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A B S T R A C T  
 

 

The spacecraft simulator robust control through H∞-based linear matrix inequality (LMI) and robust 

adaptive method is  implemented. The spacecraft attitude control subsystem simulator consists of  a  
platform, an air-bearing and a set of four reaction wheels. This set up provides a free real-time three 

degree of freedom rotation. Spacecraft simulators are applied in upgrading and checking the control 
algorithms' performance in the real space conditions. The LMI controller is designed, through 

linearized model. The robust adaptive controller is designed based on nonlinear dynamics in order to 

overcome a broader range of model uncertainties. The stability of robust adaptive controller is analysed 
through Lyapunov theorem. Based on these two methods, a series of the laboratory and computer 

simulation are made. The tests’ results indicate the accuracy and validity of these designed controllers 

in the experimental tests. It is observed that, these controllers match the computer simulation results. 
The spacecraft attitude is converged in a limited time. The laboratory test results indicate the controller 

ability in composed uncertainty conditions (existence of disturbances, uncertainty and sensor noise). 

doi: 10.5829/idosi.ije.2017.30.04a.15 
 

 
1. INTRODUCTION1 
 

There exist several methods in checking the spacecraft 

attitude control subsystem performance. To verify 

controller algorithm in practical conditions, 

experimental tests are of essence [1]. The spacecraft 

simulator can create a real space environment in a 

limited laboratory on the ground for testing the designed 

controllers [2]. The experimental tests are more 

realistic, even with the effect of the gravity and high 

friction influences in comparison with the computer 

simulations. Recent advances in the design of such 

simulation platforms have made available more degrees 

of freedom, permitting greater movability which in turn, 

allowed the accomplishment of modern missions e.g., 

formation flying [3], rendezvous and docking [4, 5] in 

laboratory situ.  

Model-based methods need that reliable equations of 

motion be derived in the hope that hidden dynamics 

such as flexibility effects or frictions could be avoided 

or evaluated within a bounded measure of uncertainty. 

In order to estimate the inertia and mass distribution of 
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the simulator, a recursive least-square approach is 

proposed [6]. The reaction wheels friction is obtained 

by adopting methods in reference [7].  

To examine the practical implementation of different 

control algorithms, the spacecraft attitude control 

subsystem are applied in references [8, 9]. An SDRE 

controller is applied to a 3-DOF SACS to test 

formation-flying maneuvers [10]. In literature [11], a 

3D Cube Sat simulator is used to validate a quaternion 

feedback controller in realistic conditions.  

In reference [12], The μ-synthesis control technique 

is applied in designing robust control laws for a satellite 

made of rigid and flexible panels. The μ-synthesis and 

super twisting sliding mode controllers are applied on a 

three degree of freedom satellite simulator in the 

reference [13]. A survey of the high performance robust 

attitude control is presented by Mazinan [14]. By 

linearization plant and producing an LTI state-space 

model of the system, a linear matrix inequality (LMI) 

control method can be designed as a specific robust 

controller. The LMI and adaptive methods are applied 

in literatures [15, 16] for controlling a non-linear 

system. Because of uncertainty in spacecraft features, 

applying robust controllers are necessary. 
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In this article, the performance of  robust adaptive 

and LMI controllers are assessed. These  robust 

strategies compensate the composite uncertain 

conditions.  

The H∞-based LMI controller is robust against a 

whole range of uncertainties and disturbances [17]. The 

robust adaptive controller is designed through Lyapunov 

theory and Barbalat's lemma [18]. The robust adaptive 

method is designed through nonlinear dynamics, the 

stability of which is proved. The performance of this 

method is compared with the available designed 

controllers in the presence of composed uncertainties 

(sensor noises, environmental disturbances and 

parametric uncertainties).  

These newly developed controllers are applied in 

spacecraft attitude control subsystem simulator as the 

hardware in the loop. 

The LMI linear controller and the nonlinear robust 

adaptive controller are applied in spacecraft simulator in 

the presence of uncertainty. The performance and 

robustness of both methods are assessed through several 

simulations.  

The remainder of this article develops as follows: 

the simulator dynamics and linearized model are 

described in Section 2; the controller is designed in 

Section 3; the spacecraft simulator attitude control 

subsystem is designed in Section 4; the simulations are 

presented in Section 5 and the study concluded in 

Section 6.  

 

 

2. SIMULATOR MODELLING AND DYNAMICS 
 
2. 1. Dynamic Equations of Spacecraft Simulator      
The Spacecraft attitude control subsystem simulator is 

illustrated in Figure 1. This simulator consists of three 

components: a holder, an air-bearing for creating 

weightlessness in real space conditions and a platform. 

The attitude dynamic equations of this simulator in 

quaternion form (in the inertia coordinate frame) can be 

expressed as [19]:  

 
1

B ω
2

iq q
 , 

˙

i i i iJJ       
  

(1) 

where, τi, J, ωi and q are the control torque, spacecraft 

inertia matrix, the spacecraft angular velocity and 

quaternion vectors, respectively. The quaternion q is 

represented as: 4
Tq q q 

  ; where, q  is a 3×1 vector and 

q4 is a scalar. 

The matrix B here is defined as: 
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where, 

,  ,
T

x y z    
   

(3) 

 
2. 2. Linearized Dynamic Equation of the 
Simulator         For small variation in the attitude states, 

the quaternion vectors with respect to the reference 

coordinate are obtained as [20]: 

1

2s
R
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(4) 

where, 
s

R q
 is the spacecraft quaternion with respect to 

the reference frame. By inserting Equation (4) in 

Equation (1) and applying a first-order Taylor series, the 

linearized equations is expressed as:  

d
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(6) 

 

 

 
Figure 1. Satellite simulator 
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and ω0 is the circular orbital angular velocity of the 

spacecraft, which is zero in this equation. The 

parameters U, Jx, Jy and Jz are the input control and the 

diagonal terms of inertia matrix, respectively. 

 

 

3. CONTROLLER DESIGN 
 

3. 1. LMI Controller Synthesis       An H∞-based LMI 

controller is designed according to Guglieri et al.
 
[17]. 

To design an H∞-based LMI controller; the linear time 

invariant system dynamics are expressed in the 

following state space form: 

( ) ( ) ( ) ( )x t Ax t Bu t d t  
 (7) 

where, d is the external disturbance vector. Among the 

two theorems, the number one below is applied to 

design an H∞-based LMI controller. 

Theorem 1: For the uncertain spacecraft system 

Equation (7), by considering parametric uncertainties in 

the inertia matrix, applying the control feedback u=Kx 

with a constant gain K, the following equation is yieled: 

 0A A B B K   
 

(8) 

where, A0 is the nominal plant. The inertia uncertainty is 

the most important parameter. By substituting J with 

J0+ΔJ in the B matrix (6), the following is yield: 

1 1 1
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(9) 

According to reference [17] for the uncertain system, 

Equation (9), and given scalar γ>0, by appling  

controller gain, Equation (13), the closed loop system is 

asymptotically stable in a robust manner and

( )

( )

E s

d s






is guaranteed, provided that scalars ρ>0  , αi (i=1,2,4) 

and βi>0 (i=1,2), and matrices S, L, 1P
>0 hold true, 

where, 
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(10) 

and the actuator saturation condition is presented as 

follows: 

2
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where, 
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T 2
22 1 1 1E α S α S β α I   

  

(12) 

and: 

1K LS   (13) 

Proof: The proof is in reference [17].  

 
3. 2. Robust Adaptive Controller Synthesis           
The attitude equation of the formation with a limited 

disturbance  1 1  J J J u d         can be written in 

the following affine form: 

  . ,nF G u d F R    
 

(14) 

where,  

 1( )F J J    
          

1G J 
 

(15) 

considering uncertainty ∆J in the inertia moment yields 

 1( ) ( ) ( )F J J J J      
 

(16) 

By assumption |∆J/J|<1, applying Binomial series, we 

can write: 

1 11
( ) (1 )

(1 )

J
J J J

J J
J

J

  
     




1 1 2(1 )
J

J J J J
J

  
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(17) 

By ignoring ∆J with respect to J in (J+∆J), one obtains 

   1 2( )F J J J J J          
 

(18) 

By defining: 

   ( )F N F    
 

(19) 

where, N(ω) is the known part of F(ω) and ΔF(ω) is its 

unknown term. 

   1N J J    
,

   2F J J J     
 (20) 

Concerning with the inertia changes, caused by the fuel 

consumption, time-varying parametric uncertainties 

may be also incorporated in F(ω) as: 

      ,( ) ( )F N F T t       
 

(21) 

In which, T(t) denotes a time-varying parameter vector 

and σ(ω) is a state dependent regressor. In this paper, 

this term is ignorable. If the thruster are applied as 

actuator, this term play an important role. 

The model uncertainty in G matrix, .G u  is 

considered in unknown and time varying terms. as: 

   ΔF ω L ω
, 

 T t a a 0 
  (22) 
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where, a  is an unknown constant parameter; while  L ω  

is a state function (not a specified constant) which make 

this approach a generality in designing. G must be a 

positive definite matrix and assume that r is the lower 

bound of: 

G r.I   (23) 

If the error is introduced as ,  d
i iE     the error 

dynamic can be expressed as follows: 

        dE N ω ΔF ω σ ω T t G.u d-ω    
  

(24) 

The Controller is developed through: 
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(25) 

where, 
1

qK G  and 
TK K  is a symmetric matrix. The 

quaternion error is defined as: 

4

e
e d

e

q
q q q

q

 
    

   

(26) 

The robust adaptive controller is composed of au
, 

adaptive controller and ru
, robust controller and 

 T
q eK q

 is added in order to expose the desired 

quaternion effect (or quaternion error  eq
). The function 

 H 
 is defined as: 

      dH ω L ω N ω ω  
  

(27) 

Theorem 2: If the controlling terms and controller gains 

are defined as follows, the system will be 

asymptotically stable. 

r

E
u

2β


 , 

   

 

T

a T

σ ω σ ω E
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(28) 

where, 

   
˙

T

aa ρ σ ω Eˆ ˆ,  a 0 0 
  

(29) 

and  aρ is the adapt coefficient:  

aβ,  ρ 0
  (30) 

Proof: The Lyapunov function is considered in this case 

as follows: 

  T 2 T
e e e

a

1 1 1
V E,a,q E E a q

2 2ρ
ˆ q

2
  

 
(31) 

By defining: 

a ,ˆa a   (32) 

where, â  is  an estimate of a and by taking derivative 

of (32),   ˆa a  is yielded. The derivation of previous 

Lyapunov function is as follows: 

          
T

e

T dT

˙
T T T

e e
a

T
e

V E,a,q N ω ΔF ω σ ω T t E

d E ω E

1
u G E a a q q

ρ

q ΛE,  K

ˆ

K

  

 

  

 
 

(33) 

By inserting H(ω) into Equation (24), the control effort 

and by applying G ≥ r.I  the following inequality is 

obtained: 

   

   
 
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e
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(34) 

Hence, it is worth mentioning that Equation (35) holds 

true: 

 

T T T T T T T
r

T 2 T T 2
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(35) 

By applying Equation (27) and by replacing  

T T T
r

1
u G E d E 

r
 

 with its upper bound, the Equation (34) 

can be rewritten as: 

     
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(36) 

It is clear that the term 
   

T1
E βd E βd  

2β
 

 can be 

eliminated from the right side of Equation (36) and by 

replacing 

˙

â , Equation (37) is yielded: 

  T 2
e

1
V E,a,q E d

2
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(37) 

By defining an integral from both sides of inequality in 
     0 τ    : 
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It is observed that here error norm is bounded. By using 

Barbalat's Lemma [18] and assuming 
d D,D 0 

 : 

2 2
k

1
V δ E βD

2
  

 
(39) 

If  

2

k

βD
δ

2ε


, where, ε  is any small  ε 0 , we have: 

2V ΔE 0

0 Δ

  

  

(40) 

A positive Δ>0  would prove the theorem. 

 

 

4. SPACECRAFT SIMULATOR ATTITUDE CONTROL 
SUBSYSTEM 

 

By applying the above mentioned robust controllers, the 

system is capable of compensating disturbances and 

uncertainties. To begin with, the efficiency of these 

proposed controllers are computer simulated. 

The spacecraft attitude control subsystem simulator 

is generally composed of the following components: 

- An in situ computer, to implement designed controller 

- A motor driver 

- Four reaction wheels as actuators, applying torque to 

the platform 

- The AHRS sensor, to measure the attitude and angular 

velocity 

A PC is connected to the simulator computer using Wi-

Fi, which makes the system monitoring  possible. 

The spacecraft simulator platform mass and inertia 

moment are m=40 (kg) and 

1.8 0.12 0.02

0.12 1.7 0.02

0.02 0.02 3.4

J

 
 

 
 
     (kg-m2)  

The general 3-D simulator model is illustrated in Figure 

1. As observed, it has a disk-shaped platform, supported 

on a plane with a spherical air bearing. The related 

equipment like sensors, actuators, computer and its 

respective interface and electronic devices are attached 

to the platform. The simulator dynamic equation is 

expressed as: 

 1 1 

[ , ,0]

i i i i i i

z z

J J J u d

mgr mgr

  

 
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  
 

(41) 

where, 
[ , ,0]z zmgr mgr  

 is the disturbance caused by  

the difference between the center of mass and geometric 

center of the platform. The terms in Equation (41) were 

previously considered in the controller design. 

The reaction wheel actuator torque generated from 

the dynamic and friction modeling is defined as:  

0 0
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(42) 

where, fT
, 0sT

, mT
, wb

 and w  are the frictional 

torque, Coulomb friction torque, mechanical torque to 

the Reaction wheel, viscous friction coefficient and the 

angular velocity of reaction wheels, respectively. 

According to the practical tests carried out on the 

hardware, the minimum current required to drive the 

motors is 70 mA, hence, 0 70*0.0000441 0.003sT  
. The 

motor viscous friction coefficient is considered as 
65.2*10wb 

. 

Input constraint and angular momentum of reaction 

wheels are modeled as follows: 

max

max max

max max
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max max

 0
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T h h
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T

h

h T h




 
 




 
 


  

(43) 

where, inT
, outT

, maxmotorT
, outh

 and maxmotorh
 are the 

calculated Torque of The controller, the torque 

command to the motor, maximum motor torque, motor 

output and maximum  angular momentum. 

Euler angles output of the sensor along the x and z-

axis are ± 180 ° and the y-axis is ± 90 °. For more 

realistic results, the sensor noises in measuring angles 

and angular velocity are applied in simulations, in 

accordance with the sensor technical specifications 

catalogue. A White noise is added to Euler angle 

outputs, which is presented as 

w
2 2PSD(rad Hz)= noise power = σ B  

. 

where, 
2  is the standard deviation. 𝐵𝑤 is the 

bandwidth of the sensor in hertz. According to the 

sensor   catalogue,  the   White   noise  specification  is  

σ=0.5, Bw= 400 Hz, PSD=1.9*10-7 rad2Hz and sample time 

is 123( )secHz . Based on the measurements taken during 

implementation,the accuracy of attitude sensor is 0.5 °. 

The power of the angular velocity sensor based on 

sensor catalogues is expressed as: 
7 2PSD=3.23*10 rad Hz

.  

The sensor static and dynamic accuracies are 0.5 °and 

2°, respectively. The aerodynamic disturbances are 

modeled as follows: 

     20.1,0.1,0.01 . .d sign 
 

(44) 
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Another disturbance torque here is the air bearing 

disturbance. The bearing errors due to manufacturing 

appear as a constant torque around the z-axis. This  

torque is calculated as  8.1 * 10-6 N.m by the test results. 

 

 

5. SIMULATION 
 
The computer simulations and hardware tests are made 

and ran with initial value of [ , , ]    =(-5,-15,100) in 

uncertain condition. The simulator attitude, angular 

velocity and control effort of the robust adaptive and 

LMI controllers are illustrated in Figures (2 and 4), (3 

and 5) and (6 and 7), respectively.  

As observed, the two controllers perform well in 

composite uncertain conditions. Comparing Figures 

(2,4), the Euler angles can converge in smaller settling 

time, in LMI method. The LMI method outperforms the 

adaptive method. 

By comparing Figures 6 and 7, it is found that the 

maximum control effort is smaller in adaptive method. 

In small duration maneuvers, simulator responses 

are similar to that achieved by computer simulations 

with a slight difference probably caused by damping 

terms not reflected in the dynamics equation of the 

simulator. 

 

 

 Figure 2. Comparison of the present numerical results with 

the experimental data of angles for Robust adaptive method 

 

 

 Figure 3. Comparison of the present numerical results with 

the experimental data of angular velocity for Robust adaptive 

method 

 Figure 4. Comparison of the present numerical results with 

the experimental data of angles for LMI method 

 

 

 Figure 5. Comparison of the present numerical results with 

the experimental data of angular velocity for LMI  method 

 

 

 Figure 6. Control effort in Robust adaptive method 

 

 

 Figure 7. Control effrot in LMI method 
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By comparing controller efforts obtained from computer 

and hardware-in-the-loop simulations, it is observed that 

the spacecraft simulator expresses more control efforts 

(Figures 6 and 7). 

As observed, the reaction wheels work at the end of 

maneuvers. This remaining level of actuation can be 

certified by the presence of gravity moment in the 

experiment situ and air flow disturbance due to 

manufacturing imprecision in the air-bearing. 

In Table 1, a comparison between the two control 

methods is performed within allowable voltage 

restrictions in order that motors don't get saturated and 

controllers can exhibit their best performance.  

For the sake of representative comparison, the 

controllers were tested against standard disturbance 

terms (sinusoidal, constant and impulse) virtually 

generated via Labview interface and amplified on the 

simulator. The maximum value of the modeled 

disturbance to which the platform responded properly is 

noticed in Table 2. According to the results, the LMI 

controller shows more robustness against constant, 

sinusoidal and impulse disturbances. 

 

 
TABLE 1. Control Characetics 

 
Setteling 

time 

Steady-

state error 
Chattering 

LMI simulink 80(s) 0% - 

LMI simulator 150(s) 2% 
  

Robust adaptive 

simulink 
80(s) 0% - 

Robust adaptve 

simulator 
200(s) 2% - 

 

 
TABLE 2. Robustness 

 
Maximum periodic 

disturbances 

Maximum pulse and 

step disturbances 

LMI simulink 
2π

0.15
400

t
sin

 
  

   
0.015+3.0δ (200,0,2)

  

LMI simulator 
2π

0.1
400

t
sin

 
  

   
0.01+2.0δ (200,0,2)

  

Robust adaptive 

simulink 

2π
0.04

400

t
sin

 
  

   
0.004+0.8δ (200,0,2)

  

Robust adaptve 

simulator 

2π
0.01

400

t
sin

 
  

   
0.001+0.2δ (200,0,2)

  

 

 

6. CONCLUSION 
 
The robust control of the 3DoF spacecraft simulator 

testbed at laboratory setting and computer Simulink 

details are presented. In the paper, an LMI-based control 

and a robust adaptive strategy are chosen. The 

experiments for validating the operation of the designed 

controllers are described. The results of these 

experiments confirm the simulator’s ability to track and 

control attitude in 3DoF with these two robust methods 

under uncertain conditions. The application of the 

testbed in validating the LMI and robust adaptive 

control method demonstrates the efficiency of the 

testbed for the design and testing of GNC 

methodologies. The experimental results indicate the 

ability of these robust methods in tracking the desired 

attitude in a limited time.  
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 هچكيد
 

 
روش مقاوم تطبیقی صورت ساز ماهواره، با استفاده از روش نامساوی ماتریسی خطی و در این مقاله کنترل مقاوم شبیه

به عنوان  هوایی و یک مجموعه سه تایی چرخ عکس العملی است کهیاتاقان  ساز ماهواره شامل پلتفرم،. شبیهاستگرفته

ساز، یک حرکت آزاد بلادرنگ سه درجه آزادی فراهم شود. سخت افزار شبیهعملگرهای اصلی کنترل وضعیت استفاده می

وجود  سیستم کنترل وضعیت ماهواره به -ساز کمک می کند تا یک محیط واقعی برای بررسی عملکرد زیرکند. شبیهمی

در این مقاله جزئیاتی راجع به  ساز سه درجه آزادی  قابل صحت سنجی است.آید. کنترل زاویه ماهواره با استفاده از شبیه

-ساز و اغتشاشات وارد به آن ارائه شده است. سپس با توجه به اغتشاشات موجود در محیط و نامعینیدینامیک اجزا شبیه

ها در حضور اختلالو مقاوم تطبیقی  ∞Hنترلر مقاوم نامساوی ماتریسی خطی بر پایه های دینامیکی مدل شده سیستم، دو ک

-است. نتایج تست، صحت و اعتبار کنترلرهای طراحی شده در کنترل زوایای سمت را نشان میها طراحی شدهو اغتشاش

یبی )در حضور اغتشاش، عدم های آزمایشگاهی توانایی کنترلرهای طراحی شده در شرایط نامعینی ترکدهد. نتایج تست

های آزمایشگاهی سخت افزار دهد. در این مقاله نتایج شبیه سازی کامپیوتری با تستقطعیت و نویز حسگرها( را نشان می

 در حلقه مقایسه شدند.
doi: 10.5829/idosi.ije.2017.30.04a.15 

 

 

 


