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A B S T R A C T  
 

 

Super-resolution (SR) is a technique that produces a high resolution (HR) image via employing a 

number of low resolution (LR) images from the same scene. One of the degradations that attenuates 
performance of the SR is the blurriness of the input LR images. In many previous works in the SR, the 

blurriness of the LR images is assumed to be due to the integral effect of the image sensor of the 

acquisition device. However, in practice there are some other factors that blur the LR images, such as 
diffraction, motion of the object and/or acquisition device, atmospheric blurring and defocus blurring. 

To apply the super-resolution process accurately, the degradation model applied to HR image leading 

to LR ones needs to be known. In this paper, we aim to use the LR images blurriness to find the 
blurring kernel applied on the HR image. Hence, we setup a simulation experiment in which the 

blurring kernel is limited to be one of the predetermined kernels. In the experiment, the blurriness of 

the LR images is supposed to be unknown, and is estimated using a blur kernel estimation method. 

Then, the estimated blur kernels of the LR images are fed to an artificial neural network (ANN) to 

determine the blur kernels associated with the HR image. Experiment results show the use of 

determined blur kernels improves the quality of output HR image. 

doi: 10.5829/ije.2018.31.02b.07 
 

 
1. INTRODUCTION1 
 

Super-resolution (SR) technique is a process to generate 

a high resolution (HR) image using one or more low 

resolution (LR) images from the same scene. Since in 

many applications a high resolution image is more 

useful than the low resolution one, SR has many 

applications, for example in surveillance systems, 

remote sensing, and medical imaging. 

The acquisition process that is performed by the 

acquisition device, applies some degradations to the 

exposed scene and produces output LR image. These 

degradations include warping, blurring, down-sampling 

and adding noise (Figure 1). In many SR researches, the 

blurring phenomenon that applied to LR images is 

assumed to be due to the imaging sensor of the 

acquisition device [1]. But in practice, there are other 

sources of blurriness such as the diffraction of light, 

motion of the object and/or acquisition device that leads 
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to motion blur, turbulence of the atmosphere between 

objects of the scene and the acquisition device that leads 

to atmospheric blurring, and placing the objects out of 

the focus area of the lens that leads to defocus blurring.  

Using lexicographical notation, the SR problem is 

defined as follows. Let 𝑥 be a 𝑃𝑁 × 1 vector that 

represents the desired HR image, 𝑦 be a 𝑁 × 1 vector 

that represents the LR image, and the relation between 𝑥 

and 𝑦 is as following 

𝑦 = 𝐷(𝑃) × 𝑥  (1) 

where 𝐷(𝑃) is the down-sampling operation matrix and 

𝑃 is the decimation factor equivalent to the factor of 

increasing the resolution. In (1) for simplicity, the 

blurring effect and noise that usually occur in practice 

are ignored. They come to play soon. Hereafter for 

simplicity 𝐷(𝑃) is shown as 𝐷.  

According to (1), to make 𝑥 from 𝑦, the lost 

information by down-sampling operation is required to 

be restored in some manner. Apparently, this is 

impossible in practice.  
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Figure 1. Block diagram of the observation or degradation model 

 

 

To cope with this problem, SR uses multiple LR 

images. The LR images are taken from a scene in such a 

way that they be similar but not identical, which is 

performed by a little moving and/or rotating the imaging 

device. The effect of this movement/rotation is that the 

corresponding objects in LR images have some 

displacement (sub-pixel displacement) with respect to 

each other. These sub-pixel displacements are the corner 

stone of the SR.  

Let there are 𝐿 low resolution images of the scene. 

The 𝑘th LR image, 𝑦𝑘 , is related to HR image 𝑥 

according to (2): 

𝑦𝑘 = 𝐷 × 𝐻(ℎ) ×𝑊𝑘(𝑠𝑘) × 𝑥 + 𝑛𝑘  (2) 

where ℎ is point spread function (PSF) or blurring 

kernel, 𝐻(ℎ) is the blurring operation matrix, 𝑠𝑘 is 

warping parameter, 𝑊𝑘(𝑠𝑘) is warping operation matrix 

and 𝑛𝑘 is noise. Hereafter the set of the LR images is 

shown as {𝑦𝑘}. 
Based on Equation (2) which is known as 

observation or degradation model, the original HR 

image 𝑥 is warped, blurred and down-sampled 

respectively and finally is polluted with noise to make 

𝑦𝑘 . This process is depicted in Figure 1. 

In SR problem, the LR images 𝑦𝑘  are the inputs of 

the problem; 𝐷 is constructed by knowing the increasing 

factor of resolution (i.e. P), and the warping parameters 

𝑠𝑘 and HR image 𝑥 are assumed to be unknown. Often 

in literature, the blurring kernel ℎ is assumed to be due 

to integrating effect of imaging sensor and is estimated 

as either average or Gaussian blurring kernel [2, 3]. This 

assumption is only fair if any other types of blurring 

have not engaged in acquisition process. If it is not the 

case, the blurriness of the LR images must be 

determined using detail information of acquisition 

process. But in practice, such information is rarely 

available. Hence there are two choices: providing blur 

kernel experimentally, or estimating it using blur kernel 

estimation methods. Investigating the later choice is the 

aim in this paper. 

Organization of the paper is as following. Section 2 

reviews the related works. In Section 3 the proposed 

method is presented. Section 4 shows experimental 

results and finally Section 5 concludes the paper. 
 
 

2. LITERATURE REVIEW 
 
Tsai and Huang published the first research on the 

super-resolution in 1984 [4]. Their method works in the 

frequency domain and uses the shifting property of the 

Fourier transform. SR has a big constraint in the 

frequency domain: the warping model that can be 

applied on the LR images is limited to be global 

translation. Hence, other common warping model such 

as rotation is not supported by the method. Due to the 

frequency domain limitation, other techniques often 

applied in special domain. 

As mentioned in the Introduction Section, in many 

SR researches the blurriness of the LR images is 

assumed to be due to sensor integration effect. But there 

are a few studies that investigate blurriness in a wider 

perspective. 

Tipping and Bishop used a parametric model for 

PSF [5]. Then, they estimate the parameter of the PSF 

as well as registration parameters using marginalization 

in a Bayesian framework. Nguyen et al. simplified the 

problem by using parametric point spread function [6]. 

They used generalized cross-validation to estimate both 

the PSF and regularization parameters. Aly and Dubois 

present a method to find an observation model that can 

produce the LR images from desired HR image [7]. 

Their algorithm cast the problem into an optimization 

framework using a power spectral density (PSD) model. 

Sroubek et al. did not assume any prior information 

about the shape of degradation blurs [8]. They built a 

regularized energy function and minimize it with 

respect to the original image and blurs. Laghrib et al. 

assumed another observation model in which the order 

of warping and blurring is different from (2) [9]. Hence 

they first reconstruct blurred HR image (𝐻𝑥) and then 

deblur it to reconstruct HR image. 

Farsiu et al. emphasize the need for research to 

provide a super-resolution method along with a general 

blur kernel estimation [2]. Following this, in this paper 
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we setup a simulation in which the blurring kernel is 

assumed to be one of the pre-specified blurring kernel. 

Then, by estimating blurring kernel of the LR images 

and knowing the class of blurring kernel of the HR 

image, we train an artificial neural network to identify 

the HR blurring kernel given an estimation of LR image 

blurring kernel. The blurring kernel is then used in the 

SR process.  

 

 
3. EMPLOYING BLURRINESS INFORMATION IN SR 
 
In this section the proposed method is presented. 

According to the observation model in (2), to 

reconstruct the desired HR image 𝑥, one must know the 

blurriness that applied to it. But, in practice such 

knowledge is not available and only the degraded LR 

images {𝑦𝑘} are accessible. To cope this problem, in this 

study we assume that there are a specific type of 

blurring kernels that may be applied on 𝑥 in degradation 

process. The idea is to determine the type of blurring 

kernel for HR image 𝑥 using known LR images {𝑦𝑘}. 
Based on the observation model (2), it is obvious 

that the nonlinearity property of the down sampling 

operator 𝐷 makes the blurriness of the warped HR 

image 𝑊𝑘𝑥 different from the blurriness of the LR 

images 𝑦𝑘 . Hence, in this paper an artificial neural 

network (ANN) is used to predict the type of blurring 

kernel for HR image using the blurring kernel of the LR 

image. 

To determine the blurring kernel, we setup a 

learning procedure. First, six blurring kernels of 

different types and sizes are chosen; specifically, 

average, Gaussian and disk blurring kernels each of 

which in sizes 5 and 11. We name the type/class of them 

as 1 to 6. Specifications of the blurring kernels are 

summarized in Table 1. 

To train the ANN, first a dataset of LR/HR images 

using the six blurring kernels according to the 

observation model (2) was created. The same random 

warping parameters were applied to all images and the 

increasing factor in resolution was set to two (𝑃 = 2). 

Then, the blurriness of the created LR images was 

estimated using the blur kernel estimation algorithm 

presented in [10]. Finally, the estimated kernels and the 

class of the corresponding predetermined blur kernels 

were used as training data to train the ANN. The block 

diagram of the training system is shown in Figure 2. 

The neural network that is used has one hidden layer 

with sixty neurons. We used Rectifier Linear Unit 

(ReLU) activation function for each neuron as it is a 

promising one in recent neural network literature (e.g. 

[11]) as well as it performs better than the traditional 

Sigmoid activation function in our study. The estimated 

11 × 11 LR kernel is fed as a 121 × 1 vector to the 

ANN. The output of the ANN is a 6 × 1 vector 

corresponding to six blurring kernel classes. 

To generate the training dataset, about 700 images 

from the imageNet Dataset [12] were selected. We tried 

to choose images that have no or little blurring. Some of 

the images are shown in Figure 3. The trained ANN, 

was then used to determine the HR blurring kernel. 

Then, the determined blurring kernel is fed to SR 

algorithm according to the block diagram in Figure 4. 

 
 
4. EXPERIMENTS AND RESULTS 
 
To evaluate our proposed system, the procedure is 

applied to sixty test HR images. Some of the test images 

are shown in Figure 5. 

 

 
TABLE 1. Specification of the predetermined blurring kernels 

Blur Type size parameter Class number 

Average 5 × 5 - 1 

Average 11 × 11 - 2 

Gaussian 5 × 5 3 3 

Gaussian 11 × 11 5 4 

Disk 5 × 5 - 5 

Disk 11 × 11 - 6 

 

 

 

 
Figure 2. Block diagram of the neural network training system to learn the class of HR blurring kernel given LR ones 
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Figure 3. Some of the images used in the training dataset of 

neural network. 

Specifically, ten LR images from each HR image were 

created according to the observation model, using the 

predetermined blurring kernel and same randomly 

warping parameter and the resolution increasing factor 

of 2. 

The blur kernel class of each LR image is predicted 

by the neural network. It is obvious that various LR 

images captured from the same scene using the same 

device with same setting may not have different blurring 

kernel. Hence, for each pair of (𝑎, 𝑏) where 𝑎 is LR 

image set, and 𝑏 is predetermined blur kernel, the 

predicted HR blur kernel is determined by voting 

between corresponding predicted LR's blur kernels. 

The confusion matrix of predicted blur kernel 

classes before and after voting are shown in Tables 2 

and 3, respectively. 

 

 

 
Figure 4. Using neural network to predict the class of blurring kernel that applied to HR image given the estimated blurring kernel of 

the LR images 
 

 
TABLE 2. Confusion matrix before voting 

 
TABLE 3. Confusion matrix after voting. 

  Actual class 

  1 2 3 4 5 6 

P
r
e
d

ic
te

d
 c

la
ss

 

1 93.33 0 18.33 0 0 0 

2 0 100 0 3.33 0 1.67 

3 6.67 0 80 0 8.33 0 

4 0 0 0 96.67 0 3.33 

5 0 0 1.67 0 91.67 0 

6 0 0 0 0 0 95 

 
Figure 5. Some of the HR images that used to evaluate the 

proposed method. 

 

 

Comparing the diagonal values on the confusion 

matrices in the tables shows improvement in 

classification accuracy for almost all classes by voting. 

Considering the size of the blurring kernels according to 

Table 1, it is worth to note that the misclassification 

(non-zero off-diagonal values of the confusion matrix) 

is only occurred between same size kernels after voting. 

In Table 4, the list of the images with false prediction 

kernels is shown. More training data may be needed to 

achieve a higher classification accuracy. 

  Actual class 

  1 2 3 4 5 6 

P
r
e
d

ic
te

d
 c

la
ss

 

1 90.83 0 20.17 0 1.5 0 

2 0.17 98.17 0.17 6 0.33 1.67 

3 8 0 78.17 0 9 0 

4 0.5 1.88 0.5 92.17 0 3.83 

5 0.5 0 1 0 89.17 0 

6 0 0 0 1.83 0 94.5 
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After determining the blurring kernel for each pair 

of (𝑎, 𝑏), the HR image is estimated using the LR 

images according to the diagram in Figure 4. For super-

resolution process, we use the variational Bayesian 

super-resolution algorithm presented in [3]. 

 
TABLE 4. Images with false prediction kernel. Despite the 

error in predicting kernels, kernel sizes are predicted correctly 
True kernel (size) Predicted kernel (size) Image # 

1 (5 × 5) 3 (5 × 5) 32, 34, 35, 54 

3 (5 × 5) 1 (5 × 5) 
5, 10, 21, 22, 30, 39, 

40, 41, 42, 43, 44 

3 (5 × 5) 5 (5 × 5) 33 

4 (11 × 11) 2 (11 × 11) 22, 33 

5 (5 × 5) 3 (5 × 5) 5, 30, 44, 46, 48 

6 (11 × 11) 2 (11 × 11) 33 

6 (11 × 11) 4 (11 × 11) 44, 46 

To evaluate performance of the proposed method, 

structural similarity index (SSIM) [13] and mean square 

error (MSE) between the constructed HR image and the 

original one are used. Table 5 shows these evaluation 

metric for all 60 HR images and 6 predetermined blur 

kernels combinations. At the bottom of this table 

average of the evaluation metric are shown for all 

images and for the images with true predicted blurring 

kernel. Comparing these values shows that true 

prediction of blurring kernel leads to more accurate SR 

reconstruction. In Figure 6 some of the reconstructed 

HR images as well as the one from the corresponding 

LR image are shown. As shown in this figure, given a 

true observation model with different blurring 

degradation leads to approximately same reconstructed 

HR image. 

 

 
TABLE 5. SSIM/MSE from the experiments as well as their average 

Image # Kernel 1 Kernel 2 Kernel 3 Kernel 4 Kernel 5 Kernel 6 

1 0.88/2.35E-04 0.81/2.84E-04 0.88/2.36E-04 0.76/2.90E-04 0.89/2.28E-04 0.83/2.71E-04 

2 0.92/9.94E-05 0.87/1.36E-04 0.91/9.51E-05 0.85/1.33E-04 0.92/8.56E-05 0.87/1.26E-04 

3 0.93/1.61E-04 0.85/5.00E-04 0.93/1.63E-04 0.85/4.36E-04 0.92/1.27E-04 0.88/3.05E-04 

4 0.95/4.47E-05 0.90/6.50E-05 0.94/4.69E-05 0.89/7.14E-05 0.95/4.44E-05 0.91/5.94E-05 

5 0.93/2.52E-04 0.88/3.08E-04 0.85/2.52E-04 0.88/2.98E-04 0.50/3.75E-04 0.89/2.87E-04 

6 0.97/2.12E-05 0.94/3.27E-05 0.97/2.22E-05 0.94/3.70E-05 0.97/1.95E-05 0.95/2.98E-05 

7 0.93/5.41E-05 0.87/7.19E-05 0.93/5.54E-05 0.85/7.74E-05 0.94/5.18E-05 0.89/6.52E-05 

8 0.95/3.67E-05 0.91/5.58E-05 0.95/3.71E-05 0.89/6.48E-05 0.94/3.53E-05 0.92/4.91E-05 

9 0.95/4.37E-05 0.90/6.96E-05 0.95/4.62E-05 0.89/8.14E-05 0.94/3.92E-05 0.92/5.68E-05 

10 0.93/6.51E-05 0.84/9.66E-05 0.80/9.31E-05 0.81/1.08E-04 0.92/5.92E-05 0.88/8.06E-05 

11 0.96/4.84E-05 0.92/6.83E-05 0.96/4.86E-05 0.90/7.07E-05 0.96/4.84E-05 0.94/6.08E-05 

12 0.95/8.83E-05 0.92/1.05E-04 0.96/8.84E-05 0.92/1.06E-04 0.96/8.79E-05 0.94/9.71E-05 

13 0.97/6.18E-05 0.94/6.46E-05 0.97/6.19E-05 0.94/6.54E-05 0.97/5.64E-05 0.95/6.32E-05 

14 0.96/4.33E-05 0.92/6.80E-05 0.96/4.46E-05 0.90/7.89E-05 0.96/4.16E-05 0.94/5.68E-05 

15 0.96/2.56E-05 0.93/3.93E-05 0.97/2.60E-05 0.92/4.49E-05 0.96/2.58E-05 0.94/3.49E-05 

16 0.97/2.51E-05 0.95/3.86E-05 0.97/2.50E-05 0.95/3.92E-05 0.98/2.45E-05 0.96/3.20E-05 

17 0.92/1.19E-04 0.84/1.37E-04 0.92/1.20E-04 0.80/1.43E-04 0.92/1.12E-04 0.87/1.32E-04 

18 0.94/3.26E-05 0.88/5.23E-05 0.94/3.35E-05 0.87/5.48E-05 0.95/3.05E-05 0.91/4.33E-05 

19 0.97/2.96E-05 0.94/4.62E-05 0.97/3.11E-05 0.94/5.22E-05 0.97/2.71E-05 0.95/3.91E-05 

20 0.96/1.24E-04 0.92/1.35E-04 0.96/1.24E-04 0.91/1.37E-04 0.96/1.23E-04 0.94/1.33E-04 

21 0.89/4.58E-04 0.84/5.42E-04 0.73/4.69E-04 0.85/5.42E-04 0.89/4.22E-04 0.85/5.32E-04 

22 0.95/3.38E-05 0.90/5.60E-05 0.82/7.00E-05 0.51/1.68E-04 0.94/3.21E-05 0.92/4.76E-05 

23 0.94/6.29E-05 0.90/1.12E-04 0.94/6.83E-05 0.88/1.45E-04 0.94/7.36E-05 0.91/8.65E-05 

24 0.92/4.75E-05 0.85/7.73E-05 0.92/5.08E-05 0.83/8.77E-05 0.92/3.92E-05 0.86/7.05E-05 

25 0.93/4.14E-05 0.89/6.64E-05 0.94/4.31E-05 0.88/7.76E-05 0.93/3.91E-05 0.89/6.32E-05 

26 0.96/2.08E-05 0.94/4.07E-05 0.96/2.11E-05 0.94/3.91E-05 0.97/1.86E-05 0.95/3.29E-05 

27 0.95/3.43E-05 0.90/5.18E-05 0.95/3.55E-05 0.88/5.89E-05 0.95/3.29E-05 0.93/4.30E-05 

28 0.94/3.48E-05 0.89/6.54E-05 0.95/3.73E-05 0.86/7.78E-05 0.94/2.97E-05 0.92/4.56E-05 

29 0.96/4.29E-05 0.93/6.93E-05 0.96/4.36E-05 0.93/7.66E-05 0.95/4.25E-05 0.94/5.94E-05 

30 0.95/2.44E-05 0.89/3.79E-05 0.88/4.11E-05 0.86/4.35E-05 0.39/1.75E-04 0.92/3.08E-05 

31 0.94/5.85E-05 0.85/1.19E-04 0.93/6.04E-05 0.81/1.21E-04 0.94/5.37E-05 0.90/8.84E-05 

32 0.78/1.51E-04 0.89/1.27E-04 0.94/6.95E-05 0.87/1.44E-04 0.94/7.46E-05 0.91/1.10E-04 

33 0.97/2.33E-05 0.95/3.24E-05 0.87/1.02E-04 0.56/1.58E-04 0.97/2.40E-05 0.25/3.52E-04 

34 0.80/1.51E-04 0.86/1.24E-04 0.94/7.79E-05 0.80/1.45E-04 0.95/6.73E-05 0.90/1.03E-04 

35 0.87/1.13E-04 0.93/1.26E-04 0.96/6.08E-05 0.92/1.26E-04 0.95/5.53E-05 0.94/8.74E-05 

36 0.87/1.60E-04 0.69/2.03E-04 0.85/1.60E-04 0.62/2.10E-04 0.91/1.36E-04 0.81/1.78E-04 
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37 0.94/6.55E-05 0.88/1.29E-04 0.94/6.64E-05 0.84/1.43E-04 0.95/5.72E-05 0.90/1.15E-04 

38 0.87/6.77E-04 0.80/8.16E-04 0.87/6.78E-04 0.77/8.05E-04 0.88/6.34E-04 0.84/7.68E-04 

39 0.96/1.48E-04 0.93/1.62E-04 0.86/1.63E-04 0.93/1.65E-04 0.96/1.48E-04 0.94/1.59E-04 

40 0.97/2.69E-05 0.94/3.79E-05 0.93/3.39E-05 0.93/3.94E-05 0.97/2.70E-05 0.95/3.38E-05 

41 0.97/9.77E-05 0.95/1.54E-04 0.89/1.88E-04 0.94/1.64E-04 0.97/1.02E-04 0.96/1.30E-04 

42 0.93/1.86E-04 0.88/2.00E-04 0.86/1.97E-04 0.86/2.03E-04 0.93/1.79E-04 0.90/1.98E-04 

43 0.95/3.57E-04 0.92/4.15E-04 0.87/3.92E-04 0.91/4.24E-04 0.95/3.56E-04 0.93/4.06E-04 

44 0.97/1.12E-04 0.95/1.79E-04 0.91/1.14E-04 0.95/1.72E-04 0.51/2.53E-04 0.42/3.28E-04 

45 0.92/1.77E-04 0.86/1.90E-04 0.91/1.71E-04 0.85/1.93E-04 0.90/1.78E-04 0.88/1.89E-04 

46 0.95/4.79E-05 0.90/7.64E-05 0.95/5.02E-05 0.88/9.01E-05 0.50/2.98E-04 0.43/3.03E-04 

47 0.96/4.47E-05 0.90/1.52E-04 0.96/4.65E-05 0.90/1.53E-04 0.95/4.20E-05 0.92/1.26E-04 

48 0.96/4.81E-04 0.90/8.83E-04 0.96/4.82E-04 0.90/8.30E-04 0.50/8.75E-04 0.93/7.25E-04 

49 0.96/2.16E-04 0.92/2.89E-04 0.96/2.16E-04 0.92/2.91E-04 0.96/1.93E-04 0.93/2.53E-04 

50 0.90/1.52E-04 0.78/1.96E-04 0.89/1.54E-04 0.71/1.99E-04 0.92/1.39E-04 0.84/1.80E-04 

51 0.95/3.08E-04 0.91/3.52E-04 0.95/2.98E-04 0.91/3.53E-04 0.94/2.88E-04 0.93/3.40E-04 

52 0.93/1.13E-04 0.85/2.84E-04 0.93/1.14E-04 0.81/2.87E-04 0.93/9.32E-05 0.89/2.18E-04 

53 0.95/1.07E-04 0.90/1.32E-04 0.95/1.07E-04 0.85/1.45E-04 0.95/8.81E-05 0.93/1.19E-04 

54 0.85/8.06E-05 0.91/1.28E-04 0.96/4.79E-05 0.91/1.19E-04 0.96/4.38E-05 0.93/8.66E-05 

55 0.89/5.00E-05 0.80/6.97E-05 0.88/5.31E-05 0.77/7.57E-05 0.92/4.12E-05 0.83/6.19E-05 

56 0.93/1.29E-04 0.88/1.41E-04 0.93/1.25E-04 0.86/1.48E-04 0.92/1.25E-04 0.90/1.40E-04 

57 0.96/1.47E-04 0.93/2.23E-04 0.96/1.47E-04 0.92/2.18E-04 0.96/1.47E-04 0.95/1.86E-04 

58 0.95/6.36E-05 0.91/1.01E-04 0.95/6.73E-05 0.90/1.24E-04 0.95/5.97E-05 0.93/8.28E-05 

59 0.91/1.46E-04 0.87/1.73E-04 0.90/1.46E-04 0.86/1.74E-04 0.91/1.41E-04 0.87/1.68E-04 

60 0.96/7.01E-05 0.91/1.77E-04 0.96/7.20E-05 0.91/1.60E-04 0.95/6.92E-05 0.93/1.09E-04 

mean (all) 0.93/1.18E-04 0.89/1.65E-04 0.92/1.20E-04 0.86/1.71E-04 0.90/1.26E-04 0.88/1.56E-04 

mean (truly detected) 0.94/1.17E-04 0.89/1.65E-04 0.94/1.06E-04 0.87/1.72E-04 0.94/1.01E-04 0.91/1.47E-04 

 

 

 
(a) Image # 3 

 
(b) Image # 19 

 
(c) Image # 23 
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(d) Image # 35 

 
(e) Image # 58 

Figure 6. Results of the proposed method. Up row: one of the LR images. Bottom row: reconstructed HR image. Columns 1 through 

6 correspond to kernels 1 through 6, respectively 

 

 

 

 
(a) Image # 22, misclassified kernel: 3, 4 

 
(b) Image # 33, misclassified kernel: 3, 4, 6 

 
(c) Image # 44, misclassified kernel: 5, 6 

Figure 7. Some of images with a false predicted kernel. Up row: one of the LR images. Bottom row: reconstructed HR image. 

Columns 1 through 6 correspond to kernels 1 through 6 respectively 
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Investigating the evaluation metric on the images with a 

false prediction kernel (Table 4) in Table 5 shows that 

truly determining the blurring kernel in constructing HR 

images is vital.  

Figure 7 shows some of these reconstructed HR 

images with a false predicted kernel, as well as one 

corresponding LR image. As shown in this figure, the 

most artifact is produced in reconstructing image # 33 

(Snail) and image # 44 (colored pencils) both for kernel 

6 (the left image in the second row of Figure 7b and 7c). 

To justify the need of the true kernel in SR, the 

reconstruction of HR image, given true kernel, for these 

two samples is depicted in Figure 8.  

 
 

   
(a) Image 33 (b) SSIM: 0.25 (c) SSIM: 0.96 

   
(d) Image 44 (e) SSIM: 0.42 (f) SSIM: 0.95 

Figure 8. Importance of using true kernel in SR. a, d) Original image, b, e) Reconstruction using wrong kernel, c, f) Reconstruction 

using true kernel 
 

 

5. CONCLUSION  
 
To estimate high resolution (HR) image accurately 

using super-resolution (SR), the details of the 

acquisition process are required. In SR such knowledge 

is modeled as observation model. This model is 

constructed by warping, blurring, down-sampling 

operators as well as the noise. In this paper, a method to 

predict the blurring operator in the simulated framework 

is proposed. Specifically, we use neural network to 

predict the class of the HR image blur kernel given the 

blur kernel of the low resolution (LR) images.  

It is worth noting that the efficiency of the blur 

kernel estimation algorithm is very important, as error 

in blur kernel estimation leads to false prediction class 

of HR blurring kernel.  

As a future work, estimation of the HR blur kernel 

from the estimated LR blur kernel in a regression 

approach can be investigated. The kernel estimated 

using such an approach can be used to apply the super 

resolution technique to LR images taken by a camera. 
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هچكيد
 

 

توان با ترکیب چند تصویر با دقت کم از یک صحنه، تصویری با دقت بالا  پذیری فنی است که با استفاده از آن می ابرتفکیک

کند، تاری در تصاویر ورودی است. در بسیاری از کارهای  ایجاد کرد. یکی از مشکلاتی که کارایی این تکنیک را کم می

گر تصویر در دستگاه گیری حس پذیری تاری تصاویر کم دقت ناشی از خاصیت انتگرال ابرتفکیکی  انجام شده در زمینه

تصویربرداری فرض شده است؛ در حالی که در عمل عوامل دیگری نیز وجود دارد که موجب تاری تصویر کم دقت 

ری یا هر دو، تاری ناشی از توان به پراش نور، حرکت جسم یا دستگاه تصویربردا ی این عوامل می شوند. از جمله می

پذیری نیاز است که مدل  اغتشاش هوا و تاری ناشی از عدم تمرکز عدسی دوربین اشاره کرد. برای اعمال دقیق ابرتفکیک

آل( در فرآیند تولید تصویر کم دقت مشخص باشد. در این مقاله هدف  تخریب اعمال شده بر روی تصویر دقت بالا )ایده

ی تاری اعمال شده به تصویر دقت بالاست. از این رو یک آزمایش  اویر کم دقت برای یافتن هستهما بررسی تاری در تص

ی از پیش تعیین شده هستند. در این آزمایش  های تاری، محدود به چند هسته ایم که در آن هسته سازی ترتیب داده شبیه

 ،آیند. آنگاه های تخمین تاری به دست می ی یکی از روش وسیلههتاری تصاویر کم دقت نامعلوم فرض شده است و ب

های تاری  شوند تا هسته ی عصبی مصنوعی داده می های تاری برآورد شده مربوط به تصاویر کم دقت به یک شبکه هسته

های تاری تعیین شده توسط  استفاده از هسته که دهد ها نشان می مربوط به تصاویر دقت بالا را تعیین کند. نتایج آزمایش

 دهد. ی عصبی، کیفیت تصویر دقت بالای خروجی را افزایش می شبکه

doi: 10.5829/ije.2018.31.02b.07 

  


