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A B S T R A C T  
 

 

In this paper, to cope with the stochastic dynamic (or multi-period) problem, two new quadratic 

assignment-based mathematical models corresponding to the dynamic and static approaches are 

developed. The product demands are presumed to be dependent uncertain variables with normal 
distribution having known expectation, variance, and covariance that change from one period to the 

next one, randomly. In the proposed models, time value of money and the decision maker’s attitude 
about uncertainty are also considered. The models are verified and validated by performing statistical, 

robustness and stability analyses carried out by using design of experiment and benchmark methods. In 

addition, the effect of dependency of product demands and interest rate on the total cost function of the 
proposed models has also been investigated. The dynamic programming algorithm, which is coded in 

Matlab, is used to solve the models. The main conclusions are as follows: (i) the dynamic layout 

behaves like static layout in the case of low facility rearrangement cost; (ii) unlike the static layout, the 
robustness and stability of the dynamic layout depend on the facility rearrangement cost; (iii) the 

decision maker’s attitude about uncertainty affects the robustness of each of the dynamic and static 

layouts; (iv) considering non-zero interest rate leads to increase in the total cost over the range of 
uncertainty; and (v) regarding both the dynamic and the static layouts, the effect of dependency of 

product demands on the total cost is a function of the decision maker’s defined percentile level.   

doi: 10.5829/idosi.ije.2017.30.05b.11 
 

 
1. INTRODUCTION1 
 

Facility layout problem (FLP) has a considerable effect 

on manufacturing cost; hence, it can be viewed as a 

crucial subject in the design of manufacturing systems. 

Material handling cost (MHC) is the most commonly 

used measure to evaluate the efficiency of a facility 

layout. The MHC forms twenty to fifty percent of the 

total manufacturing cost and it can be decreased by at 

least ten to thirty percent by an efficient layout design 

[1].  

According to the nature of product demands and 

time planning horizon, the FLP can be classified into the 

four following layout problems. (i) Static FLP (SFLP) 

with deterministic constant flow of materials over a 
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single time period, (ii) Dynamic FLP (DFLP) having 

different deterministic flow of materials in each period, 

(iii) Stochastic static FLP (SSFLP) with stochastic 

materials flow over a single time period, and (iv) 

Stochastic dynamic FLP (SDFLP), where the materials 

flow is a random variable with different parameters in 

each period. The SDFLP is the most realistic and 

complicated form of the layout problems so that the first 

three aforementioned problems can be regarded as a 

special case of it. Design of dynamic and static layouts 

are two different approaches to deal with the multi-

period FLP. Using dynamic approach, an optimal layout 

is designed for each period so that the total material 

handling and rearrangement costs is minimized [2]. This 

approach has the advantage of having an optimal layout 

in each period and the disadvantage of having 

rearrangement cost. Using the Static approach, each 

period is considered as a SSFLP so that it is solved 
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separately regardless of other periods data. In fact, using 

this method, an optimal layout is designed for each 

period without considering the facility relocating cost 

and the layout configuration can be easily changed from 

period to period. In a manufacturing system, robustness 

and stability are two important properties of a machine 

layout that display the flexibility and performance of the 

system, respectively. 
 
 

2. LITERATURE REVIEW 
 
In this section, the previous researches regarding the 

quadratic assignment problem (QAP), the dynamic and 

static approaches dealing with the SSFLP and the 

SDFLP along with the dynamic programming (DP) 

resolution approach are surveyed. In general, the FLP 

having discrete representation and equal-sized facilities 

assigned to the same number of known locations is 

usually formulated as the QAP model. In discrete 

representation, the manufacturing cite is split into a 

quantity of the same-sized facility places. Balakrishnan 

et al. [3] proposed the following QAP model for the 

DFLP, where the deterministic product demands change 

from one time period to the another one in the multi-

period planning horizon: 

 
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
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(4) 

where Equation (1) represents the total cost function. 

Constraints (2) and (3) ensure assigning each facility in 

each period to exactly one location and vice versa. 

Equation (4) represents the decision variables that are 

the solution to the problem so that they determine the 

location of each facility in each period.  

For a given layout π, if the decision maker considers 

U(π, p) as the highest value (upper bound) of the total 

cost C(π) with the confidence level p, then U(π, p) given 

in Equation (5) can be minimized rather than 

minimizing C(π) [4-7].  

       , pU p E C Z Var C   
 

(5) 

Tavakkoli-Moghaddam, Javadi, and Mirghorbani [8] 

developed a simulated annealing (SA) algorithm to 

solve the inter and intra-cell layout problems by 

considering single time period and stochastic demands. 

Tavakkoli-Moghaddam et al. [6] proposed a novel 

QAP-bases formulation to simultaneous plan of the 

optimum intra and inter-cell facility layouts for the 

SSFLP. Palekar et al. [9] designed the SDFLP using 

quadratic integer programming model. Finally, they 

used dynamic programming (DP) and approximate 

solution methods to solve the problem in small and 

large sizes, respectively. Montreuil and Laforge [10] 

addressed the SDFLP by a scenario tree of probable 

futures. Krishnan et al. [11] proposed three 

mathematical models for designing a facility layout in 

an uncertain environment by considering multiple 

product demand scenarios. Moslemipour and Lee [7] 

designed an optimal machine layout for each period of 

the SDFLP by considering independent uncertain 

product demands with normal. Lee and Moslemipour 

[12] developed a novel mathematical formulation for 

planning a facility layout with the highest stability for 

the total time scheduling prospect of the uncertain 

DFLP by utilizing the QAP model. This layout has the 

maximal capability to exhibit a little sensitivity to 

product demand changes. Lee et al. [13] proposed a 

novel hybrid AC/SA approach using ant colony and SA 

having outstanding performance to solve the SDFLP.  

Moslemipour et al. [14] reviewed the intelligent 

approaches for solving the layout problems, 

comprehensively. Tavakkoli-Moghaddam et al. [15] 

proposed a robust optimization method to design a 

dynamic cellular manufacturing system (CMS) by 

incorporating production planning so that processing 

time of parts is assumed to be stochastic. Hasani et al. 

[16] proposed a hybrid intelligent approach for solving 

the DFLP. Tavakkoli-Moghaddam [17] considered 

continuous form of the FLP. Tayal et al. [18] proposed 

an integrated resolution approach by combining the SA 

algorithm with the DEA and TOPSIS as practical 

decision-making methods for solving a multi-objective 

SDFLP. They considered some quantitative and 

qualitative objectives, such as total material handling 

cost, flow distance, closeness ratio and maintenance 

issues. 

Unlike the work of Tayal et al. [18], in this paper, 

two new QAP-based single-objective mathematical 

models are developed to design each of the dynamic and 

static layouts for the SDFLP. In the proposed models, 

the product demands are presumed to be dependent 

uncertain variables with normal distribution having 

known expectation, variance, and covariance that 

change from one period to the next one randomly. 

Besides, the time value of money is also considered. 

Regarding the normal distribution assumption, it is 

essential to mention that many real world data naturally 

follow a normal distribution [4]. Product demands have 

also been considered as normally distributed random 

variables in the layout design problem [6, 19-21]. 
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Besides, to verify and validate the proposed models, the 

statistical, robustness and stability analyses are carried 

out by using the design of experiment (DOE) and 

benchmark methods. Doing so, the behaviour of the 

dynamic and static layouts are compared with each 

other from the robustness and stability points of view. 

The DP algorithm is only used to solve small-sized 

dynamic layout problems. However, in this paper, to 

have more reliable conclusions, it is used to solve the 

proposed models because the exact optimal solutions 

are obtained.  

 
 

3. PROPOSED MODELS  
 
In this section, the proposed models are developed by 

considering the Assumptions (i) to (ix) and the 

parameters given in Table 1.  
 

TABLE 1. Notations used in the proposed models 
Notation Description 

K Total quantity of parts 

M Total quantity of machines / locations of machine 

T Total quantity of periods  
k Part index   (k = 1, 2,. . . , K)  

t Period indicator   (t = 1, 2,..., T )  

i , j Machine indices  (i, j = 1, 2,. . . , M);  i ≠ j 
l , q Machine location indices  (l, q = 1, 2,. . . , M);  l ≠ q 

Nki Process number for the process performed on part k by 

machine i 
ftijk Materials flow linking machines i and j in period t 

created by part k 

fijk Materials flow linking machines i and j created by part 
k 

ftij Materials flow linking machines i and j in period t 

created by all parts 
Dtk Part k demand during period t 

Bk Part k batch volume 

Ctk Cost of movements for part k in period t 
Ck Present value of the movement cost per batch for part 

k 

Ir Interest rate 
atilq Cost of shifting machine i from location l to location q 

in period t 

a0ilq Present value of cost of shifting machine i from 
location l to location q  

dlq Distance from machine location l to machine location 

q 
xtil Decision variable for dynamic machine layout 

problem 

C(π) Total cost of layout π 
Zp Value of the standard normal variable Z by 

considering confidence level p 

E( ) Expectation 
Var( )  Variance  

Cov ( ) Covariance 

U(π, p) Maximum value (upper bound) of C(π) with the 
confidence level p 

OFVdm The objective function of the dynamic machine layout 

design model 
OFVsm The objective function of the static machine layout 

design model 

 
 Equal-sized machines are assigned to the same 

number of known machines locations. 

 Discrete representation of the SDFLP is considered. 

 Demands of parts are dependent normally 

distributed random variables with known expected 

value, variance, and covariance that change from 

one period to the next period at random.  

 The confidence level (percentile p), which represents 

the decision maker’s attitude about uncertainty in 

product demands, is considered.  

 Time value of money is considered.  

 The parts are moved in batches between facilities. 

 The data on number of facilities (machines), number 

of periods,  machine sequence, present value of part 

movement cost, transfer batch size, distance between 

facility locations, money interest rate for each period 

(e.g. year), present value of facility (machine) 

rearrangement cost, the expected value, variance, 

and covariance of  part demands in each period are 

known as inputs of the models. 

 There is no constraint for dimensions and shapes of 

the shop floor.  

 Machines can be laid out in any configuration such 

as rectangular and U-shaped configurations. 

 
3. 1. Dynamic Layout Design Model         The flow 

of materials linking machines i and j in period t created 

by part k can be calculated by using Equation (6), where 

the condition │Nki─ Nkj│═ 1 refers to two consecutive 

operations, which are done on part k by machines i and 

j. Since the demand is divided by the batch size, the 

quantity of the flow should be a discrete value. As 

mentioned in the assumptions of the problem, the 

demand for part k in period t (Dtk) is a random variable 

with normal distribution. Therefore, according to 

Equation (6), the materials current created by part k in 

period t from facility i to facility j and vice versa (ftijk) is 

also a random variable with a normal distribution 

having the expectation and variance given in Equations 

(7) and (8) respectively.  

The total materials current linking machines i and j 

in period t created by all parts (i.e. ftij) is obtained by 

using Equation (9) in which ftijk is a random variable 

with normal distribution and thereby ftij is also a random 

variable with a normal distribution having the 

expectation and variance shown in Equations (10) and 

(11) respectively. Inserting Equations (7) and (8) into 

Equations (9) and (10) leads to the new form of the 

expectation and variance of ftij as represented in 

Equations (12) and (13) respectively. Utilizing Equation 

(1), the total cost for a given dynamic machine layout 

πdm, which is denoted by C(πdm), is calculated by 

using Equation (14). In this equation, the total cost is 

equal to the summation of the total MHC (the first term) 

and the total rearrangement cost (the second term). 

Since ftij is a random variable with normal distribution, 

then according to Equation (14), C(πdm) is also a 

normally distributed random variable [22]. Using 
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Equation (14), the expected value and variance of 

C(πdm) are given in Equations (15) and (16), 

respectively.  

if 1

0 otherwise

tk
tk ki kj

k

D
C N N

B

tijkf
  

 
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Since we consider time value of money, Ctk and atilq 

can be calculated using Equations (17) and (18), 

respectively. In these equations, Ck is the present value 

of the movement cost for part k, a0ilq the present value 

of atilq and Ir the interest rate for each period. Using 

Equations (11), (13), (15), (16), (17), and (18), the new 

form of the expectation and variance of the total cost are 

given in Equations (19) and (20), respectively.   

(1 )t

tk k rC C I   (17) 

0 (1 )t

tilq ilq ra a I   (18) 

  

 

 

1 1 1 1 1 1

1
2 1 1 1

(1 )
T M M K M M

tk t

k r lq til tjq

t i j k l qk

dm T M M M

tilq tiqt il
t i l q

E D
C I d x x

B
E C

a x x


     


   

 
 

 
 
 
 
 

 



 

(19) 

  

  2 2

2

1 2

1 11 1 1

2

1 1

(1 )

2 (1 ) ( , )

tk t

k rK
k

K KT M M k tk k
r tk tkdm

k k k k kt i j

M M

lq til tjq

l q

Var D
C I

B

C C
I cov D DVar C

B B

d x x


 



     

 

  
   

  
  
    
  
 

  
  
  


 



 

(20) 

Considering U(πdm, p) as the highest value of the total 

cost C(πdm) at percentile p, the mathematical model to 

obtain the optimal layout of machines for each period of 

the SDFLP can be written as follows by using Equation 

(5), where E(C(πdm)) and Var(C(πdm)) are given in 

Equations (19), and (20), respectively.   

     Min dm dm p dmOFV E C Z Var C    (21) 

s.t. 

Constraints (2) to (4) 

 
3. 2. Static Layout Design Model          As mentioned, 

using the static approach, each period of the SDFLP is 

considered as a SSFLP so that it is solved separately 

regardless of other periods data. Therefore, there is no 

facility rearrangement cost in this approach. By doing 

so, the following QAP-based model is developed to 

design of an optimal layout in each period of the SDFLP 

using the static approach. In this model, E(C(πsm)) is 

defined as Equation (23) and Var(C(πdm)) is the same 

as Var(C(πdm))  given in Equation (20).  
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4. MODELS VALIDATION  
 
This section aims to validate the proposed models by 

performing statistical, robustness and stability analyses 

along with investigating the effect of dependency of 

demands and interest rate on total cost by using design 

of experiment (i.e. to generate a large number (say, 100) 

of test problems at random) and benchmark (i.e. data 
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from literature) methods. The test problems are solved 

by using DP algorithm. A personal computer with Intel 

2.10 GHZ CPU and 3 GB RAM is used to run DP 

algorithm, which is programmed in Matlab. 

 
4. 1. Statistical Analysis         According to Freund 

[23], the 100×(1-α) % confidence interval for difference 

between means of two populations is calculated by 

Equation (24), where n1 and n2 are sample sizes, 1x
 and 

2x
 are sample means, 

2

1  and 
2

2  are sample variances, 

and Zα/2 is standard normal Z value so that 

 
2 2

Pr 1z Z z      
. The sample mean and sample 

variance for n data are calculated by Equations (27) and 

(28), respectively.  

1 2l u     (24) 

where l and u are given in Equations (25) and (26), 
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(28) 

To validate the models, 104 different-sized randomly 

generated test problems with 2 < M < 9 and 1 < T < 7 

are applied to the two above-mentioned models and 

solved by using the DP method. By doing so, for each 

model, 104 cost function values, which are considered 

as samples of a population, are obtained. For dynamic 

machine layout design model, the two values of 10 and 

1,000,000 are respectively considered as the low and 

high levels of the facility rearrangement cost in each 

period. Using Equation (24), the 95% confidence 

intervals for the difference between the populations are 

calculated by:       

- 925120 < μdl – μs < 927000 

 - 905740 < μdh – μs < 955900   

where μdl is the mean value of the cost function for 

dynamic model with low rearrangement cost, μdh is the 

mean value of the cost function for dynamic model with 

high rearrangement cost, and μs is the mean value of the 

cost function for static model. 

The confidence interval - 925120 < μdl – μs < 

927000, which is almost a symmetric interval, indicates 

that in the case of low rearrangement cost, the dynamic 

model behaves like a static model so that the layout 

configuration can be easily changed from period to 

period. For each of the 104 test problems, the MHC of 

the layouts obtained by the dynamic and static 

approaches is computed in each period and in the whole 

time planning horizon. On the basis of the results, which 

are not shown here, the conclusions are as follows: (i) In 

the case of low rearrangement cost, the dynamic and 

static layouts have the same MHC in each period.   

 
4. 2. Illustrative Example           An example is 

constructed by using Problem 4 taken from 

Balakrishnan and Cheng [24] in such a way that the 

flow matrix is considered as the matrix of expectation of 

flow denoted by E. The matrix of variance of flow 

denoted by V is computed by V=E/3. This problem, 

which includes six facilities and five periods, is applied 

to each of the dynamic and static models by considering 

0.75 percentile level (p). 
For the dynamic model, the low, medium, and high 

facility rearrangement costs are set to 10, 1000, and 

1,000,000 respectively. 

 
 

TABLE 2.  Results of the example for dynamic and static 

models 

Model 
Period 

No. 
Optimal layout 

Cost  per 

period 

Total 

cost 

Dynamic - 
Low 

1 5 4 3 1 2 6 25066 

122505 

2 1 2 4 5 6 3 24752 

3 4 6 1 5 2 3 23883 

4 4 5 1 2 6 3 25184 

5 5 4 3 2 6 1 23620 

Dynamic - 

Medium 

1 4 2 1 3 6 5 25471 

125706 

2 4 2 1 3 6 5 24752 

3 4 2 1 5 6 3 26285 

4 4 2 1 5 6 3 25578 

5 2 6 1 5 4 3 23620 

Dynamic - 

High 

1 1 2 3 4 5 6 27962 

144220 

2 1 2 3 4 5 6 28534 

3 1 2 3 4 5 6 29860 

4 1 2 3 4 5 6 27206 

5 1 2 3 4 5 6 30655 

static 

1 6 2 1 3 4 5 25066 

122505 

2 5 6 3 1 2 4 24752 

3 5 2 3 4 6 1 23883 

4 4 5 1 2 6 3 25184 

5 5 4 3 2 6 1 23620 
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Finally, the numerical example is solved by using DP 

algorithm and the results are shown in Table 2. 

Considering the first row of this table, in the case of low 

rearrangement cost and in period 1, for instance, facility 

5 is placed in location 1, facility 4 in location 2, and so 

on. According to the findings, in the case of low 

rearrangement cost, the dynamic model behaves like 

static model so that the locations of facilities can be 

easily changed from period to period. Considering the 

dynamic model, for three cases of low, medium, and 

high rearrangement cost, the number of changes in the 

layout configuration over the entire planning horizon is 

four, three, and zero respectively. In other words, the 

number of changes in the layout configuration is 

decreased by increasing the facility rearrangement cost. 

As shown in Table 2 the MHC of each period is the 

same for the dynamic and static approaches when the 

rearrangement cost is low.  

 
4. 3. Robustness Analysis       In this section, the 

robustness of the optimal layouts obtained by each of 

the dynamic and static layout design models is 

investigated. According to Smith and Norman [25], if 

the decision-maker wants to design the robust layout 

over the interval [Pl, Pu], a robustness measure for a 

given layout π, i.e. R(π) can be written as Equation (29), 

where 
1F 
 is the inverse function for the cumulative 

distribution function F. The most robust layout is 

obtained by minimizing the R(π) [4]. Flexibility of a 

layout represents the ability of the layout to cope with 

uncertainties and fluctuations in product demands. It can 

be measured by using the robustness measure given in 

Equation (29).   

 

   

     

 

2 2

2 2

2

l u

u l

F p F p

p p E OFV

R e e

Var OFV





  

  
 
  
   
   
  

 
 

 

(29) 

To investigate the robustness of the dynamic and static 

layouts, 100 randomly generated test problems and four 

different decision maker’s defined confidence intervals 

are considered. The confidence intervals including [0.4 , 

0.6], [0.25 , 0.5], [0.5 , 0.75], and [0.25 , 0.6] are taken 

from [4]. In addition, two cases of dynamic model 

including low and high facility rearrangement costs are 

regarded. As before, the values of 10 and 1,000,000 are 

considered as the low and high levels of the facility 

rearrangement cost in each period. For each of the test 

problems, the expectation and variance of part demands 

(E and V) are randomly generated with uniform 

distribution so that E(1000, 10000) and  E(1000, 

3000). Besides, both of the number of machines and the 

number of periods are three (M=T=3). For each of the 

above-   mentioned   confidence    intervals,   the   100  

randomly generated test problems are applied to the 

aforementioned models and they are solved by using DP 

algorithm. The parameters used for the robustness 

analysis are given in Table 3. Using Equation (24), 95% 

confidence intervals are calculated for difference 

between two population means including the robustness 

measure of dynamic and static layouts as follows: 

d s d s d sL U    
 

The sample mean and variance and the upper and lower 

bounds of 95% confidence interval for μd – μs of the 

robustness measure values for two cases of high and 

low facility rearrangement costs are shown in Tables 4 

and 5, respectively. The results indicate that in the case 

of high facility rearrangement cost, for all decision 

maker’s defined confidence intervals, the upper bound 

and the lower bound 95% confidence interval of μd – μs 

is positive. Therefore, the robustness of the dynamic 

layout is bigger than the static one. On the other hand, 

in the case of low facility rearrangement cost, for all 

decision maker’s defined confidence intervals, the upper 

bound and the lower bound of the 95% confidence 

interval of μd – μs is negative. Therefore, considering 

95% confidence level, the dynamic layout has less 

robustness measure value than the static one. 

According to Tables 4 and 5, considering the 

interval [0.4, 0.6], the sample mean value of the 

robustness measure for the two models (i.e. dx  and sx ), 

has the least value amongst the four aforementioned 

confidence intervals. In other words, the symmetric 

interval [0.4, 0.6] leads to generate the most robust 

layout having minimum robustness measure value. 

This is due to 
1F 
(0.4) = 

1F 
(0.6) and thereby, 

according to Equation (29), the second term of the 

robustness measure (i.e. the standard deviation of the 

objective function) is ignored and only the first term of 

the robustness measure (i.e. expectation of the objective 

function) is minimized. In fact, decision maker’s 

attitude affects the robustness of the optimal layouts 

obtained by the two aforementioned models.  

 
 

TABLE 3. Parameters of robustness analysis 

Parameters Description 

dx  Sample mean of robustness measure for dynamic layout 

2

d  Sample variance of robustness measure for dynamic 

layout 

sx  Sample mean of robustness measure for static layout 

2

s  Sample variance of robustness measure for static layout 

d sL 
 Lower bound of confidence interval for μd – μs 

d sU 
 Upper bound of confidence interval for μd – μs 
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TABLE 4. Robustness measure in the case of high 

rearrangement cost 

[Pl, Pu]  [0.4 , 0.6]  [0.25 , 0.5]  [0.5 , 0.75]  [0.25 , 0.6] 

dx  3.6296 

e+013 

3.6321 

e+013 

3.6406 

e+013 

3.6480 

e+013 

2

d  1.2107 

e+021 

1.9742 

e+021 

2.5374 

e+021 

4.1242 

e+021 

sx  2.0653 

e+012 

2.3595 

e+012 

3.8133 

e+012 

5.2726 

e+012 

2

s  3.3823 

e+024 

4.5410 

e+024 

1.1620 

e+024 

2.3050 

e+024 

d sL 
 3.3870 

e+013 

3.3544 

e+013 

3.1924 

e+013 

3.0266 

e+013 

d sU 
 3.4591 

e+013 

3.4379 

e+013 

3.3261 

e+013 

3.2148 

e+013 

 
 
TABLE 5. Robustness measure in the case of low 

rearrangement cost 

 [Pl , Pu]  [0.4 , 0.6]  [0.25 , 0.5]  [0.5 , 0.75]  [0.25 , 0.6] 

dx  6.0766 

e+008 

7.3820 

e+008 

1.1703 

e+009 

1.5959 

e+009 

2

d  2.5727 

e+016 

3.8877 

e+016 

6.3052 

e+016 

1.4534 

e+017 

sx  2.0010 

e+012 

2.4588 

e+012 

3.8630 

e+012 

5.2834 

e+012 

2

s  3.1854 

e+024 

4.7572 

e+024 

1.2179 

e+025 

2.2313 

e+025 

d sL 
 -2.3502 

e+012 
-2.8856 

e+012 

- 4.5458 

e+012 

-6.2076 

e+012 

d sU 
 -1.6506 

e+012 

-2.0306 

e+012 

-3.1778 

e+012 

-4.3560 

e+012 

 
 
4. 4. Stability Analysis         In this section, the 

stability of the optimal layouts obtained by each of the 

proposed dynamic and static models is investigated. The 

stability of a layout is defined as the ability of a layout 

to display a small sensitivity to demand changeability 

[20]. In other words, a layout with minimum variance of 

product demands is the most stable layout. Demand 

variability leads to variations in the materials flow 

between facilities, which in turn causes variations in the 

total cost. Therefore, the most stable layout is obtained 

by minimizing the variance of the total cost. In other 

words, the stability of a given layout π with the total 

cost OFV is calculated by using the stability measure 

S(π) given in Equation (30) so that it must be minimized 

for obtaining the most stable layout [20].  

   S Var OFV 
 (30) 

To investigate the stability of the dynamic and static 

layouts, the 100 randomly generated test problems used 

in robustness analysis is solved by using the DP 

algorithm. The stability measure given in Equation (30) 

is calculated for the optimal layouts obtained by solving 

each of the test problems applied to the two above-

mentioned models. Two cases of dynamic model 

containing low and high facility rearrangement costs, 

which are respectively set to 10 and 1,000,000 values, 

are considered. Using Equation (24), 95% confidence 

intervals are calculated for difference between two 

population means including the stability measure of 

dynamic and static layouts. Table 6 shows the 95% 

confidence intervals for μd – μs in the two cases of low 

and high rearrangement costs. In the case of low 

rearrangement cost, the upper bound, and the lower 

bound of the 95% confidence interval have negative 

values. It means that μd – μs is negative. As a result, 

there is the following relationship between the stability 

of the optimal layouts obtained by solving the two 

aforementioned models: Sd < Ss where, Sd and Ss 

denote the stability of dynamic and static layouts 

respectively. In the case of high rearrangement cost, the 

95% confidence interval shows that μd – μs is positive. 

Therefore, Sd > Ss. In fact, the facility rearrangement 

cost affects the stability of both the static and the 

dynamic layouts.  

 
4. 5. Effect of Demands Correlation and Interest 
Rate on Total Cost       In this section, the effect of 

assuming dependent part demands and time value of 

money (interest rate) on the total cost function of the 

proposed dynamic machine layout design model is 

investigated. To this end, a numerical example of the 

SDFLP with the following data is applied to each of the 

above-mentioned models. This problem includes two 

periods and three equal-sized machines placed in a line 

with a unit distance between each two consecutive ones. 

For each part, transfer batch size and movement cost are 

assumed to be fifty and five, respectively. Other data are 

given in Table 7. For the known solution [23] used in 

each period, the values of the objective function is 

calculated by considering different percentile levels (p) 

in the three following cases: (i) independent demands 

with no interest rate, (ii) dependent demands with no 

interest rate, (iii) independent demands with non-zero 

interest rate.  

The results are shown in Table 8. Using the results, 

the cost curve for the dynamic layout design model is 

plotted in Figure 1. 
 

TABLE 6. Confidence intervals for stability measure 
Rearrangement 

cost 
Confidence interval 

Low  8.4602 12  5.9189 12d se e         

High 2.8182e 13 3.0678e 13d s       
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TABLE 7. Example for analysing demands correlation and 

interest rate 

Part 

Number 

Variance- Covariance 

Matrix 

Expectation of 

part demand Machinr 

sequence 
1 2 3 

Period 

1 

Period 

2 

1 10,000 640 4000 1000 1500 1→2→3 

2  100 4000 10,000 15,000 2→3 

3   2500 5,000 7500 1→2 

Machine relocating cost = 1000 Interest rate = 10% 

 

 

TABLE 8. Total cost for three cases 

 

 

 
Figure. 1. Demands correlation and time value of money 

 
 

The figure indicates that a nonzero interest rate leads to 

increase in total cost over the range of uncertainty. As 

shown in Figure 1, the cost function has the same value 

for 0.5 percentile level (p = 0.5) for both of the 

independent and dependent demands because this 

percentile level, which is equivalent to zp= 0, leads to 

ignoring the second term of the objective function of the 

proposed dynamic layout design model given in 

Equation (21). According to the equation, the second 

term of the objective function is variance of MHC, 

which is a function of demands correlation. Therefore, 

by ignoring this term, demands correlation does not 

affect the total cost of the model. Besides, the total cost 

is decreased for p <  0.5 (equivalent of  zp < 0) and it is 

increased for  p > 0.5 (equivalent of  zp > 0) percentile 

levels by considering dependent demands. 

 
 
5. CONCLUSION AND FUTURE RESEARCH 
 
In this paper, to cope with the SDFLP, two QAP-based 

mathematical models were proposed by using the 

dynamic and static approaches. The proposed models 

were verified and validated by performing statistical, 

robustness and stability analyses using design of 

experiment and benchmark methods. The following 

main conclusions were obtained: (i) the dynamic layout 

behaves the static one in the case of low facility 

rearrangement cost; (ii) the robustness and stability of 

the dynamic layout depend on the facility rearrangement 

cost so that for instance,  in the case of low 

rearrangement cost, the dynamic layout is more robust 

(flexible) and also more stable than the static one; (iii) 

however, the facility rearrangement cost does not affect 

the robustness and the stability of the static layout.  (iv) 

the decision maker’s attitude about uncertainty in 

product demands affects the robustness of each of the 

dynamic and static layouts so that considering a 

symmetric interval leads to generate the most robust 

layout. (v) considering non-zero interest rate leads to 

increase in total cost over the range of uncertainty; (vi) 

considering both the dynamic and the static layouts, the 

effect of dependency of product demands on the total 

cost is a function of the decision maker’s defined 

percentile level so that the total cost is decreased for p < 

0.5 and it is increased for p > 0.5. In addition, in the 

case of (p = 0.5), the total cost remains unchanged for 

both cases of dependent and independent demands. This 

research can be continued in future by considering un-

equal-sized facilities and routing flexibility.  
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 هچكيد
 

 

ای( و تصادفی چیدمان تسهیلات، دو مدل ریاضی جدید مبتنی بر مسئله در این مقاله، برای حل مسئله پویا )چند دوره

ها، علاوه بر در نظرگرفتن گردند. در این مدلتخصیص درجه دومی و متناظر با هر یک از رویکردهای پویا و ایستا ارائه می

تصمیم گیرنده در خصوص عدم قطعیت، تقاضای محصولات متغیرهایی تصادفی وابسته با ارزش زمانی پول و نگرش 

-از یک دوره زمانی به دوره تصادفیای که میانگین، واریانس و کووایانس آنها به طور شوند به گونهتوزیع نرمال فرض می

ای آماری، استواری و پایداری با استفاده از ههای پیشنهادی، با انجام تحلیل. درستی و اعتبار مدلکنندای دیگر تغییر می

ها، از الگوریتم برنامه ریزی پویا که ند. برای حل این مدلشوهای طراحی آزمایش و حل مسائل استاندارد بررسی میروش

 ( در حالت پایین1عبارتند از: )این تحقیق ترین نتایج د. مهمشوتوسط دستورات متلب کد نویسی شده است استفاده می

( برخلاف چیدمان ایستا، میزان استواری 2بودن هزینه تغییر چیدمان، چیدمان پویا دارای رفتاری مشابه چیدمان ایستاست. )

( نگرش تصمیم گیرنده در خصوص عدم قطعیت بر میزان 3و پایداری چیدمان پویا بستگی به هزینه تغییر چیدمان دارند. )

( در نظر گرفتن نرخ بهره پولی غیر صفر، منجر به افزایش هزینه 4ا مؤثر است. )های پویا و ایستاستواری هریک از چیدمان

( برای هر دو چیدمان پویا و ایستا، تأثیر وابستگی تقاضای محصولات روی 5گردد. )کل در سرتاسر دامنه عدم قطعیت می

 هزینه کل تابعی از سطح اطمینان مورد نظر تصمیم گیرنده است.
doi: 10.5829/idosi.ije.2017.30.05b.11 

 

 

 


