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A B S T R A C T  
 

 

In this paper, the effectiveness of stiffness and damping of bearing is investigated on the natural 

frequencies of the rotor-bearing system. The rotor-bearing system consists of a shaft, two bearings and 
a disk between two bearings. Parallel spring-damper in horizental and vertical directions is considered 

for modeling the stiffness and damping of bearings. The gyroscopic effect is also considered in 

derivation of equations, together with its dependence on speed. Numerical results contain the critical 
speed of shaft for various values of bearing stiffness and damping. Moreover, the first six natural 

frequencies of rotor are presented in Campbell diagrams. 
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1. INTRODUCTION1 
 

Rotor dynamics is the branch of engineering that studies 

the lateral and torsional vibrations of rotating shafts, 

with the objective of predicting the rotor vibrations and 

containing the vibration level under an acceptable limit 

[1]. Rotating machines are used for power transmission 

in modern engineering industries. Many industrial 

applications of rotors are generator, pump, compressor, 

gas turbine rotors installed in power plants and vehicle 

turbochargers. The dynamic behavior of rotors is 

changed by the mass unbalance and the support motions 

of rotor-bearing systems. In what follows, a review of 

the related works is presented. 

Zorzi and Nelson investigated the instability of 

rotor-bearing system with internal and hysteric damping 

[2]. Lin and Lin studied the optimal weight design of 

rotor system [3]. Kang et al. studied the foundation 

effect on the dynamic characteristics of rotor-bearing 

systems [4]. Wu investigated the lateral vibration 

characteristics of the full-size rotor-bearing system 

using the scale rotor-bearing model [5]. Enemark and 

Santos applied the thermo-mechanical shape memory 

                                                           

1*Corresponding Author’s Email: mojtaba.eftekhari59@gmail.com 
(M. Eftekhari) 

alloy springs in the rotor and bearing system [6]. 

Numerical results indicated that the vibration reductions 

up to around 50 percent can be achieved using the shape 

memory alloy springs (SMAs) instead of steel. 

Halminen et al. studied the dynamics of an active 

magnetic bearing-supported rotor during contact with a 

simulation model [7]. A new method combining the 

rational polynomials method (RPM) with the weighted 

instrumental variables (WIV) estimator was used to fit 

the directional frequency response function by Wang et 

al. [8]. In that work, the damping ratio of the first 

forward and backward modes were identified with high 

accuracy. Hao et al. [9] established a numerical model 

of the bending stiffness of the tapered roller bearing 

through mechanics and deformation analysis on the 

bearing-rotor system. Modal analysis on an air blower 

rotor system was carried out using transfer matrix 

method. Zhou et al. [10] presented the influence of 

stiffness and damping coefficients of the active 

magnetic bearings on the dynamic behavior of a rotor-

bearing system. Jiang et al. [11] identified the 

equivalent stiffness and damping of AMB-rotor with 

multi-frequency excitation. The obtained results were in 

good agreement with the experimental results. Xu et al. 

[12] obtained the AMBs stiffness and damping 

coefficients for a rotor. The rotor was modeled as 
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Timoshenko beam and identification procedure based 

on the FE model. Xiang et al. [13] studied the dynamic 

behavior of a gear-bearing system with time varying 

stiffness. They reported that when the support stiffness 

was increased a diversity range of periodic and chaotic 

behaviors appeared. Wang et al. [14] defined the 

unbalance response of a rotor-bearing system as a 

function of position and the stiffness and damping 

coefficients of bearings. They proposed an analytical 

method to identify the rotor unbalance while operating. 

Modares Ahmadi et al. [15] investigated the dynamic 

response of a system of a flexible rotor and two ball 

bearings with squeeze film dampers and centralizing 

springs. Wang et al. [16] discussed the effects of axial 

preload, rotor eccentricity and inner/outer waviness 

amplitudes on the dynamic response of the rotor-bearing 

system.            

In this paper, the vibration of the rolling bearing-

rotor system is investigated. The supporting rolling 

element bearing is simplified as a particle on a shaft 

with parallel stiffness and damping elements in two 

directions (see Figure 1 (b)). Modal analysis of bearing- 

rotor system is carried out using the finite element 

method. The first six natural frequencies and critical 

speed are obtained for various values of bearing 

stiffness and damping.  

 

 

2. GOVERNING EQATIONS  
 
Figure 1 presents the scheme of a rotor. As shown in 

Figure 1(a), the components of rotor consist of a 

rotating shaft, two bearings 21,bb  and a disk with mass 

m and moment inertia J which is located at distance 1l  

from 1b . As shown in Figure 1(a), the length of the 

undeformed shaft center line is l. A part of rotor's length 

(a in Figure 1(a)) is free for coupling to another shaft.  

Basic assumptions are: 1) the disk is rigid, 2) the shaft is 

deformable and modeled by Euler-Bernoulli beam of 

constant cross-section solicited in bending along two 

orthogonal directions, 3) the shaft and rigid disk are 

symmetric, 4) the bearings supporting the shaft are 

flexible  and modeled as the spring-damper model as 

shown in Figure 1(b), 5) the spring-damper model of 

bearings  are applied in x-y plane in x, y directions with 

spring coefficients yx kk ,  and damper coefficients yx cc ,

and 6) the rotor rotates at a constant speed   in z 

direction. 

The equations of motion for the rigid disk, bearings and 

flexible shaft are derived by the use of Lagrange’s 

theorem: 

i

ii

F
q

L

q

L

dt

d

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where , in Equation (1), UTL  is the Lagrangian, T 

is the kinetic energy, U is the potential energy, 
i

q is the 

generalized coordinates describing the motion of the 

system and iF is the generalized forces acting on the 

system. The symbol )( refers to differentiation with 

respect to time. Generally, the equations of motion for 

the rotor system can be written as:  

0}]{[}]{[}]{[  UKUCUM   (2) 

The system matrices of the equation of motion in 

Equation (2) are the global mass matrix ][M , the global 

damping matrix ][C  and the global stiffness matrix ][K . 

Moreover, ][U is the global generalized displacement 

vector in x and y directions. 

 

2. 1. Finite Element Analysis          Modeling of the 

rotor-bearing system is performed by finite element 

method. Three elements are used for rotor-bearing 

problem. The elements are: BEAM188 element for the 

shaft, MASS 21 element for disk and COMBI 214 

element for bearings. 

 

 
a) components of rotor model 

 
b) spring-damper model of bearing 

 
c) 3D model of rotor 

Figure 1. Scheme of rotor model 
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The theory of BEAM188 element is based on the 

Timoshenko beam and the effect of shear deformation is 

evaluated in deflection of the element. The BEAM188 

elemen consists of 6 degree of freedom. The MASS 21 

element consists of 6 degree of freedom and has the 

different values of inertia in different directions.  The 

COMBI 214 element contains of two node and each 

node has two degree of freedom. This element couples 

the stifness and damping in two directions (x and y 

direction).  
 

 

3. RESULTS AND DISCUSSION  
 
In this section, the effectiveness of parameters of rotor 

system is investigated in Campbell diagrams. The 

parameters are considered as: stiffness and damping of 

bearings ( yxyx cckk ,,, ), the location of symmetric disk (

1l ), and the parameter a  in Figure 1(a). Numerical 

results are divided into two cases: the effectiveness of 

stiffness and damping of bearing. The material 

characteristics and geometric properties of the rotor are 

listed in Table 1. 

 
TABLE 1. Main characteristics of the on-board rotor 

Density of 
shaft 

material 
ρ0=7800 kg/m3 

Young’s modulus 

of the shaft 

E=200×109 

N/m2 

Radius of 
the shaft 

rshaft=10 mm Mass of the disk 4 kg 

Length of 

the shaft 
l= 200 mm 

Moment of inertia 
of disk 

J=1.51×10-

2 kg.m2 Location of 

disk 
l1= 100 mm 

The following non-dimensional parameters are defined 

in numerical results: 
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where, in Equation (3), yx KK ,  are the non-dimensional 

stiffness of bearing in x and y directions, respectively, 

yx  ,  are the non-dimensional damping of bearing in x 

and y directions, respectively,   is the non-

dimensional angular velocity of shaft and i  is the ith 

non-dimensional natural frequency of shaft. Moreover, 

m is the mass of shaft and I is the second moment of 

area of shaft. In all figures, the angular velocity of shaft 

(   ) is considered from 0 to 20000. 

 

3. 1. The Effectiveness of Bearing Stiffness      
Figure 2 presents the non-dimensional natural frequency 

( 0/ ) versus the non-dimensional angular velocity of 

rotor ( 0/ ) for three values of non-dimensional 

bearing stiffness. In order to verify and confirm the 

numerical results, the forward and backward natural 

frequencies are depicted for three values of bearing 

stiffness. The results are compared with the results 

presented in the literature [1] for a rotor with simply 

supported ends. As shown in Figure 2, when the bearing 

stiffness (
xK ) is increased from 0.1 to 1000, the natural 

frequencies are in good agreement with the simply 

supported rotor-shaft system. 
Figure 3 shows the six natural frequencies of rotor-

bearing system which are dependent on the shaft speed. 

In this figure, the non-dimensional natural frequencies 

are plotted versus the non-dimensional angular velocity 

of rotor. Figures 3(a)-3(f) show the six natural 

frequencies versus the angular velocity of rotor for 

0 yx   and 1/ xy KK . As shown in parts (a)-(f), as 

the value of 0/  increases, natural frequency is split 

into two frequencies (forward and backward) on 

account of the gyroscopic effect and the forward natural 

frequency increases and the backward natural frequency 

decreases. Also, for 0/ 0   , the forward and 

backward frequencies are the same. As the value of 
xK  

is increased from 0.1 in Figure 3(a) to 1000 in Figure 

3(f), the natural frequencies increase. Moreover, in parts 

(a)-(f) , the first and second natural frequencies ( 21, ) 

are coincide in whole considered interval of 0/ . The 

gyroscope effect is not appeared in the first and second 

natural frequencies. As shown in Figures 3(a)-3(f), for 

larger values of bearing stiffness, the third, fourth, fifth 

and sixth natural frequencies are more far away. 

In the other words, for a rotor-bearing system, when the 

damping of bearings is neglected and the stiffness of 

bearings is symmetric and increases, the forward natural 

frequencies increase and the backward natural 

frequencies decrease.   
 
 

 
Figure 2. The non-dimensional natural frequency versus the 

non-dimensional angular velocity of rotor for three values of 

non-dimensional bearing stiffness 1000,10,1.0xK  

,0 yx 

 
1/ xy KK  
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a)

 
1.0xK  b) 1xK  

  

c) 10xK  d) 100xK  

  
e) 1000xK  f) 10000xK  

Figure 3. The non-dimensional natural frequencies versus the 

non-dimensional angular velocity for different values of  

bearing stiffness. ,0 yx  .1/ xy KK  

 

 

Moreover, by increasing the value of 
xK , the 

intersection of line 1X with the natural frequencies 

occurs at larger values of 0/ .  

 

 

The values of intersection ( )6,...,1(  ii
) are presented 

in Table 2 for ith natural frequency. The dashed lines in 

Table 2 and all tables are the values of )(20000 rpm . 

As seen in Table 2, the values of  
21,  are close 

together, because the first and second natural 

frequencies are almost coincide with each other.  

Figure 4 presents the non-dimensional natural 

frequency ( 0/ ) versus the non-dimensional bearing 

stiffness (
xK ) for 0/ 0  . As shown in Figure 4, 

when the gyroscope effect is ignored , by increasing the 

non-dimensional bearing stiffness the forward and 

backward frequencies are coincide together. For 

1000xK , the frequencies are almost unchanged and 

the frequencies are the values of rotor system with 

simply supported ends. Figure 4 shows that for a rotor-

bearing system with symmetric bearing stiffness and 

without bearing damping, the forward and backward 

natural frequencies are same for any values of  bearing 

stiffness at the shaft speed equal to zero. 

Figure 5 presents the Campbell diagrams for various 

values of 15,/ xxy KKK  and 0 yx  . Natural 

frequencies are plotted versus the angular velocity of 

shaft. Figures 5(a)-(e) are shown for 2/1.0  xy KK . 

As shown in parts (a)-(e), when the 0/ increases the 

forward natural frequency increases and the backward 

natural frequency decreases. Figures 5(f) and 5(g) are 

for 100,10/ xy KK , respectively. As shown in parts (f) 

and (g), by increasing the 0/ , the fifth mode 

increases and the fourth mode decreases. The 

intersection of line 1X with the natural frequencies is 

tabulated for different values of xy KK / in parts (a)-(g) 

of Figure 5. 

 

 

 

TABLE 2. The intersection values of line 1X with non-dimensional natural frequencies for 1/,0  xyyx KK . (Non-

dimensional angular velocity) 

 
xK =0.1 

xK =1 
xK =10 

xK =100 
xK =1000 xK =10000 

xK =100000 

1  3.804949 11.9226 33.78101 55.44217 59.52998 59.95813 60.00109 

2  3.856872 12.05007 33.82152 55.4422 59.55709 59.99418 60.03814 

3  4.774073 14.83911 42.00901 77.83975 85.0458 85.79135 85.86715 

4  14.42954 36.62045 70.06768 --- --- --- --- 

5  85.56061 85.93927 89.75627 --- --- --- --- 

6  --- --- --- --- --- --- --- 
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Figure 4. The non-dimensional natural frequencies versus the 

non-dimensional bearing stiffness for 0 , ,0 yx 

.1/ xy KK  

 

 

 
a) 1.0/ xy KK  

 
b) 5.0/ xy KK  

 
c) 1/ xy KK  

 
d) 5.1/ xy KK  

 
e) 2/ xy KK  

 
f) 10/ xy KK  

 
g) 100/ xy KK  

Figure 5. The non-dimensional natural frequencies versus the 

non-dimensional angular velocity for  , 0 yx  , 15xK . 

 

As seen in Table 3, as the value of xy KK /  increases, 

the critical speed occurs at higher values.  
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T ABLE 3. The intersection values of line 1X with non-dimensional natural frequencies for different values of ./ xy KK  

 xy KK / =0.1 
xy KK / =0.5 

xy KK / =1 
xy KK / =1.5 

xy KK / =2 
xy KK / =10 

xy KK / =100 

1  14.61925 30.22499 38.93382 38.93858 38.93883 38.93927 38.93935 

2  22.93248 38.93056 38.94204 43.81949 46.92236 56.89875 58.56484 

3  38.94222 41.68242 49.15931 52.37278 54.05189 57.91682 59.87676 

4  69.03236 72.48293 77.30942 81.53168 84.44612 89.82579 --- 

5  89.51587 --- --- --- --- --- --- 

 

 

However, for 1/ xy KK , the value of 1  is almost 

unchanged. Figure 6 shows the non-dimensional natural 

frequency versus the 
xy KK /  for 0 . As shown in 

Figure 6, for 1/ xy KK , the forward and backward 

frequencies are the same and for 1/ xy KK  the forward 

and backward frequencies are contrary. Moreover, for 

1/ xy KK  the second and fourth frequencies are 

independent from xy KK /  and for 1/ xy KK  the first 

and third frequencies are independent from 
xy KK / .  

 
3. 2. The Effectiveness of Damping      Figure 7 

shows the non-dimensional natural frequency (
0/ ) 

versus the non-dimensional angular velocity of rotor (

0/ ) for different values of non-dimensional bearing 

damping. As shown in Figure 7, the first and second 

natural frequencies are independent from  . By 

increasing the bearing damping, the natural frequencies 

of higher modes decrease and the value of reduction is 

more in higher values of damping. Figure 7(d) presents 

that for 6.0  the first, second, third and fourth natural 

frequencies are almost constant after the 40/ 0  . 

 

 

 
Figure 6. The non-dimensional natural frequency versus the 

xy KK / for 0 .15,0  xyx K  

 

Moreover, for low values of 
0/ and high values of 

bearing damping, the natural frequencies of higher 

modes are lower than the first and second natural 

frequencies. It is noted from Figure 7 that for a rotor-

bearing system, when the stiffness and damping of 

bearings are symmetric, the first and second natural 

frequencies are independent from damping in whole 

range of the angular velocity of rotor. 
Figure 8 shows the non-dimensional natural 

frequencies versus the non-dimensional damping of 

bearing, when the effect of gyroscope effect is 

neglected. The first and second natural frequencies are 

independent from non-dimensional bearing damping. 

Rate of reduction of natural frequencies in third and 

fourth modes are more than fifth and sixth modes. 

 

 

 

  
a) 0  b) 2.0  

  
c) 4.0  d) 6.0  

Figure 7. The non-dimensional natural frequencies versus 

the non-dimensional angular velocity for 1/ xy KK  ,

  yx
, ,15xK 0 .  
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Figure 8. The non-dimensional natural frequency versus the 

non-dimensional damping for 1/ xy KK  ,   yx ,

,15xK .0  

 

 

The intersection of line 1X with the natural frequencies 

is tabulated for different values of  in parts (a)-(d) of 

Figure 7. As seen in Table 4, as increases 21,

increase and 3,  ii  decrease.        

 

 
TABLE 4. The intersection values of line 1X with non-

dimensional natural frequencies for different values of 

  yx and .15,1/  xxy KKK  

 0  2.0  4.0  6.0  

1  38.93383 38.97353 38.98611 38.46529 

2  38.94204 38.98315 39.08322 39.31727 

3  49.15932 47.23167 40.78638 26.11648 

4  77.30943 76.40595 73.81131 70.38601 

5  --- --- 87.04071 81.5892 

 

 

 

4. CONCLUDING REMARKS 
 
The vibration analysis of a rotor-bearing system is 

studied for stiffness of bearing and angular velocity of 

shaft. The supporting bearing is modeled as a parallel 

spring-damper in x and y directions ( yyxx KK  ,,, ). The 

following results are obtained:  

 By increasing the angular velocity of shaft and the 

bearing stiffness for yx KK  , 0 yx  , the 

forward natural frequency increases and the 

backward frequency decreases. Moreover, the 

gyroscope effect is appeared in third, fourth, fifth 

and sixth natural frequencies. The critical speed of 

shaft occurs at higher values of bearing stiffness.   

 By increasing the bearing stiffness ratio for 

yx KK  , 0 yx   the critical speed of shaft 

occurs at higher values and for 1/ xy KK , the value 

of 
1 is almost constant. 

 By increasing the bearing damping, the first and 

second natural frequencies are almost independent 

from damping and the natural frequencies of 

higher modes decrease. Rate of reduction of 

natural frequencies in higher values of damping is 

more than the lower values. 

 By increasing the damping of bearing, the first and 

second critical speeds of shaft increase and the 

third, fourth, fifth and sixth critical speeds of shaft 

decrease.         
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 هچكيد
 

 
یاتاقان بررسی می شود. سیستم -در این مقاله ، اثر فنریت و استهلاک یاتاقان بر روی فرکانسهای طبیعی سیستم روتور

دمپر  –یاتاقان شامل یک شافت ، دو یاتاقان و یک دیسک که در میان دو یاتاقان قرار دارد می باشد. مجموعه فنر -روتور

دن فنریت و استهلاک یاتاقان ها در نظر گرفته می شود. اثر ژیروسکوپ در موازی در جهات افقی و عمودی برای مدل کر

استخراج معادلات روتور در نظر گرفته می شود که وابسته به سرعت دورانی شافت می باشد. نتایج عددی شامل سرعت 

ر در نمودارهای بحرانی شافت برای مقادیر مختلف فنریت و استهلاک یاتاقان می باشد. شش فرکانس طبیعی اول روتو

 کمبل نشان داده می شود.
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