, the stochastic state variables, observation noise 

and white noise of input vectors, respectively.  

Furthermore, in state space models (n+m+1) is the 

parameters number and if p= 2(n+m+1), 𝐻𝑡  is a 1×p 

vector that refers to the relation between scalar 

observation 𝑦𝑡  and the state variables in the model. 

Generalized random walk (GRW) model is applied for 

each 𝑥𝑖,𝑡  stochastic assessment and it is defined in the 

state space term and dimensions of F and G are p×p block 

diagonal matrixes that 𝐹𝑖 and 𝐺𝑖 matrices are given by: 

𝑥𝑖,𝑡 = 𝐹𝑖𝑥𝑖,𝑡−1 + 𝐺𝑖𝜂𝑖,𝑡i= 1, 2 , …, n+m+1 

(5) 

𝐹𝑖 =  [
𝛼 𝛽
0 𝛾

] ; 𝐺𝑖 = [
𝛿 0
0 𝜀

]; 𝜂𝑖,𝑡 = [𝜂1𝑖,𝑡𝜂2𝑖,𝑡]𝑇 

Also, 𝜂𝑖,𝑡 is considered to be described by a normally 

diagonal covariance matrix 𝑄𝜂𝑖 . The constant parameters 

in above model (𝛼, β , 𝛾, 𝛿, 𝜀 ) are introduced as hyper-

parameters, and depend on different cases such as: 

integrated random walk (IRW), scalar random walk 

(RW), smoothed random walk (SRW), first-order 

autoregressive process (AR(1)), local linear trend (LLT) 

and damped trend (DT).  The normally constants 𝛼, β , 𝛾, 

𝛿 and 𝜀 are diverse from others [33, 34]. In the present 

model, the IRW is applied (𝛼= β = 𝛾=𝜀 = 1; δ=0). 

 

2. 3. TVP Models Identification        The GRW model, 

with implementation of recursive FIS is one of the best 

known methods which is significantly used in chemical 

industry non-stationary processes such as distillation 

columns for parameters estimation. The FIS algorithm is 

constructed to estimate the time varying parameters. 
In this work, the TVP method is applied. The 

approach of TVP identification and estimation is relying 

on the state-space structure. Also, it is based on “forward 
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pass filtering” and “backward pass smoothing” 

algorithms by the implementation of the KF concepts and 

the data in temporal order. The KF equations provide the 

optimal state vector reconstruction. They are consisting 

observations prediction equations, the state variables 

propagation and correction equations for updating the 

state estimates. The possibility to handle missing 

observations has fulfilled by separation of the prediction 

formulas and state estimation formulas [35]. The 

equation of TVP model can be presented in the regression 

vector form: 

𝑦𝑡 = 𝑧𝑡
𝑇𝑝𝑡 + 𝑒𝑡  ; 𝑒𝑡~𝑁{0, 𝜎2}  ;t=1, 2, …, N (6) 

where, 𝑒𝑡 is the white noise and 𝑧𝑡
𝑇 as the model states 

vector and  𝑝𝑡  as the model parameters vector are given 

by:  

𝑧𝑡
𝑇 = [ 𝑦𝑡−1  𝑦𝑡−2 … 𝑦𝑡−𝑛𝑢𝑡−𝛿 … 𝑢𝑡−𝛿−𝑚 ]  

(7) 

𝑝𝑡 = [ −𝑎1,𝑡  − 𝑎2,𝑡  … − 𝑎𝑛,𝑡𝑏0,𝑡 … 𝑏𝑚,𝑡  ]𝑇  

Regression model structure of TVP including dynamic 

linear regression (DLR), dynamic auto regression (DAR) 

and dynamic auto-regressive with exogenous variable 

(DARX) model are applied in most cases. The DLR as 

the simplest one that yet is widely used in the formulation 

can be described by: 

𝑦𝑡 = ∑ 𝑏𝑖,𝑡𝑢𝑖,𝑡 + 𝑒𝑡
𝑖=𝑚
𝑖=1 ; 𝑒𝑡~𝑁{0, 𝜎2} ;  t=1,…,N (8) 

Where bi,t, ui,t , and yt are constant parameters, regressors 

and a dependent variable, respectively. The output series 

past values in DAR model are introduced as input 

variables. This is given by: 

𝑦𝑡 = −𝑎1,𝑡𝑦𝑡−1 − 𝑎2,𝑡𝑦𝑡−2 − ⋯ − 𝑎𝑛,𝑡𝑦𝑡−𝑛 + 𝑒𝑡  (9) 

 

2. 3. 1. The DARX Model       The DARX model can be 

used for analysis of the exact dynamic system and non-

stationary time series. In this model consider the time 

delay for both input and output variables. The following 

equation can describe the case of output variable yt and 

an input variable ut presence: 

𝑦𝑡 = −𝑎1,𝑡𝑦𝑡−1 − 𝑎2,𝑡𝑦𝑡−2 − ⋯ − 𝑎𝑛,𝑡𝑦𝑡−𝑛 +

𝑏0,𝑡𝑢𝑡 + 𝑏1,𝑡𝑢𝑡−1 + ⋯ + 𝑏0,𝑡𝑢𝑡 − 𝑛 + 𝑒𝑡   
(10) 

In actual, a particular instance of the discrete-time 

transfer function (TF) model can be described by DARX 

model that obtained from algorithms of least squares-

based recursive filtering and the following form: 

𝑦𝑡 =
𝐵(𝑍−1,𝑡)

𝐴(𝑍−1,𝑡)
𝑢𝑡 +

1

𝐴(𝑍−1,𝑡)
𝑒𝑡   (11) 

That A(z-1,t) = 1+ a1,t z-1 + … + an,t z-n  is the denominator 

polynomial of TF model and B(z-1,t) = b0,t + … + bn,t z-n  

is nominator polynomials which the regressors backward 

shift operator shows by z-r. Also, for the convenience of 

writing, do not consider time delay and polynomials 

order similar to equation (3) [36]. 

2. 3. 2. Forward-pass Recursive Least Square 
Filtering      The algorithm form of recursive least square 

filtering for the time series has demonstrated by: 
1. Equation of prediction: 

𝑥̂𝑡|𝑡−1 = 𝐹𝑥̂𝑡−1  (12) 

𝑃𝑡|𝑡−1 = 𝐹𝑃𝑡−1𝐹𝑇 + 𝐺 𝑄𝑟𝐺𝑇  (13) 

2. Equation of correction: 

𝑥̂𝑡 = 𝑥̂𝑡|𝑡−1 + 𝑃𝑡|𝑡−1𝐻𝑡
𝑇[1 + 𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡

𝑇]−1{𝑦𝑡 −

 𝐻𝑡𝑥̂𝑡|𝑡−1}  
(14) 

𝑃𝑡 = 𝑃𝑡|𝑡−1 −  𝑃𝑡|𝑡−1𝐻𝑡
𝑇[1 +

𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡
𝑇]

−1
𝐻𝑡𝑃𝑡|𝑡−1  

(15) 

 
2. 3. 3. Backward- pass FIS       The backward FIS 

algorithm applies after the filtering stage. The recursive 

smoothing form of this algorithm for the time series is 

demonstrated by Equation (16). This algorithm updates 

the estimated achieved from forward-pass filtering 

sequentially. It produces a smooth estimate of the state 

vector and its covariance matrix deletes the effect of lags.  

𝑥𝑡|𝑁 = 𝐹−1[𝑥̂𝑡+1|𝑁 + 𝐺𝑄𝑟𝐺𝑇𝐿𝑟]  

𝐿𝑡 = [𝐼 − 𝑃𝑡+1𝐻𝑡+1
𝑇 𝐻𝑡+1]𝑇[𝐹𝑇𝐿𝑡+1 − 𝐻𝑖+1

𝑇 {𝑦𝑡+1 −
𝐻𝑡+1𝑥𝑡+1}] ;  𝐿𝑁 = 0 

𝑃𝑡|𝑁 = 𝑃𝑡 + 𝑃𝑡𝐹𝑇𝑃𝑡+1|𝑁
−1 [𝑃𝑡+1|𝑁 − 𝑃𝑡+1|𝑡]𝑃𝑡+1|𝑡

−1 𝐹𝑃𝑡  

(16) 

In above equations, the p× p noise variance ratio (NVR) 

diagonal matrix 𝑄𝑟  and the p× p matrix 𝑃𝑡 are described 

as: 

𝑄𝑟 =
𝑄

𝜎2⁄   ;   𝑃𝑡 =
𝑃𝑡

∗

𝜎2⁄  (17) 

where, 𝑃𝑡 is the error covariance matrix related to the 

state estimates 𝑥̂𝑡 that describes the estimated parameters 

[37]. 

 
2. 3. 4. Maximum Likelihood Hyper- parameter 
Optimization      To determine the optimum NVR 

parameters the ML method is implemented. This 

algorithm starts with an initial hyper-parameters value 

and based on KF that yields the prediction error 

decomposition (PED). As is described below, the KF 

algorithm can produce the one-step-ahead prediction 

errors by primary hyper-parameters: 

𝜀𝑡 = 𝑦𝑡 − 𝐻𝑡𝑥̂𝑡|𝑡−1           t= 1, 2, …, N (18) 

Also, the likelihood function is presented in below where 

𝑅𝑡 is the covariance of  𝜀𝑡: 

𝐿𝑜𝑔 (𝐿𝑐) = −
1

2
[

1

𝑁
∑ log (𝑅𝑡

𝑁
𝑡=1 ) +  log (

1

𝑁
∑

𝜀𝑡
2

𝑅𝑡

𝑁
𝑡=1 ) ]   (19) 

The recursive filtering algorithm is applied repeatedly to 

generate 𝜀𝑡 and 𝐿𝑐. Due to non-linearity of the likelihood 

function, the numerical maximization should be done. 

Finally, to delete the constant term which is convenient 
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(because it doesn’t effect on optimization). Due to a 

minimum result of above equation convergence, by 

hyper-parameters estimation, the optimization algorithm 

implements. This minimization is based on hyper-

parameters ML estimates while it is multiplied by -1 [37]. 

 

2. 4. Dynamic ModelIdentification Criteria    By 

reviewing all the methods for model structure 

identification in different work, the most popular of them 

has been selected. To select a convenient model for soft 

sensor several applied criteria can be utilized. To validate 

the model performance, mean absolute error (MAE), root 

mean squared Error (RMSE) and the correlation 

coefficient (R) are defined as: 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑓𝑖 − 𝑦𝑖|𝑛

𝑖=1   (20) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑓𝑖 − 𝑦𝑖)2𝑛

𝑖=1   (21) 

𝑅 =
∑ (𝑓𝑖−𝑓̅)𝑛

𝑖=1 (𝑦𝑖−𝑦̅)

√∑ (𝑓𝑖−𝑓̅)2𝑛
𝑖=1 ∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

  (22) 

where, N, fi ,yi ,𝑓 ̅and 𝑦̅ are the data sample number, 

model output, real value and, mean value of fi and yi, 

respectively. By MATLAB programming, the other 

statistical criteria have provided to determine the best 

model among diverse polynomial orders in DTF, 

including Akaike information criterion (AIC) and Young 

information criterion (YIC) [36]. The AIC criterion 

compares the quality of a set of statistical models to each 

other and examines the parity between the model 

intricacy and its suitability for data [38]. The AIC is a 

criterion to select the model that optimizes some model 

performance theoretical measure by regulating a sample 

estimation to diminish over fitting due to optimism [39]. 

The YIC criterion is applied to stochastic models and 

instrumental variable (IV) algorithm identification, 

because it exploits special properties of Instrumental 

product matrix (IPM)[31]. The AIC is defined as follows: 

𝐴𝐼𝐶 = 𝑁𝑙𝑜𝑔𝑒
𝜎2

+ 2𝑛𝑝  (23) 

Where the first term portrays model performance about 

data description and in the second term, np denotes to 

model parameters number. The YIC is defined as:  

𝑌𝐼𝐶 = 𝑙𝑜𝑔𝑒

{
𝜎2

𝜎𝑦
2 }

+ 𝑙𝑜𝑔𝑒
𝐸𝑉𝑁  

(24) 

𝐸𝑉𝑁 =
1

𝑛𝑝

∑
𝜎2𝑝𝑖

𝜌𝑖
2

𝑛𝑝

𝑖=1   (25) 

where, ρi and 𝜎2𝑝𝑖
 are parameter estimates and the ith is 

the parameter estimated error variance, respectively [32]. 

The YIC is a more intricate criterion that evaluates the 

relation between model fit and over parameterization 

[40]. The first section interprets a relative logarithmic 

evaluation of model performance about data description 

that high negative term is associated with the more 

appropriate result. The second section explains the total 

parameter error variance normalized measure that by 

several orders of magnitude, less negative values result. 

The best model has the smaller YIC and normally it will 

be a negative value [32]. 

 
 
3. CASE STUDY 

 
In this work an industrial Sulfur Recovery Unit (SRU) 

[41] according to Figure 1, is used for soft sensor 

performance validation. 

 

3. 1. Sulfur Recovery Unit (SRU)     In the present 

sector so-called acid gases concentration on-line 

measurement, H2S, and SO2 by soft sensors is performed 

in SRU. This process prevents from the release of acid 

gases into the environment and therefore, it has a crucial 

role in refinery system. According to the description of 

Table 1, there are 5 input and 2 output variables in this 

industrial unit that also are demonstrated schematically 

in Figure 2 [41]. 

 
Figure 1.The simplified industrial SRU block diagram 

 

 

TABLE 1. Soft sensor input and output variables description 

Description Variable 

MEA gas flow u1 

First air flow u2 

Second air flow u3 

Gas flow in SWS zone u4 

Air flow in SWS zone u5 

H2S concentration y1 

SO2 concentration y2 

In this process inputs, there is the MEA gas (mostly 

H2S) from the plant of gas washing and the sour water 

stripping (SWS) (mostly H2S and NH3) as two acid gases. 

In this unit, formulation of SO2 is performed by a 

combination of H2S and pure sulfur. Before diffusion of 

the tail gas containing residual H2S and SO2 to the 

atmosphere, their concentration should be analyzed. 
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Figure 2. The 5 input variables and 2 output variables of 

system for industrial SRU 

 

 

Nevertheless, damage to sensors by corrosion and 

consequently their maintenance or removal is resulted by 

mentioned gases presence, often. Therefore, the design of 

soft sensor that estimates the H2S and SO2 

concentrations, for supporting hardware sensors and also 

as their alternatives are required [42]. 

The SRU benchmark data set that is gathered under 

the ordinary operation condition and is contained 10081 

samples with a 1 min sampling rate. This data is divided 

into two sets which the first 5000 one is applied for 

training and the other for model validation. 

 
3. 1. 1. Model Development and Criterion-based 
Procedures      The model proposed based on the 

drawing of process states partitioning description is 

demonstrated in Figure 3. To start and evaluate the 

process nonlinearity, one-, two-, three- and four-step time 

delayed for outputs and one-, two-, … and nine-step time 

delayed for inputs are considered. Correlation analysis, 

as part of variable selection step to determine the high 

effective regressors for every variable, is implemented. 

In the presented results in Table 2, the selected regressors 

with high performance for y1 and y2 prediction, have 

demonstrated by (*) and (**), respectively and the best 

of them are shown in colored cells. 
After selection of higher correlation in input 

variables, DARX and optimization algorithms for 

selected input variable and output variable are 

implemented. 

By criterion-based procedures to select the proposed 

soft sensor, some of TVP models with inappropriate 

performance indexes are removed. In Table 3 the best 

model with higher performance in training set, due to its 

higher R-correlation and the lowest RMSE, MAE, AIC, 

and YIC are determined. 

 
Figure 3. Drawing of process states partitioning description 

 

 

TABLE 2.Regressors selected by the procedure proposed 

 t t-1 t-2 t-3 t-4 t-5 t-6 t-7 t-8 t-9 

u1       ** *   

u2      **  *   

u3   **       * 

u4   **      *  

u5   * **       

y1  *         

y2  **         

 

 

TABLE 3. DARX model results: performance indexes for test 

States R-corr RMSE MAE AIC YIC 

yt-1,u2,t-7 0.9507 0.0158 0.0024 -8.1474 -7.3544 

yt-1,u3,t-2 0.9648 0.0138 0.0018 -8.5047 -8.2521 

 

 

Equations (10) and (11) are implemented for transfer 

function modeling. The prediction values for y1 and y2 

for training data are shown in Figures 4 and 5 that 

indicate to well performance of sensors. 

The following quasi-linear equations are shown 

minimum error, maximum prediction accuracy, and more 

appropriate performance indexes compared to others for 

SRU: 

y1t = -at y1t-1 + b1,tu2,t-7+ et 

 y2t = -at y2t-1 + b1,t u3,t-2+ et 

(26) 
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where,at {y1t-1}, at {y2t-1}, b1,t{u2,t-7}  and b1,t {u3,t-2} are 

TVPs and IRW model (α= β= γ =ε=1; δ = 0) has applied 

for NVR of each TVP.  

The optimized NVR at {y1t-1}, at {y2t-1}, b1,t{u2,t-7}  and 

b1,t {u3,t-2} are 2.415×10-9, 1.289×10-8, 1.412×10-24 and 

1.061×10-14 respectively which Figure 6 shows these 

parameters are approximately constant line. The larger 

NVR demonstrated the more variation with time. 

The optimum parameters from DARX model 

estimation results versus samples or sequence number 

illustrate the parameter change with time, slowly. 

The following equations for TVP demonstrate the 

simple curve fitting based on linear regression estimation 

yields that the small coefficients indicate to the large 

regressors: 

at {y1t-1}= 0.9821- 5e-

06t ± 0.0060 

b1,t {u2,t-7}= 0.0014 + 1e-

06t ± 0.0009 

(27) 

at {y2t-1}= 0.9682- 1e-

06t ± 0.0039 

b1,t {u3,t-2}= 0.0142 – 7e-

07t ± 0.0014 

 

 

 
Figure 4. y1 content prediction in SRU (Validation data) 

 

  

 
Figure 5. y2 content prediction in SRU (Validation data) 

Comparison between real and predicted results of C4 

concentration in Figures 7 and 8 demonstrate well 

accordance, even with missing data existence in observed 

data. The missing data are generated by an interpolation 

that is based on the estimated model and the data on both 

sides of the gap. 

Also, Figures 9 and 10 show the most of the predicted 

values are consistent with the 45° line, that imply the 

good performance of the soft sensors model.  

 

 
Figure 6. DARX model parameters results versus samples 

for SRU 
 

 
Figure 7. Comparison between real and predicted results of 

y1 concentration(Validation data), (a) without missing 

values in dataset, (b) with random missing values 

 

 
Figure 8. Comparison between real and predicted results of 

y2 concentration(Validation data), (a) without missing 

values in dataset, (b) with random missing values. 
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Figure 10. Predicted valueagainst real value of y2 

concentration 

As a consequence, this work indicates that the DARX 

model is associated with the highest correlation 

coefficient and the lowest RMSE and MAE compared to 

MLP [41, 43], the different type of PLS [42] and other 

presented methods in Table 4. 

 
 
4.CONCLUSION 
 
A new model for online soft sensing with TVP approach, 

was performed. The quality prediction was implemented 

by a data-driven model that is a combination of nonlinear 

correlation analysis, DARX model and also criterion-

based elimination method. This model can successfully 

supported the nonlinear and time-variant systems. The 

result showed very good performance between predicted 

and real value, in industrial SRU, even with random 

missing value in datasets. A part of industrial SRU data 

was implemented for model validation. The results of 

parameters prediction and transfer function models 

estimation with low complexity by this technique was 

indicated the maximum prediction accuracy, minimum 

error and more appropriate performance indexes 

compared to models that implemented by other 

researchers about SRU (Table 4). It should be mentioned 

that although the employed methods, nonlinear 

correlation analysis, and criterion-based elimination, are 

not new.  

 
 

TABLE 4. The reported performance index of SRU soft sensor 

Type of model Number of variables R RMSE MAE AIC YIC Ref. 

MLP: H2S 

SO2 

RBF1: H2S 

SO2 

NF2: H2S 

SO2 

Nonlinear LSQ3: H2S 

SO2 

Not reported 

(0.851 

0.919) 

(0.939 

0.941) 

(0.843 

0.852) 

(0.858 

0.897) 

(0.0282 

0.0173) 

(0.0141 

0.0141) 

(0.0300 

0.0244) 

(0.0264 

0.0200) 

Not reported Not reported Not reported [41] 

JITPLS4: H2S 

SO2 

RPLS5: H2S 

SO2 

OLPLS6: H2S 

SO2 

-- Not reported 

(0.0210 

0.0238) 

(0.0196 

0.0209) 

(0.0162 

0.0142) 

(0.1647 

0.1411) 

(0.1783 

0.1964) 

(0.2138 

0.1174) 

-- -- [42] 

MLP: (H2S) 16 0.9236 Not reported -- -- -- [43] 

MLP: (H2S) 11 0.9438 -- -- -- -- [44] 

TDGPR7: (H2S) 5 Not reported 0.0168 -- -- -- [45] 

DARX: H2S 

SO2 

2 

2 

0.9507 

0.9648 

0.0158 

0.0138 

0.0024 

0.0018 

-8.1474 

-8.5047 

-7.3544 

-8.2521 
This work 

1.Radial Basis Function, 2.Neuro-Fuzzy, 3.Least Square, 4.just-in-time PLS, 5.Recursive PLS, 6.Online Local PLS, 7.Time Difference Gaussian Process Regression 

 
Figure 9. Predicted valueagainst real value of y1 

concentration 
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However, the integration of these techniques by DARX 

model as an industrial solution which is easy to 

implement, allow engineers to design the high-

performance soft sensor for online quality estimation. 

Due to satisfactory prediction performance and rapid 

converge of the quasi-linear model in industrial control 

processes is very effective. 
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چكيده
 

 

بینی آنلاین و بهبود عملکرد کنترل کیفیت محصول در واحدهای صنعتی طراحی شده محور جدید برای پیشیک حسگر نرم داده

(، آنالیز DARX(، الگوریتم دینامیکی متغیر خارجی خودرگرسیون)TVPمتغیر با زمان)است. رویکرد ترکیبی مدل پارامتری 

همبستگی غیرخطی و روش حذفی با معیار ارزیابی عملکرد در این تحقیق معرفی شده است. اعتبار عملکرد حسگر نرم به وسیله 

تر این حسگر در بیشتر و شاخص عملکردی مناسبهای صنعتی واحد بازیافت گوگرد ارزیابی شد. نتایج بر مقاومت بخشی از داده

های به کار گرفته شده در سایر تحقیقات برای طراحی حسگر نرم واحد بازیافت گوگرد، دلالت مقایسه با نتایج حاصل از روش

رل فرایندهای تواند در کنتجویی در زمان، این تکنیک میبینی بالا، عدم پیچیدگی مدل حاصل و صرفهی دقت پیشداشت. به واسطه

 صنعتی بسیار مورد توجه قرار گیرد.

doi: 10.5829/ije.2018.31.04a.02 
 


