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A B S T R A C T  
 

 

In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for 

the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid 
flows with complex geometries. The boundary condition is based on the off-lattice scheme with a 

polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the 

neighboring lattice nodes. This treatment improves the computational efficiency of the solution 
algorithm to handle complex geometries and provides much better accuracy comparing with the 

staircase approximation of bounce-back method. The efficiency and accuracy of the numerical 

approach presented are examined by computing the fluid flows around the geometries with curved or 
irregular walls. Three test cases considered herein for validating the present computations are the flow 

calculation around the NACA0012 wing section and through the two different porous media in various 

flow conditions. The study shows the present computational technique based on the implementation of 

the three-dimensional Lattice Boltzmann method with the employed curved wall boundary condition is 

robust and efficient for solving laminar flows with practical geometries and also accurate enough to 

predict the flow properties used for engineering designs. 
doi: 10.5829/idosi.ije.2017.30.09c.11 

 

 

NOMENCLATURE   Greek Symbols 

lC  Lift coefficient K  Permeability tensor   Dynamic viscosity 

dC  Drag coefficient L  Length   Kinematic viscosity 

sc  Lattice sound speed l  Lagrangien polynomial coefficient   Density 

D  Diameter N  Number of lattice nodes   Relaxation time 

d  Distance p  Pressure   Weighting coefficient 

e  Particle velocity vector Re  Reynols number t  Lattice time step 

f  Pre-collicion distribution function u  Flow velocity vector x  Lattice grid size 

f  Post-collicion distribution function , ,x y z  Coordinate directions Subscripts  

eqf  Equilibrium distribution function     Possible direction for particle 

velocity 

 

 

1. INTRODUCTION1 
 

In the past two decades, the lattice Boltzmann method 

(LBM), because of its mesoscopic and kinetic nature, 

has become a promising numerically robust technique 

                                                           
*Corresponding Author’s Email: e_ezzatneshan@sbu.ac.ir (E. 
Ezzatneshan) 

for the simulation of fluid flows with the underlying 

microscopic physics. Simplicity of programming, 

efficiency for parallel computing and ease of 

considering microscopic interactions for modeling of 

additional physical phenomenon are the main 

advantages of the LBM as an attractive alternative 

computational technique to the traditional Navier-
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Stokes solvers. This method therefore has been 

successfully applied to a wide range of hydrodynamic 

problems even with complex physics [1-5].  

The standard LBM is adopted to the uniform 

Cartesian grid for solving flow problems with straight 

wall boundaries. Thus, the standard LBM has a major 

restriction for implementation of curve boundary 

condition which greatly limits its application to simulate 

engineering practical problems with complex 

geometries. Various efforts have been put forward to 

improve the efficiency of the standard LBM for the 

complex boundary implementation along the curved 

boundaries. The immersed boundary method is a mostly 

used approach within the Navier-Stokes (N-S) equations 

to treat fluid flows involving complex wall boundary 

conditions. This convenient method is extended to the 

framework of LBM and employed to simulate flow 

problems with curved wall boundaries [6]. In the 

immersed boundary method, a local force computes the 

effect of the wall on the fluid which is added by a 

source term to the governing equation. The existing of 

the forcing term in the LBM with immersed boundary 

approach impacts the stability of the numerical solution 

and restricts to use small CFL numbers which causes 

high computational cost. 

Another methodology performed to tackle the LBM 

for solving of complex geometry flows is employing the 

most common bounce-back method [7] which is widely 

used for applying the wall boundary condition. 

However, implementation of the classical bounce-back 

scheme for the curved walls suffers from a low 

resolution near the boundary, since the smooth wall is 

basically approximated by a staircase segments. This 

drawback leads the LBM to be a method with only first-

order accuracy in space [8]. 

A family of boundary fitting methods has been 

proposed in the literature to improve accuracy of the 

bounce-back scheme for resolving the irregular wall 

boundary and implementation of the LBM for 

simulation of such flow problems with appropriate 

precision. In the boundary fitting methods, the lattice 

nodes inside the fluid domain are considered as ‘fluid 

nodes’ and nodes outside of the fluid domain are so-

called ‘solid nodes’. Then, to implement no-slip 

boundary condition on the curved wall, an inter- or 

extrapolation approach is used at the neighboring solid 

nodes to define the unknown distribution of the particles 

at the boundary nodes by using the known populations 

coming from fluid nodes. With this aspect, Verberg and 

Ladd [9] have developed a sub-grid model for LBM 

with considering the volume fraction associated with 

each fluid nodes near the wall boundary. A grid-

refinement scheme is proposed by Filippova and Hanel 

[10] and then the inter- and extrapolation schemes have 

effectively developed by Mei et al. [11] and Guo et al. 

[12]. Latt et al. [13] have proposed a very general 

formalism which can use both of interpolation and 

extrapolation of the velocity at the boundary nodes. 

Verschaeve and Muller [14] have extended the Latt et 

al.’s approach to curved boundary conditions which is 

verified for two-dimensional LBM and a thorough 

verification of the three-dimensional case is still 

necessary. Note that using an appropriate interpolation 

or extrapolation scheme for implementation of the 

curved boundary conditions allows to preserve spatial 

second-order of accuracy of the LBM near the 

boundaries [12, 14]. 

In the present work, the approach proposed by 

Verschaeve and Muller is extended and applied for 

three-dimensional LBM to solve practical flow 

problems with complex geometries. Herein, the standard 

D3Q19 single relaxation time lattice Boltzmann method 

(SRT-LBM) is implemented with employing the 

extended off-lattice wall boundary condition for 

simulation of laminar fluid flows. The computational 

efficiency and accuracy of the curved wall boundary 

condition employed is investigated in comparison with 

the bounce-back treatment. The robustness and accuracy 

of the SRT-LBM applied are examined by solving 

incompressible fluid flow around a NACA0012 wing 

section and through the two different porous media 

geometries at various flow conditions. 

The rest of the present paper is organized as follows: 

In Section 2, the D3Q19 SRT-lattice Boltzmann method 

is presented. In Section 3, the implementation of the 

curved wall boundary conditions with an interpolated 

off-lattice scheme is given. The numerical results 

obtained for the three flow problems are presented and 

discussed in Section 4 to examine the performance of 

the solution methodology. Finally, the some conclusions 

are made in Section 5. 

 

 

2. GOVERNING EQUATION 
 
The single relaxation time LB equation used with the 

collision term in the Bhatnagar-Gross-Krook (BGK) 

approximation can be expressed as:  

1
( )eqf

f f f
t 


    


e  (1) 

where, ( , , )f t c x  is the particle (mass) distribution 

function,   is the relaxation time parameter and e  

denotes the microscopic velocity of particles. eqf  

defines the equilibrium distribution function through a 

Chapman-Enskog expansion procedure and can be 

expressed as: 

22

2 4 2

9 ( ) 3
1 3

2 2

eq
f

c c c


  
    
 
 

ue u e u  (2) 

where, =(u,v,w)u  and   are the macroscopic velocity 

vector and the weight coefficient, respectively.  
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A three-dimensional cubic lattice model with nineteen 

particle velocity directions (D3Q19) is employed to 

discretize Equation (1) in the lattice configuration as: 

1
( ), 0,1,...,18eqf

f f f
t


    




     


e  (3) 

where,   denotes the possible direction of the particle 

velocity. Figure 1 shows the D3Q19 discrete Boltzmann 

model employed with the discrete velocity e . In the 

D3Q19 LBM, the weight factors   and particle 

velocity e  are given as: 

0 1 6 7 18

1 1 1
, ,

3 18 36
       (4) 

 0,0,0 0

( 1,0,0), (0, 1,0), (0,0, 1) 1 6

( 1, 1,0), ( 1,0, 1), (0, 1, 1)  7 18

c c c

c c c









 


    
      



 

e  (5) 

where, /c x t    is the lattice speed. x  and t  are the 

grid spacing and the time step size, respectively, which 

are assumed to be unity. 

The macroscopic density   and velocity u  are 

defined based on the particle distribution function as: 

,f f  

 

   u e  
(6) 

and the pressure is expressed by the state formula 
2
sp c , where / 3sc c  is the sound speed. The 

kinematic viscosity   depends on the speed of sound 

and relaxation time by the following definition: 

2 ( 0.5)sc    (7) 

The lattice Boltzmann equation discretized in Equation 

(3) is usually solved by a streaming-collision approach 

in two steps. First, the particles collide on the lattice 

nodes, known as ‘collision step’: 

1
( , ) ( , ) [ ( , ) ( , )]eqf t x f t x f t x f t x  


    (8) 

 

 

 
Figure 1. The cubic D3Q19 lattice model and the microscopic 

velocities 

Second, propagation of the particle distributions occurs 

according to their respective speed, known as 

‘streaming step’: 

( , ) ( , )f t t x f t x    e  (9) 

where, ( , )f t x  and ( , )f t x  denote the pre- and post-

collision states of the distribution function, respectively. 

 

 

3. BOUNDARY CONDITIONS 
 

In this section, the implementation of curved wall 

boundary condition and inlet/outlet open boundary 

conditions are described for the lattice Boltzmann 

method employed. 

 

3. 1. Curved Wall Boundary Condition         For 

implementation of general wall boundary conditions, 

the lattice nodes neighboring the curved wall is grouped 

into ‘fluid nodes’ inside the flow domain ( F ), 

‘boundary nodes’ near the wall ( B ) and ‘solid nodes’ 

outside of the flow domain ( S ), which are shown in 

Figure 2 by the black circle, gray circle and square 

symbols, respectively. In this figure, the populations of 

F , B  and S  for the boundary node N are 

{6}, {0,2,3,5,7}, {1,4,8}  F B S  (10) 

After streaming step, the populations streamed from 

nodes outside of the flow domain are unknown, e.g. for 

boundary node N they would be  2,3,6 . Herein, the 

unknown population on the boundary node N are 

considered as the opposite of solid node indices 

{2,3,6}opposite S . 

The macroscopic parameters   and u  are known 

after streaming on the fluid nodes and the no-slip 

boundary condition is imposed on the wall. On the 

boundary nodes however, the macroscopic flow 

properties are unknown because of unknown 

populations streamed in from the outside of flow 

domain. Because of the boundary node N is placed 

between the fluid nodes and the wall, the macroscopic 

quantities can be computed on the boundary nodes by 

an interpolation scheme. 
 

 

 
Figure 2. Close view of the boundary node N and its 

neighbors 
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As shown in Figure 3, the velocity Nu  on the boundary 

node N of interest can be computed by interpolating the 

velocity between the fluid nodes 1I , 2I  and the wall 

boundary condition at Iw . Herein, a quadratic 

Lagrangian interpolation scheme is employed as the 

following relation 

N 1 1 2 2w wl l l  u u u u  (11) 

where, wu , 1u  and 2u  are the macroscopic velocity 

vectors at the points Iw , 1I  and 2I , respectively. The 

coefficients of Lagrangian interpolation polynomial wl , 

1l  and 2l  are calculated as  

1 2

1 2

N N( )( )
,

I I

w
I I

d d d d
l

d d

 
  (12) 

2

1 1 2

N N

1

( )
,

( )

I

I I I

d d d
l

d d d





 (13) 

1

2 2 1

N N

2

( )

( )

I

I I I

d d d
l

d d d





 (14) 

where, d  is the distance of the relevant node from the 

wall point Iw . 

A local approximation algorithm is implemented to 

compute the density on the boundary node N as follows 

[14]: 

N

post stream

pre collide

f

g
























K

K

 (15) 

where, pre collide eq neqg g g  
    and K  indicates the 

known populations on the boundary node N. 

 
3. 2. Inlet/Outlet Boundary Conditions       Each of 

inlet and outlet boundary conditions can be 

implemented with Dirichlet- or Neumann-type 

depending on the flow problem in question. 

 

 

 
Figure 3. Approximating the macroscopic parameters at the 

boundary point N by an interpolating scheme 

In the present work, the inlet and outlet boundary 

conditions for the porous media test cases are 

implemented using a Dirichlet-type to impose a constant 

pressure gradient along the geometry. The density is 

calculated by the state equation mentioned and the 

tangential velocity components are considered zero on 

the boundary nodes. 
For simulation of flow around the NACA0012 wing 

section, all velocity components is imposed in the inlet 

(Dirichlet-type) and density is extrapolated from the 

interior domain. For the outflow, Neumann-type 

boundary condition is employed for the velocity to 

impose zero-gradient for this variable at the outlet 

boundary. A constant density is also considered by 

using the equation of state mentioned for a given 

pressure value in the outflow.  

Finally, inlet/outlet boundary conditions should be 

defined for the distribution function f  based on the 

known macroscopic variables on each boundary. 

Herein, the method proposed by Zou and He [15] is 

employed to evaluate the distribution function on the 

inlet and outlet boundaries.  

 

 

4. RESULTS AND DISCUSSIONS 
 

The accuracy and performance of the LBM 

implemented are demonstrated by solving two flow 

problems with practical and complex geometries. 

Herein, the fluid flow around a NACA0012 wing 

section and flow through the two different porous media 

are considered at various flow conditions. The results 

obtained are compared with available data reported in 

the literature. 

 

4. 1. Flow around the NACA0012 Wing Section      
The aerodynamic surfaces (wing/blades) operate at low 

Reynolds numbers in a wide range of aerial 

applications, e.g. aircrafts in tack-off/landing situations, 

high-altitude long-endurance unmanned vehicles, 

micro-aerial vehicles and wind turbines. Flow treatment 

around the aerodynamic surfaces at low Reynolds 

numbers is different than high-Reynolds number 

condition due to strong adverse pressure gradients, 

laminar separation and reattachment of shear layers 

occur in downstream. These phenomena can impact 

aerodynamic efficiency of an aerial vehicle and have 

therefore led to different numerical and experimental 

studies for prediction of such low Reynolds number 

flow structures for improving practical designs. 
The implemented LBM is used to simulate 

incompressible laminar flow around the NACA0012 

wing section at 0Re / 800u c    and 20   to examine 

the accuracy and efficiency of the present solution 

algorithm with comparing the results obtained with 

those of reported in the literature. Figure 4 shows the 

Wall
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N
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cuboid flowfield with square cross section consists of 

the NACA0012 wing geometry. The spanwise and 

streamwise lengths of the domain are set to 40c  and 

10c , where c  is the chord length of the NACA0012 

airfoil. The wing is placed in distance of 5c  from inflow 

boundary and located at the middle of cross section. 

Flow domain is also discretized by (1000 250 250)   

grid nodes.  

In Figure 5, the computed flowfield around the 

NACA0012 wing section is shown at middle plane in 

the spanwise direction of the wing by streamlines 

colored based on the velocity magnitude. Large 

separation bubbles due to relatively strong adverse 

pressure gradient on the suction side of the wing are 

obvious in this figure. The flow structure resolved 

indicates development of the von-Karman vortexes in 

the separated shear layer over the upper surface and 

shedding to the downstream. Figure 6 indicates a 

snapshot of the vertical vorticity magnitude iso-surface 

around the NACA0012 wing section. As can be seen in 

this figure, the laminar shear layer detaches in the von-

Karman flow pattern lead to formation of curved vortex 

tubes in the spanwise direction with irregular shapes. In 

wing downwash, the vortices roll-up, interact together 

and create more complex three-dimensional structures. 

 

 

 

 

Figure 4. The NACA0012 wing section at 20   in a 

cuboid computational domain 
 

 

 
Figure 5. Computed flowfield for flow with Re 800  around 

the NACA0012 wing section at 20   shown by streamlines 

in middle of the spanwise direction 

 
Figure 6. Evaluated vertical component of the vorticity shown 

by iso-surface for flow with Re 800  around the NACA0012 

wing section at 20   

 

 

The time averaged lift and drag coefficients computed 

using the present solution procedure for NACA0012 

wing section at Re 800  and 20   are compared with 

those of reported by Hoarau et al. [16] in Table 1. This 

comparison shows that the results obtained by the LBM 

implemented and those of obtained by Hoarau et al. are 

almost in good agreement and the small difference 

observed may be due to different numerical algorithms 

with different accuracies or different grid 

sizes/distribution applied. This study indicates that the 

LBM implemented with an appropriate curve wall 

boundary condition is efficient for simulation of laminar 

flow around the wing section used.  

To demonstrate the efficiency and accuracy of the 

present boundary condition methodology for curved 

walls in comparison with the bounce-back treatment, the 

flow around the NACA0012 wing section is simulated 

by using three different grid sizes, namely, 

(400 100 100)  , (600 150 150)   and (800 200 200)   

to obtain the order of accuracy with employing these 

two boundary condition methods. The error is defined 

as the lift coefficient lC  difference for the three 

different meshes compared with the result of the most 

refined one, the mesh (1000 250 250)  . The 

comparison results are given in Table 2. The results 

obtained show that the second order of accuracy of the 

solution is confirmed by employing the present 

boundary condition for this test case, while the accuracy 

of the solution obtained by implementing the bounce-

back treatment is approximated 1.62. 

 

 

 
TABLE 1. Comparison of the lift and drag coefficients for the 

NACA0012 wing section at Re 800  and 20   

Parameter Hoarau et al. (DNS) Present Solution (LBM) 

lC  0.94 0.983 

dC  0.43 0.386 
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The error of the lift coefficient calculated based on the 

present boundary condition method for the flow around 

the NACA0012 wing section is also less than those of 

obtained based on the bounce-back treatment for the all 

grid sizes used in this study. It should be noted that the 

computational cost of the numerical solution with the 

both investigated boundary condition treatments is 

almost the same. This assessment indicates that the 

present solution methodology is satisfactorily accurate 

for simulation of the fluid flow around the practical 

geometries with curved wall boundary condition. 

 

4. 2. Flow through the Porous Media          
Understanding the fluid flow treatment in a porous 

medium is important for studying wide variety of 

applications in nature and industry. Transport 

phenomena of water in living plants and through the 

soil, oil recovery process, filtration and flow control in 

aerial vehicles are some of examples deal with the fluid 

flow in pore scales that show the crucial importance of 

studying such flow problems.  
The pressure difference is responsible to drive the 

flow through porous medium by the viscous and inertial 

forces until a steady state condition reached. In the low 

pressure gradients, the viscous forces are dominant and 

the averaged flow velocity u  can be determined by the 

Darcy’s law with the following linear equation: 

K
p


 u  (16) 

where, K  is the permeability tensor. The medium 

permeability K  is a property depending on the size, 

distribution and connectivity of the pore spaces with 

constant values in each direction. Determination of this 

tensor for a particular porous medium needs numerous 

experiments, however easy to obtain by the 

computational techniques. For an imposed pressure 

gradient, the volume averaged velocity u  can be 

calculated by the flow simulation through the medium 

and the permeability constant then would be obtained 

from Equation (16) if the flow be in Darcy regime. 

However, for high pressure gradients, the inertial forces 

between the fluid and porous surfaces dominate. 

 
TABLE 2. Comparison of order of accuracy of the solution by 

employing two different wall boundary condition methods for 

simulation of flow around the NACA0012 wing section at 

Re 800  and 20   

Grid ( )Log y  

Bounce-Back 

Boundary 

Condition

( [ ])lLog Error C  

Present 

Boundary 

Condition

( [ ])lLog Error C  

(400 100 100)   -2.00 -0.63 -0.69 

(600 150 150)   -2.17 -0.91 -1.05 

(800 200 200)   -2.30 -1.12 -1.32 

Order of accuracy: 1.62  2.09  

In such conditions, the Darcy’s law is not valid anymore 

(non-Darcy regime) and the computational methods 

cannot be used for calculating the permeability tensor 

with the procedure mentioned. Therefore, properly 

understanding of the flow regimes is necessary in many 

applications to determine where the Darcy- and non-

Darcy regimes occur and how much the critical pressure 

gradient is for a particular porous medium to flow 

switches from Darcy to non-Darcy regime. 

The capability of LBM for simulation of fluid flow 

through the complex geometries suit this technique very 

well for modeling flow through the porous media [17-

21]. In this section, the accuracy and performance of the 

present solution methodology implemented based on the 

LBM is demonstrated for simulation of fluid flow 

through the porous environment. Herein, two porous 

geometries are considered for flow computations to 

carry out the capability and robustness of the LBM 

presented for predicting those permeability properties. 

The critical pressure gradient in which the flow changes 

from Darcy to non-Darcy regime and the corresponding 

Reynolds number are also computed. 

 

 

4. 2. 1. Porous Media with Regular Distribution of 
Spheres             Figure 7 shows a slice extracted from a 

flow domain consists of a sphere in a body centered 

cubic. Mirrors of the slice in the x , y  and z  directions 

make a porous media with uniform distribution of 

spheres centered cubic. Due to similarity of the 

geometry in the all directions, the slice extracted can be 

chosen as the flow domain to reduce the computational 

cost. Physical diameter of the sphere and the length of 

the cube are 100sD m  and 140L m , respectively. 

The present computations are performed with a 

( , , ) (101,101,101)x y zN N N   grid size for a wide variety of 

pressure gradients, from 610p    to 11.5 10  in lattice 

unit, which are imposed in x  direction. To calculate the 

medium permeability in different flow conditions, the 

variables of Darcy’s law in Equation (16) is converted 

to lattice units. Thus, the permeability tensor K  can be 

defined in lattice unit as follows: 

2( )
& , ,

( )
s

i
ij

D j

x u
K i j x y z

p N


 


 (17) 

where, 𝑁𝐷𝑆 denotes the number of lattice nodes 

discretized the length of sphere diameter in direction 

defined by the subscript j . Since the flow domain and 

porous geometry are periodic in the all directions for 

this test case, the 𝑁𝐷𝑆 value is constant, equals to 

𝑁𝐷𝑆 = 72 lattice nodes. Also, the diagonal components 

of the permeability obtained from the numerical 

computations will be the same due to the similarity of 

geometry in all directions. 
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Figure 7. Regular sphere pack porous media with uniform 

distribution of spheres centered cubic 
 

 

The results obtained for permeability by employing the 

present LBM is shown in Figure 8 for different pressure 

gradients applied in x  direction. The horizontal axis of 

this figure defined by the Reynolds numbers calculated 

based on the average velocity in porous medium, after 

the steady state is reached for the attendant pressure 

gradient. The Reynolds number value is varied from 

4Re 3 10suD      to 35  for 610p    to 11.5 10  

used in present study. As can be seen in Figure 8, the 

medium permeability is constant 21.2xxK   for low 

Reynolds numbers up to Re 3.0 , beyond which it 

decreases as Reynolds number increases. It means that 

the Darcy’s law is valid for the flow conditions up to 

Re 3.0 , where the flow regime transition to the non-

Darcy flow is occurred at the pressure gradient 
210p   . 

For lower p , the pressure gradient has a linear 

relation with the averaged velocity in porous media. As 

a result, the permeability tensor obtained from the LBM 

implemented for the porous media with uniform 

distribution of spheres centered cubic is 

21.2 0 0

0 21.2 0

0 0 21.2

K

 
 


 
  

.  

 

 
Figure 8. Permeability of the porous media with uniform 

distribution of spheres centered cubic for different pressure 

gradients defined by the resultant Reynolds numbers 

For verification of the accuracy of the permeability 

value computed by the present LBM, the result obtained 

is compared with that of the empirical relation proposed 

by Ergun [22]: 

3 2

2(1 )

s
empirical

p

D
K

A







 (18) 

where, 
PoreSpaceVolume

BulkVolume
   is porosity and pA  is a 

geometric factor which is usually set to 175 180 . The 

permeability computed by Equation (18) for the porous 

media with uniform distribution of spheres is equal to 

22.7empiricalK   which shows good agreement between 

the empirical estimation and the computed results by the 

LBM implemented. Note that the porosity of the 

medium shown in Figure 7 is calculated after 

discretization of the flow domain with 3(101)  lattice 

nodes and it is equal to 54.58%  . The permeability 

value computed can be converted from lattice unit to the 

physical unit by the scale conversion factor as follows 

11 24.08 10physical LBM

x

L
K K m

N

 
   

 

 (19) 

In Figure 9, the computed flow fields are depicted by 

the streamlines colored based on the velocity magnitude 

for 510p    and 11.5 10 .  

 

 

 

 
Figure 9. Computed flowfield for the porous media with 

uniform distribution of spheres shown by streamlines and 

velocity magnitude with 510p   , 4Re 34 10   (top) and 

11.5 10p    , Re 35.3  (bottom) 
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This figure indicates that by increasing the pressure 

gradient imposed, the averaged flow velocity magnitude 

and consequently the Reynolds number increased. In 

such flow condition through the porous media, notably 

inertial effects are responsible for the additional 

pressure drop, known as the non-Darcy flow regime. 

This investigation shows that the lattice Boltzmann 

method employed is appropriate for accurate simulation 

of fluid flow through the porous media. 

 

4. 2. 2. Porous Media with Irregular Distribution 
of Merged Spheres              To demonstrate the 

accuracy and robustness of the LBM implemented for 

numerical solution of the flow problems with more 

complex geometries, the flow through a porous medium 

with irregular geometry is performed. The porous media 

shown in Figure 10, consists of a tight distribution of 

spheres in a cuboid pack that some of them merged 

together. The dimension of the cuboid are 

( , , ) (640,720,630)x y zL L L m , in which discretized by 

( , , ) (301,338,296)x y zN N N   lattice nodes. According to 

the numerical computations performed for the previous 

test case, the pressure gradient is set 510p    for the 

present porous media to be sure about Darcy flow 

regime through the medium. 
Figure 11 indicates the flowfield simulated by the 

present solution algorithm with the streamlines colored 

based on the velocity magnitude. For this test case, due 

to the microscopic pore size and complexity of the 

geometry, the fluid flow path is very tortuous and 

twisted. In addition, the complex nature of the solid-

pore interface impacts the pressure distribution through 

the porous media. Thus, it is necessary to have pressure 

drop estimation along the porous media in many 

applications. It helps to study the productivity of the 

medium used and replace/design an appropriate 

geometry if needed. Herein, the computed pressure 

distribution field is shown at slice 100zN   through the 

porous media in Figure 12. A significant pressure drop 

along the porous media is obvious in this figure.  

 

 

 
Figure 10. Irregular sphere pack porous media with a tight 

distribution of merged spheres 

 
Figure 11. Computed flowfield for the porous media with 

irregular distribution of spheres shown by streamlines and 

velocity magnitude with 510p    applied in x  direction 

 

 

 
Figure 12. Computed flowfield of the porous media with 

irregular distribution of spheres with 510p    shown by 

streamlines and pressure distribution in the x y  plane at 

100zN   

 

 

To compute the permeability tensor for the porous 

media shown in Figure 10 by employing the LBM 

implemented, the pressure gradient 510p    is 

imposed in three directions x , y  and z . The results 

obtained for the permeability of the porous media with 

irregular distribution of merged spheres is presented in 

Table 3. The physical permeability tensor is again 

calculated according to Equation (19). This study shows 

the capability of the present numerical solution 

technique based on the LBM for simulation of the flow 

problems with irregular and complex geometries. 

 

 
TABLE 3. Permeability properties of the irregular sphere 

pack porous media 

Direction LBMK  
2( )PhysicalK m  

x  2.075 9.41×10-12 

y  2.482 1.13×10-11 

z  1.350 6.14×10-12 
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5. CONCLUSION 
 
In this work, a 3-D lattice Boltzmann method is 

implemented for numerical simulation of flow problems 

with complex geometries. An off-lattice type wall 

boundary condition with appropriate Lagrangian 

polynomial interpolation is used to resolve the flow 

properties near the curved or irregular wall boundaries. 

It is shown that such a procedure can accurately resolve 

the flow field near the curved wall boundaries compared 

to the bounce-back treatment. The efficiency and 

accuracy of the numerical approach presented are 

examined by computing the incompressible laminar 

flow around the NACA0012 wing section and flow 

through the two different porous media with regular and 

irregular geometries. The calculations are performed for 

different laminar flow conditions and the results are 

compared with available data reported in the literature 

for the test cases considered. Validation results show 

good comparison for flow properties between LBM 

simulation and the empirical estimation and numerical 

results. The present study shows the computational 

technique based on the implementation of the three-

dimensional Lattice Boltzmann method with the 

employed curved wall boundary condition. It is robust 

and efficient for solving flow problems with realistic 

and practical geometries and accurate enough to predict 

the flow properties used for engineering designs. 
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بعدی اعمال شده که سبب افزایش یافته برای روش شبکه بولتزمن سهدر مقاله حاضر، یک نوع شرط مرزی دیواره تعمیم

شود. این روش از یک الگوریتم های پیچیده میناپذیر حول هندسههای تراکمسازی جریانشبیهتوانمندی و دقت آن در 

-یابی آن روی نقاط شبکه اطراف دیواره استفاده میای جهت تخمین محل دیواره منحنی دلخواه و میانیابی چندجملهدرون

برای حل جریان  Bounce-Backی مرسوم هاکند. این الگوریتم کارآیی روش حل عددی و دقت آن را نسبت به روش

دادن صحت و دقت الگوریتم مورد استفاده بر اساس روش شبکه  دهد. برای نشانهای پیچیده افزایش میحول هندسه

مجزا محیط متخلخل  دوو جریان گذرنده از  NACA0012یک بال با مقطع هیدروفویل بعدی، جریان حول بولتزمن سه

 به نتایج. است سی قرار گرفته و نتایج حاصل با نتایج قابل دسترس مقایسه و ارزیابی شدهدر شرایط مختلف مورد برر

 شده براساس روش شبکه بولتزمن، جهت تحلیل جریان م توسعه دادهالگوریت که دهند می نشان حاضر حل از آمده دست

های جریان جهت استفاده در طراحیهمچنین برای تخمین مشخصات های پیچیده و کاربردی با هندسه ناپذیرتراکم های

 بسیار مناسب و مؤثر است.مهندسی 
doi: 10.5829/idosi.ije.2017.30.09c.11 

 

 

 

 

 

 

 


