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A B S T R A C T  
 

 

In this paper, we develop an optimization model for the economic design of repetitive sampling plan in 

the presence of two markets. The process under consideration produces a product with a normally 
distributed quality characteristic with unknown mean and known variance. The quality characteristic 

has a lower specification limit. The quality of the product is controlled via lot-by-lot acceptance 
sampling plan. The objective function used in the model is maximizing profit and product conformity 

using the Taguchi loss function as a surrogate for product conformity. Risks of producer and consumer 

in two different markets are considered as constraints. We demonstrate the application of the model 
using a numerical example. Sensitivity analysis on model parameters shows that the result of the model 

is sensitive to changes in model parameters. 
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1. INTRODUCTION1 
 

Acceptance sampling models have been widely applied 

in companies for inspecting and testing the raw material 

as well as final products. A number of lots of products 

are produced in a day in the industries that it might be 

impossible to inspect/test each item in a single lot. 

Acceptance sampling plans save the time and cost of the 

inspection and help the producer send the product to the 

market at the appropriate time. Thus, the use of 

acceptance sampling plans not only enhances the 

reputation of the companies, but also increases the 

reduced cost of them. 

Two different approaches are mainly used in 

designing acceptance sampling models. First approach 

is based on the probabilities of the first and second type 

errors. The optimality of sampling plan in this case is 

due to designing a sampling plan with minimum sample 

size that satisfies the constraints of first and second type 

errors. In the second approach, the objective is to 

construct an economically optimal sampling plan. 

Constructing economic models of the acceptance 
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sampling plans has drawn scholars’ attention for years. 
Although adopting this approach is not new, it has led to 

emergence of insightful results on integrating the 

continuous loss function with the economic models of 

the acceptance sampling plan. 

There have been several studies proposing various 

economic acceptance sampling plans. For example, 

Ferrell and Chhoker [1] presented a method to 

determine economically optimal acceptance sampling 

plans. According to Moskowitz and Tang [2], 

acceptance sampling plans can be optimized based on 

Taguchi loss function and Bayesian approach. 

Fallahnezhad and Aslam [3] and Fallahnezhad et al. [4] 

proposed Bayesian analysis of acceptance sampling 

problem based on cost analysis. Hsu and Hsu [5] 

proposed an economic model to determine the optimal 

sampling plan in a two-stage supply chain that 

minimizes the producer’s and the consumer’s total 

quality cost while satisfying both the producer’s and 

consumer’s quality and risk requirements. Balamurali et 

al. [6] proposed an economic design of the SKSP-R plan 

for both destructive and non-destructive testing by 

considering various cost items in order to optimize the 

plan. Fallahnezhad et al. [7] proposed a mathematical 

model to design single stage and double stage sampling 
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plans that can be used to determine the optimal 

tolerance limits and sample size. Fallahnezhad and Seifi 

[8] proposed an optimal double-sampling plan based on 

process capability index. Asalm et al. [9] Fallahnezhad 

and Fakhrzad [10] Fallahnezhad and Hosseininasab [11] 

applied a new control policy for designing sampling 

plan. 

In this research, our aim is to develop a 

mathematical model to design an optimal repetitive 

sampling plan while its optimality is resulted by using 

the expected profit of each decision based on Taguchi’s 

Loss Function and subject to risk constraints in two 

markets. The probabilities of selecting each decision are 

determined by employing the Binomial distribution. The 

risks of producer and consumer are taken into account 

in order to control the lot quality. FallahNezhad and 

Jafari Nodoushan [12] proposed an economic rectifying 

sampling plan in the presence of two markets. Aslam et 

al. [13] proposed a repetitive mixed sampling plan 

based on the process capability index. The parameters 

of their mixed plan are determined by satisfying the 

given producer’s risk and consumer’s risk constraints at 

the same time for the specified acceptable quality level 

and limiting quality level. Aslam et al [14] proposed a 

multiple states repetitive group sampling plan by 

considering the process loss. The optimal plan 

parameters of their plan are selected such that the 

constraints of producer’s risk and consumer’s risk are 

satisfied simultaneously by minimizing the average 

sample number. Fallahnezhad and Seifi [15] proposed a 

repetitive group sampling plan based on the process 

capability index for the lot acceptance problem. Aslam 

et al. [16] proposed a different repetitive sampling plan 

using process capability index of multiple quality 

characteristics. Aslam et al. [17] proposed a multiple 

dependent state repetitive group sampling plan for Burr 

XII distribution. 

Modeling the sampling plans can be facilitated by 

using Markov chain. Markov chain can be efficiently 

implemented in practical quality control problems [6, 

11, 18]. 

Companies and organizations may require 

maximization of profit and customer satisfaction 

simultaneously. Customer satisfaction will be achieved 

through ensuring product quality by minimizing the 

deviation of quality characteristic from its target value 
using Taguchi loss function. The purpose of this paper 

is to present the economic design of a repetitive 

acceptance sampling plan using Taguchi loss function in 

the presence of decision making risks for target markets. 

An example for application of such models is the 

can filling problem. In this problem, cans are produced 

in lots of size N. The quality characteristic of interest is 

the volume of liquid put in a can. Depending on whether 

the liquid volume in the can exceeds the lower 

specification limit or not, the can is classified as 

conforming or non-conforming. A sample of size n is 

drawn from the lot and depending on the number of 

non-conforming cans found in the sample, the lot is 

either sold in a primary market, secondary market or 

reworked. In the juice industry, the vitamin c level is 

important and the amount of vitamin c must be more 

than the lower specification limit. 

The model can be applied to a wide spectrum of 

applications in process industry such as food, beverages, 

petrochemicals, pharmaceuticals, cement, paints, 

chemicals industry etc. For example, in the juice 

industry the vitamin C level is important and the amount 

of vitamin C must be more than the lower specification 

limit. 

The contributions of the proposed approach are as 

follows: 

 An economical model for repetitive group 

acceptance sampling plan is presented. 

 Two markets are considered for product that has not 

been addressed for designing RGSPs so far. 

 Give-away cost per unit of sold excess material is 

considered in the proposed model. 

 Optimal process adjustment problem and 

acceptance sampling plan is combined in the 

economical optimization model. 

 Process mean and standard deviation are assumed 

to be an unknown value and its impact is analysed. 

 Inspection error is considered and its impact is 

investigated and analysed. 

The rest of the paper is organized as follows: Statement 

of the problem is presented in Section 2 followed by the 

model development in Section 3. Section 4 presents an 

example to demonstrate the application of the model 

together with sensitivity analysis. Section 5 concludes 

the paper. 

 

 

2. STATEMENT OF THE PROBLEM 
 
The production process produces items that have a 

quality characteristic y with one sided specification limit 

LSL and target mean T and known standard deviation σ. 

A produced item is called conforming if its quality 

characteristic is more than or equal to LSL (𝑦 ≥ 𝐿𝑆𝐿) 

and is called non-conforming if its quality characteristic 

falls below LSL (𝑦 < 𝐿𝑆𝐿). Items are produced in lots of 

size N and a sampling plan is used to decide on the 

quality of the lots. The sampling plan is described as 

follows: a sample of size n is drawn from a lot of size N. 

The sample is inspected and based on the number of the 

non-conforming items in the sample D, the quality of the 

lot is evaluated. There are two thresholds 𝑑1 and 𝑑2 for 

decision making, where 𝑑1 < 𝑑2. First, if the number of 

non-conforming item in the sample is less than or equal 

to the first threshold, i.e. 𝐷 ≤ 𝑑1, then the whole lot is 

sold in a primary market at a price of $a per item. 

Second, if the number of non-conforming items in the 

sample is between the thresholds, 𝑑1 < 𝐷 ≤ 𝑑2, then the 
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whole lot is sold in a secondary market at a reduced 

price $r per item (𝑎 > 𝑟). Finally, if the number of non-

conforming items in the sample is more than the second 

threshold 𝐷 > 𝑑2, then the whole lot is reworked again 

with a rework cost of $R per item. Note that the rework 

operation is not perfect and does not ensure the 

conformance of all products. After rework, the item 

could be sold in the primary market or the secondary 

market, or needs to be reworked again. The production 

cost per item $c and inspection cost per item $I are 

assumed to be known and constant. The production cost 

consists of processing and labor costs [19].  
 

 

3. MODEL DEVELOPMENT 
 
3. 1. Notations         Notations used in the model 

development are defined in Table 1. 
 

 

TABLE 1. Notations 

Profit per lot produced PN 

The expected profit per lot E (PN) 

Production cost per item c 

Inspection cost per item I 

The cost of non-conforming item sent to the customer 

in the primary market 
𝑐1  

The cost of replacing a non-conforming item with a 

conforming item 
𝑐2  

The cost of non-conforming item sent to the customer 

in the secondary market 
𝑐3  

The cost of rejecting a conforming item and replacing 

it 
𝑐4  

The lot size N 

The sample size n 

The number of non-conforming items in a sample of 

size n 
D 

The number of observed non-conforming items in the 

sample 
𝐷𝑒  

Target mean T 

Lower specification limit LSL 

Inspection plan thresholds (𝑑1, 𝑑2) 

Quality loss coefficients (𝑘1, 𝑘2) 

Limiting Quality Level of the primary market 𝑃1 = 𝐿𝑄𝐿1  

Acceptable Quality Level of the secondary market 𝑃2 = 𝐴𝑄𝐿2  

Item price at primary market a 

Item price at secondary market r 

Give-away cost per unit of excess material g 

Rework cost R 

Probability of non-conformance P 

Probability of non-conformance in the presence of 

inspection errors 
𝑃𝑒  

Normal distribution function with unknown mean T 

and known variance 𝜎2 
f (y) 

Standard normal distribution function φ (z) 

Standard normal cumulative distribution function 𝛷 (z) 

Probability of type-II error in making a decision of 

primary market 
𝛽1  

Probability of type-I error in making a decision of 

secondary market 
𝛼2  

Type I inspection error 𝑒1  

Type II inspection error 𝑒2  

The probability of going from state i to state j in a 

single step 
𝑝𝑖𝑗  

The expected number of transitions from a non-

absorbing state (i) to another non-absorbing state (j) 

before absorption occurs 

𝑚𝑖𝑗  

Long-run probability of going from a non-absorbing 

state (i) to an absorbing state (j) 
𝑓𝑖𝑗  

The probability of going from state i to state j in a 

single step with consideration of inspection errors 
𝑝𝑖𝑗
′   

The transition Probability Matrix P 

A square matrix containing transition probabilities of 

going from a non-absorbing state to another non-

absorbing state 

Q 

A matrix containing all probabilities of going from a 

non-absorbing state to an absorbing state 
R 

An identity matrix representing the probability of 

staying in a state 
A 

A matrix representing the probabilities of escaping 

from an absorbing state 
O 

The absorption probability matrix containing the long-

run probabilities of the transitions from non-absorbing 

states to absorbing states 

F 

The fundamental matrix containing the expected 

number of transitions from a non-absorbing state to 

another non-absorbing state before absorption occurs 

M 

 

 

3. 2. Assumptions            The assumptions made are: 
1. The lot is assumed to be large enough to justify the 

use of the Binomial distribution for the number of 

non-conforming items in the sample. 

2. Costs of processing are assumed to be directly 

proportional to the values of the product quality 

characteristics. 

3. There is no drift or shift in the means of the 

processes. The process is under control. 

4. Sampling inspection plan is used for lot quality 

assurance and the inspection is assumed to be error 

free. 

5. Identified non-conforming items are replaced with 

conforming items. 

 
3. 3. Basic Relationships          Let us first determine 

the probabilities of classifying the lot to be sold in the 

primary market, secondary market or to be reworked. 
First, the probability that quality characteristic of an 

item falls below LSL is given by the following: 

𝑃(𝑦 < 𝐿𝑆𝐿) =  𝛷(
𝐿𝑆𝐿−𝑇

𝜎
) = 𝑃 (1) 

The number of defectives in an incoming lot follows the 

binomial probability distribution with parameter P. 

The lot is sold in the primary market if the number 

of defectives in the sample is less than or equal to 𝑑1 , 

this following is obtained: 
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𝑃(𝐷 ≤ 𝑑1) =  ∑ (
𝑛
𝑖
)

𝑑1
𝑖=0 𝑃𝑖(1 − 𝑃)𝑛−𝑖  (2) 

The probability of selling the lot in the secondary 

market is as following: 

𝑃(𝑑1 < 𝐷 ≤ 𝑑2) =  ∑ (
𝑛
𝑖
) 𝑃𝑖(1 − 𝑃)𝑛−𝑖 

𝑑2
𝑖=0 −

 ∑ (
𝑛
𝑖
) 𝑃𝑖(1 − 𝑃)𝑛−𝑖 

𝑑1
𝑖=0   

(3) 

𝑃(𝑑1 < 𝐷 ≤ 𝑑2) =  ∑ (
𝑛
𝑖
) 𝑃𝑖(1 − 𝑃)𝑛−𝑖 

𝑑2
𝑖=𝑑1+1

  (4) 

Finally, the probability of reworking the whole lot is: 

𝑃(𝐷 > 𝑑2) =  ∑ (
𝑛
𝑖
) 𝑃𝑖(1 − 𝑃)𝑛−𝑖 𝑛

𝑖=𝑑2+1
= 1 −

 ∑ (
𝑛
𝑖
) 𝑃𝑖(1 − 𝑃)𝑛−𝑖 

𝑑2
𝑖=0   

(5) 

Also, the conditional expected value of the quality 

characteristic y given that y is more than, or equal to the 

lower specification limit is determined as following: 

𝑦′ = 𝐸(𝑦|𝑦 ≥ 𝐿𝑆𝐿) =
∫ 𝑦 𝑓(𝑦) 𝑑𝑦
∞

𝐿𝑆𝐿

∫ 𝑓(𝑦) 𝑑𝑦
∞

𝐿𝑆𝐿

  (6) 

Thus 𝐸(𝑦|𝑦 ≥ 𝐿𝑆𝐿) − 𝐿𝑆𝐿 denotes the amount of excess 

material used in the product. 

 

3. 4. Derivation Of Objective        The profit per lot, 

PN, as given in Equation (7), results from selling lots at 

the primary market (first part of Equation (7)), selling 

lots at the secondary market (second part of Equation 

(7)), and profit from reworked lots (third part of 

Equation (7)) as following: 

𝑃𝑁 =

 

{
 
 

 
 
𝑎𝑁 − 𝑔(𝑦′ − 𝐿𝑆𝐿)𝑁 − 𝐼𝑛 − 𝑐𝑦𝑁 − (𝑁 − 𝑛)𝐿01 − 𝑛𝐿11

−(𝑁 − 𝑛)𝑃𝑐1 − 𝑛𝑃𝑐2         𝑖𝑓 𝑃(𝐷 ≤ 𝑑1)

𝑟𝑁 − 𝑔(𝑦′ − 𝐿𝑆𝐿)𝑁 − 𝐼𝑛 − 𝑐𝑦𝑁 − (𝑁 − 𝑛)𝐿02 − 𝑛𝐿12
−(𝑁 − 𝑛)𝑃𝑐3 − 𝑛𝑃𝑐2           𝑖𝑓 𝑃(𝑑1 < 𝐷 ≤ 𝑑2)

𝐸(𝑃𝑁) − 𝑅𝑁 − 𝐼𝑛 − 𝑐𝑦𝑁        𝑖𝑓 𝑃(𝐷 > 𝑑2)

  
(7) 

Taguchi’s loss function is an effective method for 

quality engineering. The quality losses occur when the 

product deviates beyond the specification limit, thereby 

becoming unacceptable [1]. Taguchi defines quality as 

‘the loss imported by any product to society after being 

shipped to a customer, other than any loss caused by 

intrinsic cost functions of producer [2, 20]. 

Taguchi’s loss function is classified as three types of 

functions: nominal-is-best characteristics, smaller-is-

better characteristics and larger-is-better characteristics. 

The quality characteristic y of the items produced by 

the process under study has no upper specification limit. 

Hence, the quality level is evaluated by using the loss 

function approach for the larger -is-better. Since the 

upper specification limit is absent, thus the larger the 

value of the quality characteristic, the better it is and the 

minimum loss is obtained. 

The larger-is-better loss function is given by: 

𝐿(𝑦) = 𝑘
1

𝑦2
 

where 𝐿(𝑦) is the loss associated with a particular value 

of quality characteristic y; and k is the average loss 

coefficient. 

The larger-is-better loss functions are employed for 

evaluating loss for the consumer and are as following 

[19]: 

𝐿01 = 𝐸(𝐿𝑜𝑠𝑠) = 𝑘1 ∫
1

𝑦2
∞

−∞
 𝑓(𝑦) 𝑑𝑦  (8) 

𝐿11 =  𝐸({𝐿𝑜𝑠𝑠|𝑦 > 𝐿𝑆𝐿}) =
𝑘1 ∫

1

𝑦2
 𝑓(𝑦) 𝑑𝑦

∞

𝐿𝑆𝐿

∫ 𝑓(𝑦) 𝑑𝑦
∞

𝐿𝑆𝐿

  (9) 

𝐿01 and 𝐿11 are the expected loss per un-inspected and 

inspected items of a lot accepted and sold in the primary 

market, respectively. In Equation (9), we used the 

conditional expectation that the quality characteristics 

value is more than LSL, under the condition that the 

inspected items of a lot accepted and sold in the primary 

market are assumed to have quality characteristic above 

LSL. 

𝐿02 and 𝐿12 are the expected loss per un-inspected 

and inspected item of a lot accepted and sold in the 

secondary market, respectively. 

𝐿02 = 𝐸(𝐿𝑜𝑠𝑠) = 𝑘2 ∫
1

𝑦2
∞

−∞
𝑓(𝑦) 𝑑𝑦  (10) 

𝐿12 = 𝐸({𝐿𝑜𝑠𝑠|𝑦 > 𝐿𝑆𝐿}) =  
𝑘2 ∫

1

𝑦2
 𝑓(𝑦) 𝑑𝑦

∞

𝐿𝑆𝐿

∫ 𝑓(𝑦) 𝑑𝑦
∞

𝐿𝑆𝐿

  (11) 

where the terms of objective function are explained in 

Table 2: 
 

 

TABLE 2. The terms of objective function 

The revenue of selling N items in the primary 
market 

aN 

The give-away cost of excess material above LSL 

in the lot with N items 
g(y′ − LSL)N  

Cost of inspecting sample with n items In  

The production cost of the lot with N items cyN  

The loss for un-inspected items of a lot accepted 
and sold in the primary market 

(N − n)L01  

The loss for inspected items of a lot accepted and 

sold in the primary market 
n L11  

The cost of non-conforming items sent to the 

customer in the primary market 
(N − n)Pc1  

The cost of replacing non-conforming items 
identified in a sample with conforming items 

nPc2  

The revenue of selling N items in the secondary 

market 
rN  

The loss for un-inspected items of a lot accepted 

and sold in the secondary market 
(N − n)L02  

The loss for inspected items of a lot accepted and 
sold in the secondary market 

n L12  

The cost of non-conforming items sent to the 
customer in the secondary market 

(N − n)Pc3  
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The expected profit per lot  E(PN)  

The rework cost of the lot with N items RN  

 

Now, the expected profit per lot is given by: 

𝐸 (𝑃𝑁) = 𝑎𝑁 . 𝑃(𝐷 ≤ 𝑑1) − 𝑔(𝑦
′ − 𝐿𝑆𝐿)𝑁 . 𝑃(𝐷 ≤

𝑑1) − 𝐼𝑛 . 𝑃(𝐷 ≤ 𝑑1) − 𝑐𝑦𝑁 . 𝑃(𝐷 ≤ 𝑑1) −
(𝑁 − 𝑛)𝐿01 . 𝑃(𝐷 ≤ 𝑑1) − 𝑛𝐿11 . 𝑃(𝐷 ≤ 𝑑1)      −
(𝑁 − 𝑛)𝑃𝑐1. 𝑃(𝐷 ≤ 𝑑1) − 𝑛𝑃𝑐2 . 𝑃(𝐷 ≤ 𝑑1)    +
 𝑟𝑁 . 𝑃(𝑑1 < 𝐷 ≤  𝑑2)      − 𝑔(𝑦

′ − 𝐿𝑆𝐿)𝑁 . 𝑃(𝑑1 <
𝐷 ≤  𝑑2)      − 𝐼𝑛 . 𝑃(𝑑1 < 𝐷 ≤  𝑑2) − 𝑐𝑦𝑁 . 𝑃(𝑑1 <
𝐷 ≤  𝑑2)  − (𝑁 − 𝑛)𝐿02 . 𝑃(𝑑1 < 𝐷 ≤  𝑑2)     −
𝑛𝐿12 . 𝑃(𝑑1 < 𝐷 ≤  𝑑2)     − (𝑁 − 𝑛)𝑃𝑐3 . 𝑃(𝑑1 <
𝐷 ≤  𝑑2)  − 𝑛𝑃𝑐2. 𝑃(𝑑1 < 𝐷 ≤  𝑑2) +
𝐸(𝑃𝑁) . 𝑃(𝐷 > 𝑑2)   − 𝑅𝑁 . 𝑃(𝐷 > 𝑑2) −
𝐼𝑛 . 𝑃(𝐷 > 𝑑2)    − 𝑐𝑦𝑁 .𝑃(𝐷 > 𝑑2) 

(12) 

Rearranging the above equation, following is obtained: 

𝐸(𝑃𝑁) − 𝐸(𝑃𝑁). 𝑃(𝐷 > 𝑑2) = 𝑎𝑁 . 𝑃(𝐷 ≤ 𝑑1) −
𝑔(𝑦′ − 𝐿𝑆𝐿)𝑁 . 𝑃(𝐷 ≤ 𝑑1) − 𝐼𝑛 . 𝑃(𝐷 ≤ 𝑑1) −
𝑐𝑦𝑁 . 𝑃(𝐷 ≤ 𝑑1) − (𝑁 − 𝑛)𝐿01 . 𝑃(𝐷 ≤ 𝑑1) −
𝑛𝐿11 . 𝑃(𝐷 ≤ 𝑑1) − (𝑁 − 𝑛)𝑃𝑐1. 𝑃(𝐷 ≤ 𝑑1) −
𝑛𝑃𝑐2 . 𝑃(𝐷 ≤ 𝑑1) +  𝑟𝑁 . 𝑃(𝑑1 < 𝐷 ≤  𝑑2) −
𝑔(𝑦′ − 𝐿𝑆𝐿)𝑁 . 𝑃(𝑑1 < 𝐷 ≤  𝑑2) − 𝐼𝑛 . 𝑃(𝑑1 < 𝐷 ≤
 𝑑2) − 𝑐𝑦𝑁 . 𝑃(𝑑1 < 𝐷 ≤  𝑑2) − (𝑁 − 𝑛)𝐿02 . 𝑃(𝑑1 <
𝐷 ≤  𝑑2) − 𝑛𝐿12 . 𝑃(𝑑1 < 𝐷 ≤  𝑑2) − (𝑁 −
𝑛)𝑃𝑐3 . 𝑃(𝑑1 < 𝐷 ≤  𝑑2) − 𝑛𝑃𝑐2. 𝑃(𝑑1 < 𝐷 ≤
 𝑑2) − 𝑅𝑁 . 𝑃(𝐷 > 𝑑2) − 𝐼𝑛 . 𝑃(𝐷 > 𝑑2) − 𝑐𝑦𝑁 

𝑃(𝐷 > 𝑑2) 

(13) 

Note that [𝑃(𝐷 ≤ 𝑑1) + 𝑃(𝑑1 < 𝐷 ≤ 𝑑2 ) + 𝑃(𝐷 > 𝑑2)] =
1 and E[𝑦 . 𝑃(𝐷 ≤ 𝑑1) + 𝑦 . 𝑃(𝑑1 < 𝐷 ≤ 𝑑2 ) + 𝑦 . 𝑃(𝐷 >
𝑑2)] = 𝑇 . 

Therefore, Equation (13) is simplified to: 

𝐸(𝑃𝑁) =
1

𝑃 (𝐷≤𝑑2)
 [𝑎𝑁 . 𝑃(𝐷 ≤ 𝑑1) − 𝑔(𝑦

′ −

𝐿𝑆𝐿)𝑁 . 𝑃(𝐷 ≤ 𝑑1) −𝐼𝑛 − 𝑐𝑇𝑁  

−(𝑁 − 𝑛)𝑘1 ∫
1

𝑦2
∞

−∞
 𝑓(𝑦) 𝑑𝑦. 𝑃(𝐷 ≤ 𝑑1) −

𝑛 
𝑘1 ∫

1

𝑦2
 𝑓(𝑦) 𝑑𝑦

∞

𝐿𝑆𝐿

∫ 𝑓(𝑦) 𝑑𝑦
∞

𝐿𝑆𝐿

 . 𝑃(𝐷 ≤ 𝑑1) − (𝑁 − 𝑛)𝑃𝑐1. 𝑃(𝐷 ≤

𝑑1) − 𝑛𝑃𝑐2 . 𝑃(𝐷 ≤ 𝑑1)    + 𝑟𝑁 . 𝑃(𝑑1 < 𝐷 ≤  𝑑2) −
𝑔(𝑦′ − 𝐿𝑆𝐿)𝑁 . 𝑃(𝑑1 < 𝐷 ≤  𝑑2) −(𝑁 −

𝑛)𝑘2 ∫
1

𝑦2
∞

−∞
𝑓(𝑦) 𝑑𝑦 . 𝑃(𝑑1 < 𝐷 ≤  𝑑2) −

𝑛
𝑘2 ∫

1

𝑦2
 𝑓(𝑦) 𝑑𝑦

∞

𝐿𝑆𝐿

∫ 𝑓(𝑦) 𝑑𝑦
∞

𝐿𝑆𝐿

 . 𝑃(𝑑1 < 𝐷 ≤  𝑑2) − (𝑁 −

𝑛)𝑃𝑐3 . 𝑃(𝑑1 < 𝐷 ≤  𝑑2) −𝑛𝑃𝑐2. 𝑃(𝑑1 < 𝐷 ≤  𝑑2) −
𝑅𝑁 . 𝑃(𝐷 > 𝑑2) 

(14) 

 

3. 5. Derivation of Risk Constraints          Consider 

an incoming lot of N items with a proportion of non-

conformities P, of which n items are randomly selected 

for inspection and depending on the number of non-

conforming items found in the sample, the lot is either 

sold in the primary market, secondary market, or 

reworked. 
A sample of size n is drawn from a lot of size N. The 

sample is inspected and based on the number of non-

conforming items in the sample D, the quality of the lot 

is decided. There are two thresholds 𝑑1 and 𝑑2, where 

𝑑1 < 𝑑2. 

The states involved in this process can be defined as 

follows: 

State 1: D is more than the second threshold 𝐷 > 𝑑2 

then, the whole lot is reworked. 

State 2: D is between the thresholds 𝑑1 < 𝐷 ≤ 𝑑2then, 

the whole lot is sold in the secondary market. 

State 3: D is less than or equal to the first threshold  

𝐷 ≤ 𝑑1 , then the whole lot is sold in the primary 

market. 

The transition probabilities among the states can be 

obtained as follows. 

Probability of reworking the whole lot: 

𝑃11 = 𝑃 {𝐷 > 𝑑2} (15) 

Probability of selling the whole lot in the secondary 

market: 

𝑃12 = 𝑃 {𝑑1 < 𝐷 ≤ 𝑑2} (16) 

Probability of selling the whole lot in the primary 

market: 

𝑃13 = 𝑃 {𝐷 ≤ 𝑑1} (17) 

where the probabilities can be obtained based on the 

fact that the number of non-conforming items, D, 

follows a binomial distribution with parameters n and p. 

Then, the transition probability matrix is expressed as 

follows: 

             1     2     3 

𝐏 =
1
2
3
[
𝑃11 𝑃12 𝑃13
0 1 0
0 0 1

]  
(18) 

As it can be seen, the matrix P is an absorbing Markov 

chain with states 2 and 3 being absorbing and state 1 

being transient. 

To analyze the above absorbing Markov chain, the 

transition probability matrix should be rearranged in the 

following form: 

[
𝐀 𝐎
𝐑 𝐐

]  (19) 

Rearranging the P matrix yields the following matrix: 

       2    3    1 

2
3
1
[
1 0 0
0 1 0
𝑃12 𝑃13 𝑃11

]  
(20) 

Then, the fundamental Matrix M can be obtained as 

follows (Bowling et al. [21]): 

𝑴 = 𝑚11 =  (𝑰 − 𝑸)
−1 = 

1

1−𝑃11
 = 

1

1−𝑃 (𝐷>𝑑2)
 (21) 

where I is the identity matrix and m11 denotes the 

expected number of times that the transient state 1 is 

occupied before absorption occurs (i.e., sold in the 

secondary or primary market), given that the initial state 
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is 1. The long-run absorption probability matrix, F, is 

calculated as follows (Bowling et al. [21]): 

                                  2       3  

𝑭 = 𝑴 ∗ 𝑹 = 1 [
𝑃12

1−𝑃11

𝑃13

1−𝑃11
]  

(22) 

The elements of the F matrix, f12, f13, denote the 

probabilities of the lot being sold in the secondary or 

primary market, respectively. 

The objective function, 𝐸 (𝑃𝑁), should be 

maximized regarding one constraint on risk of wrong 

decisions for each market associated with the 

acceptance sampling plans. Type-II error is the 

probability of accepting the lot when the non-

conforming proportion of the lot is not acceptable. 

Then, in one hand, if = 𝑃1 = 𝐿𝑄𝐿1 , the probability of 

accepting the lot should be less than 𝛽1 for the primary 

market. Type-I error is the probability of rejecting the 

lot when the non-conforming proportion of the lot is 

acceptable. Then, on the other hand, if = 𝑃2 = 𝐴𝑄𝐿2 , 

the probability of rejecting the lot should be less than 𝛼2 

for the secondary market. Hence: 

𝑃 =  𝑃1 = 𝐿𝑄𝐿1   ;     
𝑃13

1−𝑃11
=

𝑃 (𝐷 ≤ 𝑑1)

1−𝑃 (𝐷>𝑑2)
 ≤  𝛽1  (23) 

𝑃 =  𝑃2 =  𝐴𝑄𝐿2   ;    
𝑃12

1−𝑃11
=  

𝑃 (𝑑1<𝐷 ≤ 𝑑2)

1−𝑃 (𝐷>𝑑2)
≥ 1 −

𝛼2  
(24) 

Since consumer risk is more important than producer 

risk, thus the constraint of consumer risk is considered 

for the primary market and the constraint of producer 

risk is considered for the secondary market. 

 

3. 6. Final Model          In short, the optimization model 

of the problem becomes: 

𝑀𝑎𝑥 𝐸 (𝑃𝑁) = 𝑓(𝑛, 𝑑1, 𝑑2) (25) 

s.t. 

1) 
𝑃 (𝐷 ≤ 𝑑1)

1−𝑃 (𝐷>𝑑2)
≤ 𝛽1                        ; P = 𝑃1= 𝐿𝑄𝐿1 

2) 
𝑃 (𝑑1<𝐷 ≤ 𝑑2)

1−𝑃 (𝐷>𝑑2)
≥ 1 − 𝛼2              ; P = 𝑃2= 𝐴𝑄𝐿2 

The optimum values of 𝑛 , 𝑑1 , 𝑑2 among a set of 

alternative values are determined solving the model 

given in Equation (25), numerically, where the 

probabilities are obtained using the binomial 

distribution. In the next section, a numerical example is 

given to demonstrate the application of the proposed 

methodology. 

 
 
 

4. SOLUTION 
 

4. 1. Numerical Example         In this section the 

application of the model is demonstrated via a 

numerical example. Table 3 provides the specified 

values for the parameters and their references. 

Proposed model is solved using a grid search 

method and the computer program is written using 

Matlab Software. For alternative values of 𝑛 , 𝑑1 , 𝑑2 in 

the assumed intervals for each one, the expected profit 

per lot is computed, then the maximum value of that is 

specified for optimal values of  𝑛 , 𝑑1 , 𝑑2. 

Table 4 shows the optimal value of objective 

function and design parameters for above numerical 

example. 

Following decision making framework is obtained: 

1. If there is not any defective item in the inspected 

sample, then the lot should be sold in the primary 

market. 

2. If the number of defective items falls within the set 

{1,2,…,9}, then, the lot should be sold in the 

secondary market. 

3. If all items of the sample are defective, then the lot 

should be reworked. 

 

 
TABLE 3. Data of the example data 

Source Value Parameter 

Duffuaa et al. [19, 22] 10 LSL 

Best guess by authors 10.5 T 

Chen and Lai [23, 24]  0.5 𝜎 

Best guess by authors 1000 N 

Pulak and Al-Sultan [25], Chen and Lai [24] 80$ a 

Duffuaa and El-Ga’aly [26] 67.5$ r 

Duffuaa and El-Ga’aly [26] 4$ R 

Duffuaa and El-Ga’aly [26] 6$ c 

Best guess by authors $15 𝑐1 

Best guess by authors $10 𝑐2 

Best guess by authors $12 𝑐3 

Best guess by authors $11 𝑐4 

Duffuaa and El-Ga’aly [26] 1$ I 

Duffuaa and El-Ga’aly [26] 2$ g 

Best guess by authors $400 𝑘1 

Best guess by authors $300 𝑘2 

Best guess by authors 0.15 𝑃1= 𝐿𝑄𝐿1 

Best guess by authors 0.15 𝑃2= 𝐴𝑄𝐿2 

Best guess by authors 0.20 𝛽1 

Best guess by authors 0.20 𝛼2 

 
 
TABLE 4. The optimal values of objective function and 

design parameters 

Objective function Design parameters 

𝒇∗ 𝒅𝟏 𝒅𝟐 n 

538.1867 0 9 10 
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As can be seen, the optimal solution seems to be 

unbalanced because the lot should be sold in the 

secondary market in most of the cases. Thus, the values 

of the parameters are not selected correctly. Therefore, a 

sensitivity analysis is carried out to investigate the 

effects of each parameter. 

 

4. 2. Sensitivity Analysis           In this section, 

sensitivity analysis is conducted to study the impact of 

the model parameters. The results of 50%−
+  variations 

for each parameter are denoted in Table 5. All values for 

objective function are rounded to one decimal digit. 
 

TABLE 5. Sensitivity analysis on the model parameters 

R
o

w
 

Model Parameters 
Design 

Parameters 

O
p

ti
m

al
 

O
b

je
ct

iv
e 

F
u

n
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n

 

P
er

ce
n
t 

C
h
an

g
e 

o
f 

O
b
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iv

e 

F
u
n
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io
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LS

L 
T 𝝈 N a r R c 𝒄𝟏 𝒄𝟐 𝒄𝟑 I g 𝒌𝟏 𝒌𝟐 𝑳𝑸𝑳𝟏 𝑨𝑸𝑳𝟐 𝜷𝟏 𝜶𝟐 𝒅𝟏 𝒅𝟐 n   

1 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1 2 400 300 0.15 0.15 0.2 0.2 0 9 10 538.2 Original 

2 10 10.5 
0.7

5 
1000 80 67.5 4 6 15 10 12 1 2 400 300 0.15 0.15 0.2 0.2 0 9 10 

-
2348.1 

-536.3 

3 10 10.5 
0.2

5 
1000 80 67.5 4 6 15 10 12 1 2 400 300 0.15 0.15 0.2 0.2 4 11 44 11922 2115.1 

4 10 10.5 0.5 1500 80 67.5 4 6 15 10 12 1 2 400 300 0.15 0.15 0.2 0.2 0 9 10 809.9 50.5 

5 10 10.5 0.5 500 80 67.5 4 6 15 10 12 1 2 400 300 0.15 0.15 0.2 0.2 0 9 10 266.5 -50.5 

6 10 10.5 0.5 1000 120 67.5 4 6 15 10 12 1 2 400 300 0.15 0.15 0.2 0.2 0 9 10 7647.1 1320.8 

7 10 10.5 0.5 1000 80 33.7 4 6 15 10 12 1 2 400 300 0.15 0.15 0.2 0.2 0 7 10 -27214 -5156.3 

8 10 10.5 0.5 1000 80 67.5 6 6 15 10 12 1 2 400 300 0.15 0.15 0.2 0.2 0 9 10 538.2 0.0 

9 10 10.5 0.5 1000 80 67.5 2 6 15 10 12 1 2 400 300 0.15 0.15 0.2 0.2 0 9 10 538.2 0.0 

10 10 10.5 0.5 1000 80 67.5 4 9 15 10 12 1 2 400 300 0.15 0.15 0.2 0.2 0 9 10 -30962 -5852.7 

11 10 10.5 0.5 1000 80 67.5 4 3 15 10 12 1 2 400 300 0.15 0.15 0.2 0.2 0 9 10 32038 5852.6 

12 10 10.5 0.5 1000 80 67.5 4 6 23 10 12 1 2 400 300 0.15 0.15 0.2 0.2 0 9 10 314.9 -41.5 

13 10 10.5 0.5 1000 80 67.5 4 6 15 5 12 1 2 400 300 0.15 0.15 0.2 0.2 0 9 10 546.2 1.5 

14 10 10.5 0.5 1000 80 67.5 4 6 15 10 14 1 2 400 300 0.15 0.15 0.2 0.2 0 9 10 279.9 -48.0 

15 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1.5 2 400 300 0.15 0.15 0.2 0.2 0 9 10 533.2 -0.9 

16 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 0.5 2 400 300 0.15 0.15 0.2 0.2 0 9 10 543.2 0.9 

17 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1 3 400 300 0.15 0.15 0.2 0.2 0 9 10 -105.6 -119.6 

18 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1 1 400 300 0.15 0.15 0.2 0.2 0 9 10 1182 119.6 

19 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1 2 600 300 0.15 0.15 0.2 0.2 0 9 10 213.7 -60.3 

20 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1 2 400 150 0.15 0.15 0.2 0.2 0 9 10 1664.3 209.2 

21 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1 2 400 300 0.23 0.15 0.2 0.2 0 9 10 538.2 0.0 

22 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1 2 400 300 0.08 0.15 0.2 0.2 0 13 21 
-

1148.4 
-313.4 

23 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1 2 400 300 0.15 0.23 0.2 0.2 0 9 10 538.2 0.0 

24 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1 2 400 300 0.15 0.08 0.2 0.2 0 13 21 
-

1148.4 
-313.4 

25 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1 2 400 300 0.15 0.15 0.3 0.2 0 9 10 538.2 0.0 

26 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1 2 400 300 0.15 0.15 0.1 0.2 2 21 34 -595.3 -210.6 

27 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1 2 400 300 0.15 0.15 0.2 0.3 0 9 10 538.2 0.0 

28 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1 2 400 300 0.15 0.15 0.2 0.1 2 21 34 -595.4 -210.6 
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It is observed that 50% increase in the standard 

deviation does not change the optimal solution, but the 

value of the objective function decreases 536.3%. Also, 

it is observed that 50% decrease in the standard 

deviation completely changes the optimal solution and 

the value of objective function increases 2115.1%. 

As the lot size changes 50%−
+  , the optimal objective 

function changes approximately 50.5%−
+ . On the other 

hand, the lot size impacts on the objective function. 

Also, it is observed that 50%−
+  change in the lot size 

does not change the optimal solution. Thus, optimal 

solution is not very sensitive to the changes in the lot 

size. 

It is observed that 50% increase in the item price at 

primary market does not change the optimal solution, 

but the value of the objective function increases 

1320.8%. Also, it is observed that 50% decrease in the 

item price at secondary market does not change 𝑑1 and 

n but changes 𝑑2 to 7. The value of the objective 

function  decreases 5156.3% due to this change. 

The rework cost has been changed by 50%−
+ . The 

optimal solution and the value of objective function do 

not change due to this deviation in rework cost. Thus, 

the objective function and optimal solution are not 

sensitive to the changes in R. 

It is observed that 50% increase in the production 

cost per item does not change the optimal solution but 

the value of the objective function decreases 5852.7%. 

Also, it is observed that 50% decrease in the production 

cost per item does not change the optimal solution and 

the value of objective function  increases 5852.6%. 

It is observed that 50% deviation in 𝑐1, 𝑐2 and 𝑐3 has 

no effect on the optimal solution. The value of objective 

function changes slightly due to this change in 𝑐2. The 

value of objective function  decreases 41.5% due to 

50% increase in 𝑐1 and 48% due to 50% increase in 𝑐3. 

Thus, the objective function and optimal solution are 

not sensitive to the changes in 𝑐2. 

It is observed that 50% deviation in inspection cost 

per item has no effect on the optimal solution and the 

value of objective function changes slightly due to this 

change. Thus, the objective function and optimal 

solution are not sensitive to the changes in inspection 

cost per item. 

It is observed that 50% deviation in give-away cost 

per unit of excess material does not change the optimal 

solution and the value of objective function 

changes 119.6%+
− . Thus, the optimal solution is not 

sensitive to the changes in give-away cost per unit of 

excess material. 

It is observed that 50% increase in the quality loss 

coefficient in the primary market does not change the 

optimal solution but the value of the objective function 

60.3% decreases. Also, it is observed that 50% decrease 

in the quality loss coefficient in the secondary market 

does not change the optimal solution but the value of 

objective function 209.2% increases. Thus, the optimal 

solution is not sensitive to the changes in the quality 

loss coefficients. 

It is observed that 50% increase in Limiting Quality 

Level of the primary market has no effect on the optimal 

solution and objective function. Also, it is observed that 

𝑑2 and n increases but 𝑑1 does not change due to 50% 

decrease in Limiting Quality Level of the primary 

market. The value of the objective function 313.4% 

decreases due to this change. 

It is observed that 50% increase in Acceptable 

Quality Level of the secondary market has no effect on 

the optimal solution and objective function. Also, it is 

observed that 𝑑2 and n increases but 𝑑1 does not change 

due to 50% decrease in Acceptable Quality Level of the 

secondary market. The value of the objective function 

313.4% decreases due to this change. 

It is observed that 50% increase in probability of 

type-II error in making a decision of primary market has 

no effect on the optimal solution and objective function. 

Also, it is observed that 50% decrease in probability of 

type-II error in making a decision of the primary market 

completely changes the optimal solution and the value 

of objective function 210.6 % decreases. 

It is observed that 50% increase in probability of 

type-I error in making a decision of the secondary 

market has no effect on the optimal solution and 

objective function. Also, it is observed that 50% 

decrease in probability of type-I error in making a 

decision of secondary market completely changes the 

optimal solution and the value of objective function 

210.6 % decreases. 

 

4. 3. Comparing with Rectifying Sampling Plan        
Our aim is the economic design of a repetitive sampling 

plan, while products are sold in two different markets. 

So, we cannot compare the results with double sampling 

plan because the same procedure is not used in the 

double sampling plan. But, in Section 4.3, the 

performance of this repetitive sampling plan is 

compared with the rectifying sampling plan proposed by 

FallahNezhad and JafariNodoushan [12] with 

considering the same constraints. The results of the 

comparison study are shown in Table 6. From the 

results of this table, it is concluded that the rectifying 

sampling plan has better performance in comparison 

with the repetitive sampling plan in some cases. 
 

 

4. 4. Processes with Unknown Mean      At this 

stage, the analysis was with known process mean of 

10.5. Now, the process mean (T) is assumed to be 

unknown and the optimal process mean be found by 

using the optimization model. 
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TABLE 6. The results of the comparison study 
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 LSL T 𝝈 N a r R c 𝒄𝟏 𝒄𝟐 𝒄𝟑 I g 𝒌𝟏 𝒌𝟐 𝑳𝑸𝑳𝟏 𝑨𝑸𝑳𝟐 𝜷𝟏 𝜶𝟐   

1 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1 2 400 300 0.15 0.15 0.2 0.2 538.2 1523.7 

2 10 10.5 0.25 1000 80 67.5 4 6 15 10 12 1 2 400 300 0.15 0.15 0.2 0.2 11922 1194.1 

3 10 10.5 0.5 1500 80 67.5 4 6 15 10 12 1 2 400 300 0.15 0.15 0.2 0.2 809.9 2306.7 

4 10 10.5 0.5 1000 120 67.5 4 6 15 10 12 1 2 400 300 0.15 0.15 0.2 0.2 7647.1 1241.1 

5 10 10.5 0.5 1000 80 67.5 4 3 15 10 12 1 2 400 300 0.15 0.15 0.2 0.2 32038 33024 

6 10 10.5 0.5 1000 80 67.5 4 6 15 5 12 1 2 400 300 0.15 0.15 0.2 0.2 546.2 1795.4 

7 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1.5 2 400 300 0.15 0.15 0.2 0.2 533.2 1352.4 

8 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 0.5 2 400 300 0.15 0.15 0.2 0.2 543.2 1694.9 

9 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1 1 400 300 0.15 0.15 0.2 0.2 1182 2167.5 

10 10 10.5 0.5 1000 80 67.5 4 6 15 10 12 1 2 400 150 0.15 0.15 0.2 0.2 1664.3 2517.8 

 

 

The optimal objective function for different values 

of process mean from 10.2 to 11.4 is presented in Table 

7 and plotted in Figure 1. It is seen that the objective 

function is a concave function of process mean and the 

optimal process mean is 10.8. 

At this point, the optimal objective function is 

9064.3 and optimal solution of design parameters 

(𝑑1, 𝑑2, 𝑛) is (11, 22, 97), respectively. 

 
4. 5. Processes with Unknown Standard 
Deviation        So far, the analysis was with known 

process standard deviation of 0.5. 

 

 
TABLE 7. Process mean and optimal objective function 

T 𝐸(𝑃𝑁) 

10.2 -1550.6 

10.3 -1066.3 

10.4 -395.9 

10.5 538.2 

10.6 3095.3 

10.7 7520 

10.8 9064.3 

10.9 8715.2 

11 8221.4 

11.1 7644.4 

11.2 7009.7 

11.3 6334.5 

11.4 5629.8 

In practical situations process standard deviation may be 

unknown. Now, the process standard deviation (𝜎) is 

assumed to be unknown and the optimal objective 

function and design parameters can be found by using 

the optimization model. 
The optimal objective function for different values 

of process standard deviation from 0.1 to 0.7 is 

presented in Table 8 and plotted in Figure 2. 

It can be seen that the objective function decreases 

when process standard deviation increases as we 

expected. Also, when standard deviation increases to 

0.6, it is seen that the objective function becomes 

negative, thus production of the item will not be 

economical and must be stopped. 

 

4. 6. Considering Inspection Errors        The 

probability  that a  produced  item is categorized as non- 

 

 

 
Figure 1. The optimal objective function for different values 

of process mean 
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TABLE 8. Process standard deviation and optimal objective 

function 

𝝈 𝐸(𝑃𝑁) 

0.1 12361.0 

0.2 12233.0 

0.3 11485.0 

0.4 6875.9 

0.5 538.2 

0.6 -959.5 

0.7 -1957.5 

 

 

conforming under the presence of inspection errors 

(observed probability of unconformity for one item) is 

given by: 

𝑃𝑒 = 𝑃 ∗ (1 − 𝑒2) + (1 − 𝑃) ∗ 𝑒1  (26) 

where 𝑒1 is the probability of Type I error and 𝑒2 is the 

probability of Type II error. It is worth noting that the 

apparent probability of unconformity for one item is 

affected by the inspection errors. 

Thus, the probability of selling the lot in the primary 

and secondary markets and reworking are as following, 

respectively: 

𝑃(𝐷𝑒 ≤ 𝑑1) =  ∑ (
𝑛
𝑖
)

𝑑1
𝑖=0 𝑃𝑒

𝑖(1 − 𝑃𝑒)
𝑛−𝑖  (27) 

𝑃(𝑑1 < 𝐷𝑒 ≤ 𝑑2) =  ∑ (
𝑛
𝑖
) 𝑃𝑒

𝑖(1 − 𝑃𝑒)
𝑛−𝑖 𝑑2

𝑖=𝑑1+1
  (28) 

𝑃(𝐷𝑒 > 𝑑2) =  ∑ (
𝑛
𝑖
) 𝑃𝑒

𝑖(1 − 𝑃𝑒)
𝑛−𝑖 𝑛

𝑖=𝑑2+1
=  1 −

 ∑ (
𝑛
𝑖
) 𝑃𝑒

𝑖(1 − 𝑃𝑒)
𝑛−𝑖 𝑑2

𝑖=0   
(29) 

Under the presence of inspection errors, the expected 

profit per lot is given by: 

𝑃𝑁 =

 

{
 
 
 

 
 
 
𝑎𝑁 − 𝑔(𝑦′ − 𝐿𝑆𝐿)𝑁 − 𝐼𝑛 − 𝑐𝑦𝑁 − (𝑁 − 𝑛)𝐿01 − 𝑛𝐿11 − (𝑁 − 𝑛)𝑃𝑐1

−𝑛(1 − 𝑃)𝑒1𝑐4 − 𝑛𝑃(1 − 𝑒2)𝑐2 − 𝑛𝑃𝑒2𝑐1           𝑖𝑓 𝑃(𝐷𝑒 ≤ 𝑑1)

𝑟𝑁 − 𝑔(𝑦′ − 𝐿𝑆𝐿)𝑁 − 𝐼𝑛 − 𝑐𝑦𝑁 − (𝑁 − 𝑛)𝐿02 − 𝑛𝐿12 − (𝑁 − 𝑛)𝑃𝑐3

– 𝑛(1 − 𝑃)𝑒1𝑐4 − 𝑛𝑃(1 − 𝑒2)𝑐2 − 𝑛𝑃𝑒2𝑐3           𝑖𝑓 𝑃(𝑑1 < 𝐷𝑒  ≤  𝑑2)

𝐸(𝑃𝑁) − 𝑅𝑁 − 𝐼𝑛 − 𝑐𝑦𝑁                        𝑖𝑓 𝑃(𝐷𝑒 > 𝑑2)

  (30) 

 

 
Figure 2. The optimal objective function for different amounts 

of process standard deviation 

The new terms of objective function are explained in 

Table 9: 

Now, the expected profit per lot is given by: 

𝐸(𝑃𝑁) =
1

𝑃 (𝐷𝑒≤𝑑2)
[𝑎𝑁 . 𝑃(𝐷𝑒 ≤ 𝑑1) −

𝑔(𝑦′ − 𝐿𝑆𝐿)𝑁 . 𝑃(𝐷𝑒 ≤ 𝑑1) − 𝐼𝑛 − 𝑐𝑇𝑁 −(𝑁 −

𝑛)𝑘1 ∫
1

𝑦2
∞

−∞
 𝑓(𝑦) 𝑑𝑦. 𝑃(𝐷𝑒 ≤ 𝑑1) 

−𝑛 
𝑘1 ∫

1

𝑦2
 𝑓(𝑦) 𝑑𝑦

∞

𝐿𝑆𝐿

∫ 𝑓(𝑦) 𝑑𝑦
∞

𝐿𝑆𝐿

 . 𝑃(𝐷𝑒 ≤ 𝑑1) − (𝑁 −

𝑛)𝑃𝑐1. 𝑃(𝐷𝑒 ≤ 𝑑1) − 𝑛(1 − 𝑃)𝑒1𝑐4 . 𝑃(𝐷𝑒 ≤
𝑑1) − 𝑛𝑃(1 − 𝑒2)𝑐2. 𝑃(𝐷𝑒 ≤ 𝑑1) +  𝑟𝑁 . 𝑃(𝑑1 <
𝐷𝑒 ≤ 𝑑2) − 𝑔(𝑦

′ − 𝐿𝑆𝐿)𝑁 . 𝑃(𝑑1 < 𝐷𝑒 ≤  𝑑2) −

(𝑁 − 𝑛)𝑘2 ∫
1

𝑦2
∞

−∞
𝑓(𝑦) 𝑑𝑦 . 𝑃(𝑑1 < 𝐷𝑒 ≤  𝑑2)   

−𝑛
𝑘2 ∫

1

𝑦2
 𝑓(𝑦) 𝑑𝑦

∞

𝐿𝑆𝐿

∫ 𝑓(𝑦) 𝑑𝑦
∞

𝐿𝑆𝐿

 . 𝑃(𝑑1 < 𝐷𝑒 ≤ 𝑑2) −(𝑁 −

𝑛)𝑃𝑐3 . 𝑃(𝑑1 < 𝐷𝑒 ≤ 𝑑2) −𝑛(1 − 𝑃)𝑒1𝑐4. 𝑃(𝑑1 <
𝐷𝑒 ≤ 𝑑2) −𝑛𝑃(1 − 𝑒2)𝑐2. 𝑃(𝑑1 < 𝐷𝑒 ≤ 𝑑2) −
𝑛𝑃𝑒2𝑐3. 𝑃(𝑑1 < 𝐷𝑒 ≤ 𝑑2) − 𝑅𝑁 . 𝑃(𝐷𝑒 > 𝑑2) 

(31) 

With considering inspection errors, risk constraints are 

as following: 

𝑃 =  𝑃1 = 𝐿𝑄𝐿1   ;     
𝑃13

1−𝑃11
= 

𝑃 (𝐷𝑒 ≤ 𝑑1)

1−𝑃 (𝐷𝑒>𝑑2)
 ≤  𝛽1  (32) 

𝑃 =  𝑃2 =  𝐴𝑄𝐿2   ;    
𝑃12

1−𝑃11
=  

𝑃 (𝑑1<𝐷𝑒 ≤ 𝑑2)

1−𝑃 (𝐷𝑒>𝑑2)
≥ 1 − 𝛼2  (33) 

The optimal objective function and design parameters 

for different pairs of inspection errors are presented in 

Table 10. It can be seen that with (𝑒1, 𝑒2) = (0.05,0.05), 

the value of optimal objective function is 563.4. 

If we increase 𝑒2 to 0.10, the optimal objective 

function decreases to 506.5 but if we increase 𝑒1 to 

0.10, the optimal objective function decreases to 491.7. 

 

 
TABLE 9. The new terms of objective function 

nP(1 − e2)c2  
The cost of replacing non-conforming items 

identified in a sample with conforming items 

n(1 − P)e1c4  
The cost of replacing rejected conforming items in 

a sample 

𝑛𝑃e2c1  
The cost of non-conforming items sent to the 
customer in the primary market 

𝑛𝑃e2c3  
The cost of non-conforming items sent to the 

customer in the secondary market 

 

 
TABLE 10. Impact of inspection errors on design parameters 

and optimal objective function 

Senario (𝒆𝟏, 𝒆𝟐) 

Design 

Parameters 
Optimal 

Objective 

Function 

Percent 

Change of 

Objective 

Function 𝒅𝟏 𝒅𝟐 𝒏 

1 (0.02,0.05) 1 17 18 448.6 -16.6 

2 (0.02,0.10) 0 9 10 515.8 -4.2 

3 (0.05,0.05) 0 7 8 563.4 4.7 

4 (0.05,0.10) 1 15 16 506.5 -5.9 

5 (0.10.0.05) 3 22 23 491.7 -8.7 
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Thus, increase in inspection error of type I leads to more 

reduction in the objective function. 

 

 

5. CONCLUSION 
 
In this paper, we have developed an optimization model 

for the economic design of repetitive group sampling 

plan while its optimality is resulted by using the 

expected profit of each decision based on the Taguchi’s 

Loss Function and subject to risk constraints in target 

markets. In this approach, the required probabilities of 

each decision were determined employing the Binomial 

Distribution. The product quality was controlled using a 

lot-by-lot sampling plan. The application of the model 

had been demonstrated using a numerical example. 

Sensitivity analysis has been conducted to assess the 

impact of changes in model parameters on the optimal 

value of objective function and design parameters. It 

was observed that with 50%−
+  change in the standard 

deviation, the expected profit per lot changed 

dramatically, e.g. due to 50% decrease in 𝜎, the 

expected profit per lot decreased 536.3%. It could be 

seen massive change in the expected profit per lot due to 

50%−
+  change in production cost per unit of quality 

characteristic (c). However, the expected profit per lot 

changed slightly due to 50%−
+  change in cost 

parameters of 𝑐1, 𝑐2, 𝑐3. There had been 119.6% change 

in the expected profit per lot due to 50%−
+  change in the 

give-away cost per unit of excess material (g). 

Also, we have performed an analysis for the 

processes with unknown mean and the importance of 

combining the sampling plan and optimal process 

adjustment was investigated. The effects of inspection 

errors are also investigated. 
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 هچكيد
 

 

 در حضور دو بازار یتکرار یرینمونه گ طرح یاقتصاد یطراح یبرا یساز ینهمدل به یکمقاله، ما به توسعه  یندر ا

 یدمعلوم تول یانسو وار یانگین نامعلومنرمال با م یعتوزدارای  یفیک مشخصه یکمحصول  یکمورد نظر ما  یندا. فرپردازیم می

 یرشی دسته به دسته،پذ یرینمونه گ یق طرحمحصول از طر یفیتاست. ک یینپا مشخصه فنیحد  یدارا یفیک مشخصهکند.  یم

به  یتاگوچ زیانمحصول با استفاده از تابع انطباق سود و  کردن حداکثر، در مدلشود. تابع هدف مورد استفاده -یکنترل م

 یتدر دو بازار مختلف به عنوان محدود کننده و مصرف هکنند یدتول ریسکباشد. یانطباق محصول م یبرا ینجانش یکعنوان 

 ،مدل یپارامترها یبر رو یتحساس یل. تحلدهیم ی نشان میمثال عدد یکبا استفاده از  را مدل کاربرد. اند شده در نظر گرفته

 .است حساس مدل یدر پارامترها ییراتبه تغنسبت مدل  یجهدهد که نتینشان م
doi: 10.5829/ije.2017.30.07a.11 

 

 

 


