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A B S T R A C T  
 

 

Recently, many meta-heuristic algorithms are proposed for optimization of various problems. Some of 

them originally are presented for continuous optimization problems and some others are just applicable 
for discrete ones. In the literature, sizing optimization of truss structures is one of the discrete 

optimization problems which is solved by many meta-heuristic algorithms. In this paper, in order to 

discover an efficient and reliable algorithm for optimization of truss structures, a discrete optimizer, 
entitled Soccer League Competition (SLC) algorithm and ten popular and powerful solvers are 

examined and statistical analysis is carried out for them. The fundamental idea of SLC algorithm is 

inspired from a professional soccer league and based on the competitions among teams to achieve 
better ranking and players to be the best. For optimization purpose and convergence of the initial 

population to the global optimum, different teams compete to take the possession of the best rating 

positions in the league table and the internal competitions are taken place between players in each team 
for personal improvements. Recently, SLC as a multi-population algorithm with developed operators 

has been applied for optimization of various problems. In this paper, for demonstrating the 

performance of the different solvers for optimal design of truss structures, five numerical examples 
will be optimized and the results show that proposed SLC algorithm is able to find better solutions 

among other algorithms. In other words, SLC can discover new local optimal solutions for some 

examples where other algorithms fail to find that one.  
doi: 10.5829/ije.2017.30.07a.01 

 

 
1. INTRODUCTION1 
 

Optimal design of truss-structures is an interesting area 

of research in the context of discrete optimization where 

design variables can only take pre-specified discrete 

values. There are different techniques for optimization 

of this kind of problem: Firstly, linear and non-linear 

programming techniques which are originally developed 

for continuous optimization problems are applied [1-3]. 

To address this situation, the majority of these 

techniques apply mathematical programming algorithms 

with continuous design variables. Because a discrete 

solution is desired, in this case, the design variables 

must approximate the nearest discrete values. However, 

it is very difficult to approximate the solution without 
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violating any of the constraints. Frequently, the 

approximation of certain variables requires substantial 

changes in the values of some other variables to satisfy 

all the constraints of the problem. Furthermore, this may 

give a value of the objective function that is far from the 

original optimum value. Secondly, meta-heuristic 

algorithms such as genetic algorithms (GAs) due to ease 

of application and lack of the necessity for gradient 

evaluation are of particular interest and are applied by 

many researchers for various optimization problems [4-

6]. For the first time, Jenkins [7] applied a simple 

genetic algorithm and Rajeev and Krishnamoorthy [8] 

developed this algorithm to minimize the weight of truss 

structures. Adeli and Cheng [9], Camp, et al. [10], 

Hasançebi & Erbautur [11], Sarma and Adeli [12], have 

also extended different versions of genetic algorithms 

for this purpose. Lee & Geem [13] have applied a new 

meta-heuristic algorithm called harmony search (HS) 
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algorithm for structures with continuous sizing 

variables. The results have shown that optimal weights 

of truss-structures calculated by the HS algorithm yield 

better solutions than those obtained using conventional 

mathematical algorithms or genetic algorithms. 

Following these applications, many other meta-heuristic 

algorithms including Particle Swarm Optimization 

(PSO) [14], Ant Colony Optimization (ACO) 

algorithms [15], Big Bang–Big Crunch algorithm [16] 

and Particle Swarm Ant Colony Optimization 

(HPSACO) [17], Artificial Bee Colony (ABC) [18], 

Mine Blast algorithm [19], Colliding Bodies algorithm 

[20], Flower Pollination algorithm [21], Adaptive 

Dimensional Search [22], Search Group algorithm [23], 

have improved the minimum weight of truss structures.  

Because each of these algorithms has been invented 

for a specific problem, there is no guarantee that the 

global minimum will be reached. Therefore, more 

algorithms in this field can be developed. On the other 

hand, according to No-Free-Lunch (NFL) theorem [24], 

there is no optimization algorithm for solving all kinds 

of optimization problems. This theorem allows the 

proposal of new algorithms with the hope of solving a 

wider range of problems or specific types of unsolved 

problems and also achieve a better result or even a 

global optimum solution [25]. 

In this paper, the soccer league competition (SLC) 

algorithm is proposed as a new meta-heuristic approach 

to minimize the weight of truss structures. For the first 

time, SLC has been proposed by Moosavian and 

Roodsari [26] and is applied for optimization of water 

distribution networks [27]. Some modifications of SLC 

are performed by hybridizing other algorithms for 

solving knapsack problems [28] and set covering 

problems [29]. SLC gets its basic model from the 

interaction between soccer teams and their players in a 

soccer league competition, where each team 

(population) and player (solution vector) competes for 

gaining the best position in the league table and being 

the best player, respectively. For demonstrating the 

performance of the SLC algorithm, the weight of five 

famous benchmark truss structures in the literature are 

optimized and compared with ten popular meta-heuristic 

algorithms. These algorithms are as follows: 

1) The genetic algorithm (GA) [30], inspired by natural 

evolution, is the first meta-heuristic algorithm and is 

widely applied in different disciplines and engineering 

problems.  

2) The simulated annealing (SA) [31], applies a 

neighborhood search operator to find new solution 

vector.  

3) The ant colony optimization (ACO) [32], initially 

applied for discrete optimization problems, is a 

probabilistic technique which can be reduced to finding 

good paths through graphs. 

4) The harmony search (HS) algorithm [33], utilizes a 

combination of the cross-over operator of GA and the 

neighborhood search operator of SA in the search 

process. 

5) The differential evolution (DE) algorithm [34], [35], 

an improved version of GA with a powerful mutation 

operator, has a significant performance in many 

optimization problems.  

6) The particle swarm optimization (PSO) algorithm 

[36], iteratively trys to improve a candidate solution 

vector with regard to a given measure of quality 

optimizers problems. 

7) The PSOGSA [37] is the combination of particle 

swarm optimization (PSO) and gravitational search 

algorithm (GSA). The basic idea of this hybrid 

algorithm is to integrate the ability of exploration in 

GSA with the ability of exploitation in PSO to 

synthesize both algorithms strength. 

8) The artificial bee colony (ABC) algorithm [38], is an 

enhanced version of DE with a limitation operator to 

escape from local optimum solutions. 

9) The multi-platform toolbox for global optimization 

(MEIGO) [39] is a combination of non-linear 

programming and the scatter search algorithm.  

10) The covariance matrix adaptation evolution strategy 

(CMAES) [40], a powerful optimizer for continuous 

optimization problems, uses covariance characteristic of 

the population to find a new position in the search 

process. 

In this study, the results of SLC and other mentioned 

algorithms are compared and statistical analysis will be 

conducted to show their performance. 

The structure of this paper is as follows: In Section 

2, the theoretical formulation for the optimization 

problem of truss structures is introduced. Also, a global 

algorithm for analysis of truss structures is presented. In 

Section 3, the basic concepts of standard SLC are 

defined. In Section 4, numerical examples are tested and 

the performance and effectiveness of the proposed SLC 

is compared with other meta-heuristic algorithms. 

Finally, in Section 5, the conclusion is presented. 

 

 

2. OPTIMIZATION OF TRUSS STRUCTURES 
 
Optimization of truss structures includes choosing the 

best cross-sections for the truss members, which in turn 

minimize the structural weight in order to satisfy 

inequality stress and displacement constraints that limit 

design variable sizes. Generally, truss structure design is 

formulated as a least-cost optimization problem with a 

selection of member sizes as the decision variables, 

while external forces, truss layout and its connectivity, 

maximum and minimum stress and displacement 

requirements are imposed. The optimization problem 

can be stated mathematically as: 

(1)  




NE

1k

kkk LAγCMin  

http://www.sciencedirect.com/science/article/pii/S0045794909001394
http://www.sciencedirect.com.ezproxy.library.ubc.ca/science/article/pii/S0045794915001042
http://www.sciencedirect.com.ezproxy.library.ubc.ca/science/article/pii/S0045794915001042
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Candidate_solution
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where C is the weight of member k with length Lk and 

cross-section Ak. kγ is the material density of member k 

and NE is the number of members in the truss. This 

objective function is minimized under the following 

constraints: 

(2) 

NNj,ΔΔΔ

NEk,σσσ

max
jj

min
j

max
kk

min
k




 

 (3) 

where k  is the stress of the member k and ∆j the nodal 

displacement of node j; NN the number of nodes with 

unknown deflections, and min and max means the lower 

and upper bounds of variables, respectively. For finding 

k  and ∆j, a structural analysis for truss should be 

performed. In this paper, a global algorithm is 

developed and applied for structural analysis of truss, 

which is described in Section 2.1. To satisfy the 

minimum and maximum bounds of stress and 

displacement, a penalty value will be added to the 

objective function (1). 

In the optimization model, the cross-sections of 

members are the decision variables which should be 

available from a commercial size set: 

(4)        NEk,KA,...,2A,1AAk   

where K is the number of candidate cross-sections. 

 

2. 1. Truss Analysis         One of the routine 

approaches for analysis of truss is the finite element 

method. In this method, each member of truss is 

considered as an element, which has special properties. 

A local stiffness matrix of each element is calculated 

based on the length, section, and topology and material 

property of the member. For truss analysis, the local 

stiffness of all elements is assembled and create a global 

stiffness matrix. The combinations of the global 

stiffness matrix, unknown nodal displacements vector, 

and known nodal forces vector establish a linear system. 

All nodal displacements are calculated by solving this 

linear system of equations. It should be noted that the 

assembling process is computationally expensive and 

time-consuming for huge structures. In this regard, in 

the following section, an efficient global algorithm is 

proposed for finding unknowns directly without 

considering the local stiffness matrices of elements and 

assembling part. 
 

 

2. 1. 1. Global Algorithm for Analysis of Truss 
Structures       Total complementary potential energy 

for a truss structure may be introduced by: 

(5)   i

NE

i

NK

j

NE

i

j

ii

ii FijAU
EA

LF
  
  



1 1 1

010

2

,
2

 

where NK is number of nodes with known deflection, 

i
T

ii FFF 2
is the resultant of internal force and 

Fi
T
=[Fix, Fiy] is the vector of components of internal 

forces along x and y directions for ith member. Li , Ai 

and Ei are length, section area and module of elasticity 

for ith member, respectively.  jyjx
T
j UUU ,  is known 

vector showing displacement values of truss in both x- 

and y- axes. A01 =A10
T
 is a topology matrix for known 

deflection nodes that is defined based on an arbitrary 

direction for the members. At first, we assume a 

connectivity direction for each element of truss then: 

 










ji

ji

ji

ji,

nodeleavesmemberif

connectednotarenodeandmemberif

nodeentersmemberif

10

I-

O

I

A  

where 










10

01
I  and 











00

00
O . The process of truss 

analysis is performed by minimization of   with the 

following constraints: 

(6) NN1,2,...,j,0ij ji

NE

1i

21 


PFA ),(

 
where Pj

T
=[Pjx, Pjy] is external force or load vector 

which is applied on x and y directions of node j. A12 = 

A21
T
 is a topology matrix for unknown deflection nodes 

defined similarly to A10. It should be noted that Eq. (6) 

is force balance in each node which must be satisfied in 

the analysis. Mathematical expression and matrix 

representation of the optimization model is defined as 

follows: 

   ,
2

1
10

1
UAFFKRF

TT 


Min  (7) 

.0to.subject 21  PFA   (8) 

F and P are: 

 NEyNExy2x2y1x1 F,F,...,F,F,F,FT
F  (9) 

 NEyNExy2x2y1x1 P,P,...,P,P,P,PT
P  (10) 

also 
T

U  is 

 NEyNExy2x2y1x1 U,U,...,U,U,U,UT
U  (11) 

and the matrix K  is: 

(12) 



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


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K
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and R  is 
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(13) 






















NER00
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00R
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where 
i

2

2

i
scs

csc













R ,  cosc  ,  sins   and   is 

the angle of the member with respect to x- axis. The 

constrained optimization is transformed into an 

unconstrained one by means of Lagrange multipliers, 

i.e. 

   

 PFA

UAFFKRFMin
TT






21

10

1

2

1



 (14) 

The solution can thus be found by imposing all the 

necessary conditions for an extreme: 

 (15) NE1,2,...,i,
F

,
F iyix










00  

(16) NN1,2,...,j,,
jyjx
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





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
 

To get, in matrix form: 
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By solving Equation (17), the final formula for truss 

structure analysis can be found as follows: 

(18)    PUAKRAAKRA 


01021

1

1221  

(19)  12010 AUAKRF   

Based on finite element method, it is immediate to 

assign a physical meaning to the Lagrange multipliers; 

they represent in fact the unknown nodal deflections. 

Then global algorithm for truss analysis is: 

(20)    PUAKRAAKRAU 


01021

1

1221
 

(21)  12010 AUAKRF   

In this method there is no need to assemble local 

stiffness matrices, therefore CPU time of proposed 

method is less than that for finite element method. A 

key point of the global algorithm in Equation (20) is the 

solution of the linear system of equations, 

(22) BAU
1  

(23)  PUAKRAB  01021
 

(24)  1221 AKRAA   

where A= sparse square symmetric positive definite 

matrix. A fast and robust solution of the linear system 

(22) is an important issue in order to achieve 

computational efficiency [41]. By applying the similar 

approach, the formulation of 3D truss structures can be 

driven.  
 

 

3. SOCCER LEAGUE COMPETITION (SLC)  
 
Given the non-linearity and non-convexity of the truss 

optimization problem and the implicit constraints 

requiring structural analysis to satisfy the continuity and 

energy equations (Equations (5) and (6)), the SLC 

evolutionary algorithm with integer solution vectors are 

applied. The SLC algorithm has successfully achieved 

high performance in optimization of NP-hard problems, 

such as water distribution system design [23], knapsack 

problems [24] and the set-covering problem [26].  

The basic idea of the SLC algorithm is inspired from 

professional soccer leagues. It involves different teams, 

or collections of solution vectors, where each solution 

vector is a team member, and a number of effective 

operators that act on the team members to do an 

efficient search for finding the global optimum.  For the 

truss optimization problem each of the team members, 

or solutions, may comprise the set of design member 

sizes for the structure. 

The key organizing structure of the algorithm is the 

soccer teams, and each team includes fixed players 

(FPs), or fixed sets of member size solution vectors, and 

substitute players (Ss), or substitute sets. The number of 

fixed players and the number of substitute players is 

equivalent for all teams. The power of each team player, 

is estimated based on its objective function value.  For 

minimization problems, e.g., that minimize the design 

weight of a structure, the power of player i on team k, 

PP(k,i) is the inverse value of its objective function 

value. At each iteration of the algorithm, the players are 

rank ordered as a function of their power, and the nFP 

players with the maximum power are considered to be 

the fixed players, while the nS players with the 

minimum power are considered to be substitutes. 

Generally, the power of a team is the average power of 

the fixed players of the team, i.e. 

(25) 




nFP

1t

t)PP(k,/nFP1kTP )()(  

where TP(k) = the power of team k. 

The algorithm mimics matches between teams and 

determines the winners and losers based on their relative 

power, and the winner (loser) of a match has a higher 

(lower) probability of increasing its power for future 

matches. The probability of victory for each team in a 

match is given by: 

(26) ))()()/(()( kTPjTPkTPkPv   
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(27) ))()()/(()( kTPjTPjTPjPv   

Pv stands for the probability of victory and Pv(k) + Pv(j) 

= 1. 

After each match, all players (solution vectors) on 

the winning team undergo imitation and provocation 

operations that change their decisions, and thus their 

power (i.e., strengthen or weaken each player), 

producing improved team members.  

A round is defined as a set of matches that allows 

each team, or improved team, to play with each other’s 

team in the league. If NT is the number of teams in the 

league, at each round of the tournament the number of 

matches is:  

(28) 21nT-nTMatchTotal ))/((   

After finishing the total matches in a given round, all 

players in the league are re-sorted in descending order 

of their power and are assigned to teams. The nFP 

highest ranked players are assigned to team 1, the next 

nFP highest ranked players are assigned to team 2, and 

so on until all NT×nFP fixed players are assigned to a 

team. And finally, the next nS highest ranked players 

are assigned to team 1, and the next nS highest ranked 

are assigned to team 1, and so on until all NT×nS 

substitute players are assigned to a team. Thereafter, the 

next round is played with these new teams.  The user 

specifies the stopping criteria to be either based on a 

limit of the number of rounds undertaken, or the number 

of function evaluations made. Details of the algorithm 

are described in [23] and a MATLAB version of the 

SLC is published in reference
2
. 

Eventually, the optimization process of truss 

structure can be conducted in the following steps: 

Step 1: select initial cross-sections of all members 

randomly.  

Step 2: perform structural analysis by the global 

algorithm to calculate all nodal displacements and 

stresses. 

Step 3: compare the calculated nodal displacements and 

stresses with minimum and maximum allowable 

bounds. If any constraint is violated, a penalty value 

will be added to the objective function (1).  

Step 4: apply the SLC to select a different set of cross-

sections for all members and carry on steps 2, 3 and 4 to 

converge with the global minimum. 

 

 

4. NUMERICAL EXAMPLES 
 
In this section, the performance of standard SLC and ten 

popular and powerful meta-heuristic algorithms 

including the genetic algorithm (GA), the simulated 

                                                           
2
 https://www.mathworks.com/matlabcentral/fileexchange/56480-

soccer-league-competition--slc--algorithm-for-discrete-problems 

annealing (SA), the differential evolution (DE), the 

harmony search (HS), the particle swarm optimization 

(PSO), the ant colony optimization (ACO), the artificial 

bee colony (ABC), the covariance matrix adaptation 

evolution strategy (CMAES), the meta-heuristics for 

bioinformatics global optimization (MEIGO), and the 

particle swarm optimization and gravitational search 

algorithm (PSOGSA) are examined for five standard 

truss structures.  

For the above-mentioned algorithms, the number of 

function evaluations is limited to 10000 and the 

population is set to be 100. In the SLC algorithm, the 

number of fixed players is 10, the number of substitutes 

is 10, and the number of teams is five. It means that the 

population size in this algorithm is also 100. Other 

algorithm parameters are defined as follows: 

GA: uses the mutation rate=0.01 and cross over rate=0.8 

(MATLAB toolbox default). 

SA: uses the reannealing interval=100 and the initial 

temperature=100 (MATLAB toolbox default). 

ACO: uses the initial pheromon=0.1, α = 1, β = 0.02, ρ 

= 0.1.  

DE: uses cross-over rate which is 0.2 and mutation rate 

which is between 0.2 and 0.8. 

HS: uses HMCR = 0.8 and the pitch adjusting parameter 

(PAR) = 0.4. 

PSO: uses acceleration parameters including c1 and c2 

are 2, and the inertia term w is 1. 

ABC: uses number of food sources = 50 and limit factor 

= 100. 

MEIGO: is a black-box solver which uses probability of 

biasing the search towards the bounds = 0.5; merit filter 

relaxation parameter = 0.2 and distance filter relaxation 

parameter = 0.2 and other parameters are selected based 

on [39].    

CMAES: uses coordinate wise standard deviation sigma 

is 0.5 and other parameters are selected based on [40]. 

PSOGSA: uses gravitational constant G0 is 1, 

acceleration rates c1=0.5 and c2=1.5, and velocity factor 

is between 0 to 0.3. 

In the following section, a statistical analysis of 

results for all algorithms is performed and the mean, 

standard deviation, minimum, and maximum of 20 

different runs with random initial population are 

calculated. The mean is the sum of the obtained 

optimum solutions divided by the number of executions. 

It shows the overall performance of the algorithm in 

different runs. The standard deviation indicates the 

variation of the final solution with respect to mean 

value. The small mean and standard deviation values of 

an algorithm show it has a similar behavior in the search 

process for different initial random populations. 

 

4. 1. 10- Member Planar Truss            The ten bar 

truss structure, shown in Figure 1, has previously been 

analyzed by many researchers ([8], [42], [15], [14], 

[18]). The truss members are subjected to stress 

https://www.mathworks.com/matlabcentral/fileexchange/56480-soccer-league-competition--slc--algorithm-for-discrete-problems
https://www.mathworks.com/matlabcentral/fileexchange/56480-soccer-league-competition--slc--algorithm-for-discrete-problems
https://www.mathworks.com/matlabcentral/fileexchange/56480-soccer-league-competition--slc--algorithm-for-discrete-problems


931                                  N. Moosavian and H. Moosavian / IJE TRANSACTIONS A: Basics  Vol. 30, No. 7, (July 2017)    926-936 
 

limitations of ±25 ksi (±172.369 MPa) and all nodes in 

both directions are subjected to displacement limitations 

of ±2.0 in (±50.8 mm). There are 10 independent 

decision variables and the cross-sectional areas of all 

members are included as sizing variables. The material 

of truss members is Aluminum which has mass density 

of 0.1 lb/in
3
 (2768 kg/m

3
), and the elastic modulus of 

10,000 ksi (68.947 GPa). The external forces are 

P1=100 kips (444.822 kN), and P2=0. This example is 

investigated for two cases concerning different discrete 

lists. 
Case A:  
In this case, a set of 42 discrete values have been used 

for the possible cross-sectional areas of each member 

D={1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 

3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 

4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 

13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 1.99, 22.0, 22.9, 

26.5, 30.0, 33.5} (in
2
). 

Case B: 
In this case the discrete variables are selected from an 

available set D={0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 

4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 

10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 

15.5, 16.0, 16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5, 20.0, 

20.5, 21.0, 21.5, 22.0, 22.5, 23.0, 23.5, 24.0, 24.5, 25.0, 

25.5, 26.0, 26.5, 27.0, 27.5, 28.0, 28.5, 29.0, 30.0, 30.5, 

31.0, 31.5} (in
2
). 

In case A, as shown in Table 1, SA, DE, PSO, 

CMAES, MEIGO, PSOGSA, and SLC represent the 

same minimum weight while GA, HS, ACO and ABC 

fail to achieve the answer. The least standard deviation 

belongs to CMAES, SLC, and DE, respectively and 

shows their remarkable reliability in finding the best 

solution for 20 different initial populations and 

executions. On the other hand, PSOGSA unlike PSO 

has the highest standard deviation among other 

algorithms. It also declares its uncertainty for seeking 

the optimal solution. Generally, comparison of the 

results shows that CMAES, SLC, and DE have a better 

performance for solving this example. 
 
 

 
Figure 1. 10-member planar truss 

TABLE 1. Statistical analysis of meta-heuristic algorithms for 

optimization of the 10-member planar truss (caseA) 

 

Mean 

(lb) 

Standard 

Deviation 

Minimum 

(lb) 

Maximum 

(lb) 

GA 5979.6 241.9 5581.8 6604.3 

SA 5748.4 397.8 5490.7 6919.0 

DE 5517.8 22.2 5490.7 5568.1 

HS 5637.5 55.2 5542.9 5737.6 

PSO 5517.2 52.3 5490.7 5626.7 

ACO 5891.3 64.2 5729.5 5989.6 

ABC 5691.5 95.6 5511.4 5894.4 

CMAES 5490.7 0.0 5490.7 5490.7 

SLC 5508.0 14.6 5490.7 5548.1 

MEIGO 5527.6 52.7 5490.7 5671.7 

PSOGSA 5900.2 484.8 5490.7 6960.4 

 

 
TABLE 2. Statistical analysis of meta-heuristic algorithms for 

optimization of the 10-member planar truss (caseB) 

 

Mean (lb) 
Standard 

Deviation 

Minimum 

(lb) 

Maximu

m (lb) 

GA 5895.19 306.64 5530.50 6762.92 

SA 6954.80 918.18 5443.58 8400.92 

DE 5420.04 33.57 5363.60 5479.05 

HS 5613.94 64.47 5488.93 5767.05 

PSO 6048.46 725.72 5342.39 7841.42 

ACO 6030.54 176.92 5510.38 6239.74 

ABC 5542.44 96.20 5365.20 5729.59 

CMAES 5414.81 112.65 5342.39 5692.70 

SLC 5096.44 18.73 5073.06 5149.06 

MEIGO 5363.98 38.34 5342.39 5440.50 

PSOGSA 6022.33 651.52 5342.39 7266.10 

 

 

In case B, Table 2 indicates that SLC algorithm captures 

the best minimum and maximum solution among other 

algorithms. Based on the results of 20 different runs, 

SA, PSO, and PSOGSA have the most standard 

deviation in comparison to other algorithms. It shows 

these algorithms cannot reach their best solution in all 

runs. However, in some executions PSO and PSOGSA 

similar to CMAES and MEIGO have found an 

appropriate minimum weight. It can be concluded that 

the final solutions for PSO and PSOGSA are highly 

dependent on different initial populations. On the other 

hand, SLC, DE, MEIGO have the fewer standard 

deviations and also the least means which prove their 

great performance in all runs. By considering these two 

cases, it can be concluded that for optimization of this 
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truss-structure, SLC, DE and somewhat CMAES and 

MEIGO have more reliable results.  

 

4. 2. A 25- Member Spatial Truss          The 25-

member spatial truss structure demonstrated in Figure 2 

which has been studied by Wu and Chow [42], Lee and 

Geem [13], and Li et al. [14]. 
The material of truss members is Aluminum which 

has mass density of 0.1 lb/in
3
 (2768 kg/m

3
), and the 

elastic modulus of 10,000 ksi (68.947 GPa). The stress 

limitations of all members are ±40 ksi (275.8 MPa) and 

all nodes are subjected to displacement limitations of 

±0.35 inch (±8.89 mm) in three directions. The truss 

structure includes 25 members, which are divided into 

eight groups, as follows: (1) A1, (2) A2_A5, (3) 

A6_A9, (4) A10_A11, (5) A12_A13, (6) A14_A17, (7) 

A18_A21 and (8) A22_A25. The discrete decision 

variables are selected from the set D={0.01, 0.4, 0.8, 

1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2, 5.6, 

6.0} (in
2
). 

Table 3 compares the statistic results obtained by 

SLC with those obtained by other meta-heuristic 

algorithms previously mentioned in the paper. In this 

case, the behavior of PSO and PSOGSA is similar to the 

previous example. Minimum weight calculated by GA, 

SA, and HS is 546.59 lb, 553.05 lb, and 499.71 lb 

respectively which are higher than 487.71 lb obtained 

by DE, ABC, CMAES, MEIGO, PSO, and PSOGSA. In 

this example, all of the minimum weight calculated by 

ACO for 20 different initial population and runs are 

better than above-mentioned algorithms. However, SLC 

could find a new local optimum solution which is 

slightly better than ACO and significantly better than 

other algorithms. SLC, DE, and MEIGO have the least 

standard deviation and we can infer from this results 

that SLC is the most appropriate algorithm for 

optimizing this structure. 
 
 

 
Figure 2. 25-member spatial truss 

 
 

TABLE 3. Statistical analysis of meta-heuristic algorithms for 

optimization of the 25-member spatial truss optimization  

 

Mean (lb) 
Standard 

Deviation 

Minimum 

(lb) 

Maximu

m (lb) 

GA 592.04 38.15 546.59 684.78 

SA 653.96 78.79 553.05 880.78 

DE 487.71 0.00 487.71 487.71 

HS 537.88 18.59 499.71 572.53 

PSO 735.32 149.94 487.71 976.70 

ACO 430.56 18.78 404.67 473.91 

ABC 497.74 9.57 487.71 518.10 

CMAES 495.71 4.73 487.71 506.50 

SLC 402.48 1.30 401.75 404.67 

MEIGO 489.85 8.72 487.71 526.71 

PSOGSA 638.40 128.14 487.71 881.80 

 

 

4. 3. 72- Member Space Truss        The 72-member 

space truss structure demonstrated in Figure 3, has been 

studied by Wu and Chow [42], Lee and Geem [13], Li 

et al. [14] and Kaveh and Talataheri [17]. The material 

of truss members is Aluminum which has mass density 

of 0.1 lb/in
3
 (2768 kg/m

3
), and the elastic modulus of 

10,000 ksi (68.947 GPa). The truss members are 

subjected to stress limitations of ±25 ksi (±172.369 

MPa) and the truss nodes are subjected to displacement 

limitations of ±0.25 in (±6.35 mm) both in x and y 

directions. There are 72 members, which are sorted into 

sixteen groups, as follows: (1) A1–A4, (2) A5–A12, (3) 

A13–A16, (4) A17–A18, (5) A19–A22, (6) A23–A30 

(7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–

A48, (11) A49–A52, (12) A53–A54, (13) A55–A58, 

(14) A59–A66 (15) A67–A70, (16) A71–A72. The 

discrete variables are selected from the set D = {0.1, 

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,0.9,1.0, 1.1,1.2, 1.3,1.4, 

1.5,1.6, 1.7, 1.8, 1.9, 2.0, 2.1,2.2, 2.3,2.4, 2.5, 2.6, 2.7, 

2.8, 2.9, 3.0, 3.1,3.2} (in
2
).  

 
 

 
Figure 3. 72-member space truss 
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Table 4 shows that SLC algorithm has the best 

performance among all other algorithms. In this regard, 

minimum weight calculated by SLC is 375.94 lb while 

this value for ACO is 535.78 lb. GA, DE, CMAES and 

MEIGO could find a same minimum weight equal to 

853.09 lb which shows that they trap in a local optimum 

of this example. Because maximum weight calculated 

by DE and CMAES is also 853.09 lb which shows they 

have found the similar optimum in 20 runs. 

Based on the results, PSO and PSOGSA have failed 

to converge with near optimal solution and high value 

of standard deviation related to these algorithms prove 

that PSO-based algorithms can easily trap in the local 

optimum in each execution and cannot escape from this 

situation by further iterations. 

 
4. 4. 582- Member Space Truss Tower           The 

last design example is the 582-member space truss 

tower with the height of 80 m shown in Figure 4 which 

is taken from Hasançebia, et al. [43]. The objective 

function is minimization of the volume of truss tower. 

The symmetry of the tower truss around both x- and y-

axes is considered to classify the 582 members into 32 

independent design variable groups (Figure 4-b). A 

single load case is exerted such that it consists of lateral 

loads of 5.0 kN applied in both x and y directions and 

vertical loads of -30 kN applied in the z-direction at all 

nodes of the truss [17]. A discrete set of 140 economical 

standard steel cross-sections which are selected from 

W-shape profile list based on area and radius of 

gyration properties is applied to size the variables. The 

displacements of all nodes are limited to ±8.0 cm in any 

direction and the maximum and minimum bounds on 

size variables are taken as 39.74 and 1387.09 cm
2
, 

respectively. 

 

 
TABLE 4. Statistical analysis of meta-heuristic algorithms for 

optimization of the 72-member spatial truss optimization 

 
Mean 

(lb) 

Standard 

Deviation 

Minimum 

(lb) 

Maximum 

(lb) 

GA 905.97 56.21 853.09 1071.42 

SA 1513.64 153.36 1290.70 1869.53 

DE 853.09 0.00 853.09 853.09 

HS 995.37 28.93 951.39 1061.41 

PSO 1905.72 348.65 1033.36 2257.63 

ACO 588.76 30.92 535.78 643.34 

ABC 1259.77 96.95 1108.03 1446.70 

CAMES 853.09 0.00 853.09 853.09 

SLC 386.94 6.62 375.94 402.62 

MEIGO 856.82 16.70 853.09 927.76 

PSOGSA 1418.27 214.48 1011.49 1794.55 

 

The stress and stability constraints of the truss members 

are imposed according to the provisions of ASD-AISC 

(2009) as follows: if i  is positive, it must be lower 

than 0.6Fy and if i  is negative, it must be greater than:  
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(29) 

where E, Fy and λi are the modulus of elasticity, the 

yield stress of steel and the slenderness ratio 

respectively.  

Cc can obtain by the following formula: 

y
c

F

E
C

22
  (30) 

 

 

 
Figure 4. 582-member space truss tower 
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For the tension members, λi must be lower than 300, 

while  for the compression members λi must be lower 

than 200. 

In this problem, the total volume of truss structure is 

compared for different optimization algorithms. What 

stands out from Table 5 is the fact that MEIGO has had 

the best performance at 23.29 m
3
 just ahead of SLC at 

24.54 m
3
. This result indicates that MEIGO can find a 

better local optimum solution in problems with a huge 

number of truss members. This property is due to the 

application of local search algorithm and non-linear 

programming approach in this black-box solver. 

However, SLC with a smaller value of standard 

deviation is more reliable. In spite of weak performance 

of GA in the previous examples, it has considerable 

performance to find a near optimal solution in a limited 

number of function evaluations in this example. It also 

shows that GA is a good algorithm in the initial phase of 

the search process for high dimensional problems. HS 

algorithm also could achieve an acceptable minimum 

solution of 30.1 m
3
 with minimum standard deviation 

among all algorithms. SA, DE, and ABC have almost 

similar mean and minimum values and slightly better 

than CMAES. The PSO, PSOGSA and ACO place in 

the bottom of the list with minimum volume of 43.74, 

38.06 and 56.14 m
3
 and account as the least preferred 

algorithms in our assessment.  
 

 

5. CONCLUSIONS 
 
In this paper, ten meta-heuristic algorithms along with 

SLC algorithm have been used to solve the discrete 

optimization of truss structures. A statistical analysis of 

these optimizers shows that SA, PSO, and PSOGSA 

cannot discover optimal solutions effectively even in the 

small structures. 

 
TABLE 5. Statistical analysis of meta-heuristic algorithms for 

optimization of the 582-member space truss 

 
Mean (m3) 

Standard 

Deviation 

Minimum 

(m3) 

Maximum 

(m3) 

GA 28.97 2.07 25.84 32.15 

SA 35.03 5.03 28.84 52.14 

DE 34.56 1.94 31.13 37.16 

HS 31.57 0.87 30.10 33.07 

PSO 52.89 4.71 43.74 64.26 

ACO 63.15 3.93 56.14 69.41 

ABC 33.85 2.45 29.59 38.81 

CAMES 38.89 3.14 33.91 46.39 

SLC 27.25 1.84 24.54 32.19 

MEIGO 26.88 3.37 23.29 34.59 

PSOGSA 49.75 5.70 38.06 57.95 

On the other hand, the high values of standard 

deviations indicate the dependency and sensitivity of 

these algorithms on the different initial populations. 

Therefore, there is no guarantee for finding an optimal 

solution in sizing the optimization of trusses using these 

techniques in different runs. ACO, in some cases, has an 

appropriate performance that detects local optimum 

solutions except in huge structures. 

DE, CMAES, and MEIGO have minimum standard 

deviation values and almost achieve an identical 

optimum solution in small structures. However, the 

optimal solution of MEIGO is better than other methods 

used for huge structures. GA, HS, and ABC partly 

converge to the same results and in some cases, they 

discover global optimum solutions. Generally, in 

comparison to other algorithms, they have a moderate 

proficiency in the optimization of truss structures. 

Finally, SLC by using multi operators and multi sub-

populations is able to find new local or global optimum 

solutions in discrete problems. Generally, it is a reliable 

optimizer for sizing design of truss structures.  
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 هچكيد
 

 

اند. برخی از آنها های فراکاوشی بسیاری  برای بهینه سازی مسایل مختلف مهندسی ارایه شدههای اخیر، الگوریتمدر سال

-کار میه مخصوص حل مسایل بهینه سازی پیوسته هستند و برخی دیگر فقط برای تحلیل مسایل بهینه سازی گسسته ب

وسیله ه های خرپایی یکی از مسایل بهینه سازی گسسته است که ببهینه سازی ابعاد سازه که دهدروند. تحقیقات نشان می

یافتن الگوریتمی قابل اطمینان و کارا در  به منظوردر این مقاله،  طراحی و حل شده است.های فراکاوشی مختلف الگوریتم

( و ده الگوریتم SLCنام الگوریتم رقابت لیگ فوتبال )ه های خرپایی، یک الگوریتم بهینه سازی گسسته ببهینه سازی سازه

گیرد. ایده تحلیل آماری مورد بررسی قرار می با شوند و نتایج آنهابهینه سازی معروف و قدرتمند با یکدیگر مقایسه می

های فوتبال برای رسیدن به جایگاه بهتر در ای فوتبال الهام و بر اساس رقابت میان تیماز لیگ حرفه SLCاصلی الگوریتم 

 جدول و رقابت میان بازیکنان برای کسب عنوان بهترین بازیکن شکل گرفته شده است. برای فرایند بهینه سازی و

یابی به بهترین رده های مختلف برای دستها یا جمعیتهای اولیه به بهینه سراسری، نه تنها تیمهمگرایی جمعیت جواب

کنند، بلکه رقابتی درون تیمی برای کسب عنوان بهترین بازیکن تیم میان بازیکنان در جدول رده بندی با یکدیگر رقابت می

وان یک الگوریتم چندجمعیتی با عملگرهای متنوع برای بهینه سازی مسایل به عن SLCوجود دارد. اخیرا، الگوریتم 

های های مختلف در بهینه سازی سازهدر این مقاله برای مشاهده عملکرد الگوریتم است. رفته کاره مختلف بهینه سازی ب

قادر است جواب های  SLCدهند که الگوریتم شوند و نتایج  حاصله نشان میخرپایی، پنج مثال عددی تحلیل و بهینه می

ها ارائه دهد در حالی که های بهینه جدیدی برای برخی مثالتواند جوابمی SLCبهتری ارائه کند. به بیان دیگر، الگوریتم 

 .ها دست  یابندتوانند به این جوابدیگر الگوریتم ها نمی
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