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A B S T R A C T  
 

 

Hysteresis loop curves are highly important for numerical simulations of materials deformation under 

cyclic loadings. The models mainly take account of only the tensile half of the stabilized cycle in 

hysteresis loop for identification of the constants which don’t vary with accumulation of plastic strain 
and strain range of the hysteresis loop. This approach may be quite erroneous particularly if the mean 

stress is not small and the effect of isotropic hardening is large. A strain dependent cyclic plasticity 

model which considers the variation of material constants versus strain range and accumulation of 
plastic strain has been proposed and experimentally investigated by the authors. In this paper it is 

proved that their proposed model is accurate for simulating all cycles of the hysteresis loop regardless 

of the strain range of the test. It is shown in this work that artificial neural network (ANN) model, if 
designed and trained properly, can be used for interpolating and extrapolating the experimental data. 

The results of this work are compared with two well-known cyclic plasticity models. The results also 

indicate that there is a remarkable agreement between the proposed model and ANN within and outside 
the strain ranges used in the experiments. 

doi: 10.5829/idosi.ije.2017.30.02b.20 
 

 

NOMENCLATURE X Back stress tensor 

a, ar Isotropic hardening constants (Pa) z, zr Isotropic hardening constants 

𝑏 Isotropic hardening parameter Greek Symbols  

𝐶 Kinematic hardening parameter (Pa) ν Poisson’s ratio 

E Elasticity modulus 𝜎 Stress tensor 

f Yield function 𝜎0 Initial yield stress (Pa) 

𝐽2 Second stress invariant (Pa) 𝜀𝑃
 Plastic strain tensor 

N Flow direction tensor  Kinematic hardening parameter 

p Accumulated plastic strain Subscripts  

q Strain amplitude mono Monotonic loading 

Q Isotropic hardening parameter (Pa) QR, bR Isotropic hardening 

𝑅̂(𝑝) Isotropic hardening (Pa) αC, βC, α, β Kinematic hardening 

 
1. INTRODUCTION1 
 

The nonlinear behavior of material under cyclic loading 

has extensively been investigated over the past decades 

[1-4]. The behavior of most of materials is very 

complicated on one hand and most of cyclic material 

models are pure empirical and the identification of their 

                                                           

1*Corresponding Author’s Email: e.khademi@hut.ac.ir (E. Khademi) 

constants is based on some simplification on the other 

hand. Therefore, the predictions by these models are 

always facing serious challenges. Attempts have been 

made to improve the accuracy of the models through 

constituting modified cyclic material models [5, 6]. The 

improvement has also been made through introducing 

new techniques for identification of the constants of 

material models [7, 8]. However, most of the improved 

models involve nonlinear terms and too many constants 
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which are normally determined by simple techniques 

such as trial and error. These types of techniques are 

tedious and time consuming on one hand and the 

accuracy of results is dependent on the skill and 

experience of researcher on the other hand. Therefore, 

most of the models are not widely used for simulation, 

design and analysis. One of the most recent techniques 

for identification of the constants is optimization. This 

technique, however, involves a large amount of 

computations. In order to reduce the computational 

efforts, an automated system for optimization of 

material parameters is presented [9, 10].  

Along with the efforts for improving the material 

models, attempts have also been made to simulate 

material behavior directly from experimental data. This 

will assist the users to avoid the deficiencies involved in 

material models. One of the most recent techniques 

which are widely employed for predicting the behavior 

of materials under cyclic loadings is artificial neural 

network (ANN). The interpolating and extrapolating 

capabilities of this model, for a properly trained 

network, may be exploited for prediction of material 

behavior for test condition within and outside the ranges 

used in the experiments. This will reduce the cost and 

save the time for conducting tedious, costly and time 

consuming tests. Lefik and Schrefler [11] used 

experimental results of transverse cyclic loading of 

superconducting cable for training ANN and examined 

the model for interpolation within the input data. 

Janezic et al. [12] presented an approach based on the 

neural network for describing the variation of stress-

strain curve under cyclic loading with the temperature, 

specimen diameter and strain amplitude. The prediction 

of low cycle fatigue life of a particular steel alloy at 

various temperatures was studied by Mathew et al. [13]. 

Purintrapiban and Corley [14] used ANN model for 

describing the state of the auto-correlated process in 

cyclic condition for condition monitoring process. 

Tomasella et al. [15] showed that experimental tests for 

estimating the life of a material under cyclic loading can 

partially be replaced by artificial neural network model. 

In another work for accurate simulating of cyclic 

plasticity by ANN for a metal, Furukawa and Hoffman 

[16] used two separate neural networks, one for back 

stress and the other for isotropic hardening evolution. 

Although, ANN has widely been used for simulation of 

cyclic behavior of materials by many authors, no 

attention has been paid to possibility of the use of ANN 

for describing accurate evolution of stress-stress curve 

in the hysteresis loop of a material under fully reversed 

loading. 

In this paper, material parameters determined by 

Khademi et al. [17] using an automated system for fully 

annealed 99.99% pure copper, will be used for 

simulating the material response under cyclic loading at 

different strain amplitudes. The experimental data will 

also be used for identification of material parameters for 

Ohno and Wang [4] and Rahman et al. nonlinear models 

[9]. Finally, a comparison is made between the results 

of the proposed model, experimental results and Ohno-

Wang and Rahman et al. models. 

Artificial neural network will also be employed for 

prediction of cyclic behavior of material using the test 

data obtained in this investigation. Four sets of input 

data will be used for training ANN in a way that the best 

agreement between the experiment and ANN prediction 

is obtained. In order to avoid overtraining, a new 

method for incorporating the full cycle of hysteresis 

loop into the neural network will be presented in this 

work. Once the ANN is trained for the strain range used 

in the experiments in this work, the cyclic behavior of 

material outside the experimental strain range is 

determined by interpolation and extrapolation of the 

data used for ANN training. 
 

 

2. MATERIAL MODELS 
 

High ductile and strain hardened material such as pure 

copper shows intense nonlinear behavior under cyclic 

loading. Therefore, the simulation of the hysteresis 

curves of this material can reveal the accuracy of the 

material model. In order to simulate the material 

behavior under fully reversed strain control cyclic 

loading, the material parameters obtained from 

experiment by Khademi et al. [17] for fully annealed 

99.99% pure copper are used for three different models. 

The main model is proposed by the authors of this work. 

The results are compared with two other models 

proposed by Rahman et al. and Ohno and Wang. 

 

2. 1. The Proposed Model by Khademi et al.          
Khademi et al. [17] proposed a set of explicit corrector 

equations for solving the following nonlinear 

constitutive equations: 

   2 0 0ˆ   R pf J     σ X  (1) 

p ε N  (2) 

4
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m mC p

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Khademi et al. [17] showed that material parameters 

evolve with p and q. In the case of isotropic hardening, 

material parameters given by Equation (4) are defined in 

terms of plastic strain and strain amplitude as follows: 

 1 exp 1,2i i i

R QR QRQ a z q i    
 

 (5) 

 exp 1,2i i i

R bR bRb a z q i    (6) 
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In Equation (3) four back stresses are considered to 

simulate the kinematic hardening behavior in which 

third back stress considered linear (𝛾3 = 0) and also 

slope of this line is assumed constant, 𝐶3 = 385(𝑀𝑃𝑎). 

Other three back stresses evolve with the accumulated 

plastic strain as follows: 

  1 exp , & 1,2,4m m m

D DD p D C m        (7) 

where, 𝛼𝐷
𝑚 and 𝛽𝐷

𝑚 are material parameters and vary 

with strain amplitude as follows: 

exp( ) , & 1,2,4m m m m

D D D Da b k q D C m         (8) 

exp( ) , & 1,2,4m m m m

D D D Da b k q D C m         (9) 

where, 𝑎𝛼𝐷
𝑚 , 𝑏𝛼𝐷

𝑚 , 𝑘𝛼𝐷
𝑚 , 𝑎𝛽𝐷

𝑚 ,  𝑏𝛽𝐷 
𝑚 and  𝑘𝛽𝐷

𝑚  are material 

constants. Finally, 

, 1,2

exp( ) , 1,4

, 2,4

m m m m

H H H

H a m

H e f g q H b m

H k m



 


    
  

 (10) 

All Material constants as obtained by Khademi et al. 

[17] are given in Table 1. In this work, the constants 

given in Table 1 are incorporated in a finite element 

code and the cyclic stress-strain curves predicted by 

finite element method are compared with those 

measured from the experiments. 

In the finite element code developed in this work, a 

fully implicit method is used for calculating stress 

recovery and tangent modulus at each load increment. 

 

 
TABLE 1. New material constants [17] 

The commercial finite element code MSC.MARC 

2010 R1 was used for simulating material behavior with 

the constants of the proposed material model through 

the user subroutine HYPELA2.F. This routine is used 

for obtaining stiffness tangent matrix and the stress 

tensor at each increment. The values of variables such 

as the accumulated plastic strain and the back stresses 

are stored as state variables for subsequent calculations. 

The procedure used for implementing the model in 

the subroutine of the FEM code is summarized as: 

1. Read the material constants from the input file 

2. Call state variables 

3. Calculate elastic stiffness matrix and trial stress 

4. Calculate trial yield function, trialf  

IF 0trialf   THEN: 

4-1- Calculate initial values for iterative scheme 

4-2- Calculate correctors 

4-3- Update variables with adding correctors to state 

variables 

4-4- If residual functions are smaller than the Tolerance, 

CONTINUE  

ELSE repeat 4-2 and 4-3  

5. Calculate consistent tangent matrix 

6. Calculate stress, elastic and plastic strain isotropic 

hardening and back stresses 

7. SAVE new variables into state variables 
Trial stress is calculated by assuming an elastic regime 

for each increment. The simulations are performed 

using the material constants given in Table 1 (as the 

input for FEM code). Rectangular four-node element 

with 1mm×1mm size and axisymmetric analysis is 

considered for the numerical study. One side of the 

element is fixed and fully reversed displacement with 

various amplitudes is applied to the opposite side. 

Therefore, strain control condition with different strain 

ranges can be simulated. The predicted hysteresis loop 

for 1%, and 3% strain ranges are depicted in Figures 1 

and 2, respectively in which the experimental hysteresis 

loop is also plotted for comparison with the proposed 

model. As the figures indicate, the proposed model can 

predict material response under cyclic loading from the 

beginning to the saturated cycle regardless of the strain 

range. The results of the proposed model are compared 

with two basically different cyclic plasticity models 

including Ohno-Wang multilinear model and Rahman et 

al. nonlinear model. The models are briefly described in 

the next sections. In the model introduced by Krishna et 

al. [6], material constants are determined from cyclic 

test on a single specimen under different strain 

amplitudes. However, in the present work, one 

specimen is used for one strain amplitude. Therefore, it 

is not basically right to compare the results of this work 

with those reported by Krishna et al. [6]. On the other 

hand, although Zhang and Jiang [18] used single 

specimen for each strain range (similar to the present 

work) they did not consider isotropic hardening effect. 
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It should be noted that elastic properties and isotropic 

hardening evolution are the same for all models 

considered in this investigation. 

 

2. 2. Rahman et al. Model            Rahman et al. model 

[9] uses four rules Chaboche model for evolution of 

kinematic hardening. This model was initially proposed 

by Bari and Hassan [2] for finding material constants. 

However, Rahman et al. [9] divided tensile half cycle 

into four segments in each of which a back stress term 

was dominant. They also introduced physical meanings 

for 
mC  and 

m  for the first time and developed an 

automated program for finding the most appropriate 

segment for each back stress with the best agreement 

with the experimental data. In this model, only the 

tensile half cycle of the stabilized cycle is considered 

for finding the material parameters and the identified 

parameters remain constant for the other cycles. The 

strain amplitude for the hysteresis curve which is used 

for identification of parameters is assumed reasonably 

large to ensure that all back stresses (except the third 

one) get stabilized within the strain range [2].  
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Figure 1. Experimental hysteresis loop and proposed model 

results for 1% of strain range 
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Figure 2. Experimental hysteresis loop and proposed model 

results for 3% of strain range 

Therefore, hysteresis loop with the largest strain range 

is used for determining the material parameter in this 

model. The material constants computed for the strain 

range of 4% are given in the appendix. 

 
2. 3. Ohno-wang Model             Ohno and Wang [4] 

introduced a multilinear model by dividing stabilized 

tensile half cycle into several segments and assuming 

linear hardening for each segment. Kinematic hardening 

rule for each linear part was similar to Armstrong and 

Frederick [1]. However, Ohno and Wang [4] used a step 

function in their model in which each decomposed 

hardening rule evolves linearly with the slope of 
mC  

until approaches m mC   and remains constant 

afterward. Obviously, by increasing the number of 

hardening rules a better agreement with the 

experimental curve will be expected. Bari and Hassan 

[2] have argued that the best performance of this model 

is achieved when the strain range for obtaining the 

material parameters is assumed reasonably large. 

Therefore, 14 back stresses were considered for the 

model and the constants were obtained from the 

stabilized tensile half cycle for the strain range of 4%. 

The constants obtained using this model are provided in 

the appendix. 

 

2. 4. Discussion             The stabilized cycle for strain 

amplitude of 2%, (q=2%), as predicted by models 

considered in this work and obtained from the 

experiment are compared in Figure 3. As the figure 

suggests, all models agree reasonably well with the 

experiment. The reason may be thought to be due to (i) 

the adequacy of the number of constants for multilinear 

model; (ii) the accuracy of methods adopted for 

determining the material constants and (iii) the 

identicalness of the tensile and compressive half cycles 

in stabilized cycle for the case when strain range is large 

enough. As it can be seen in Figure 3, although the 

material parameters of the proposed model have not 

been computed from the stabilized cycle directly, this 

model simulates the experimental curve reasonably 

well. This is while the other two models show more 

accuracy than the proposed model particularly for the 

tensile half cycle which correspond to considering 

stabilized tensile half cycle with 2% of strain amplitude 

for material constants identification. In order to explore 

the characteristics of the proposed model more 

accurately, the results shown in Figure 3 are repeated 

for the 1
st
 cycle with 3%, the 3

rd
 cycle with 1.5% and 

the 5
th

 cycle with 1% of strain range. The results are 

illustrated in Figure 4. As the figure indicates, the 

agreement of the proposed model holds for both tensile 

and compressive half cycles for different strain ranges 

and different number of cycles quite well. The ability of 

the proposed model for predicting all cycles of the 

hysteresis loop is an indication of the accuracy of the 
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material constants given in Table 1. Therefore, it can be 

concluded that evolutions of 
mC  and 

m
 

are valid 

within the entire strain ranges used in this investigation. 

In order to demonstrate the degrees of accuracy of the 

models discussed above more clearly, the evolutions of 

the stress amplitude, a , and the mean stress,
 m , of 

each cycle, as predicted by the models and obtained 

from the experiments, versus accumulated plastic strain 

are compared in Figures 5 and 6 for strain ranges of 

1.5% and 4%, respectively. As the figures suggest, for 

the stress amplitudes, there is excellent agreement 

between the proposed model and the experiments so 

that, except for few points, the prediction of the 

proposed model and the experimental data coincide with 

a high degree of accuracy. 
Therefore, the proposed model is able to accurately 

predict the maximum and minimum stress in each cycle. 

This may be attributed to the fact that the proposed 

model has been developed by taking account of the 

entire stress-strain curve in the hysteresis loop for all 

strain ranges. 

It may also be due to the formulations of material 

constants as described by Khademi et al. [17].  
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Figure 3. A comparison between various models and 

experimental data for stabilized cycle and the strain amplitude 

of 2% 
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Figure 4. A comparison between proposed model and 

experimental data for different cycles and different strain 

amplitude 
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Figure 5. A comparison between the numerical and 

experimental evolutions of stress mean and amplitude with 

accumulated plastic strain for strain range of 1.5% 
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Figure 6. A comparison between the numerical and 

experimental evolutions of stress mean and amplitude with 

accumulated plastic strain for strain range of 4% 

 

 

The results of the other two models are almost 

similar except for small strain ranges for which the 

models are slightly different. The difference, however, 

decreases with the increase of strain range. The 

interesting point is that for stress amplitude, the gap 

between the proposed model and the other two models 

becomes wider for smaller strain ranges. As the strain 

range increases, the models come closer to each other so 

that for the strain range of 4%, they nearly coincide. 

Another interesting point is that the difference between 

the proposed model and the other two models reduces 

for higher plastic strain.  

For mean stress, however, the situation is somewhat 

different. In this case, the gap between the proposed 

model and the other two models is not as big, although 

the proposed model is still superior to the other two 

models. For the evolution of mean stress, Rahman et al. 

and Ohno-Wang models deviate from experimental data 

at low accumulated plastic strains for all strain ranges. 

Under low strain ranges, these models under predict the 

mean stresses compared to the experimental data. The 

reason can be attributed to the fact that the material 
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parameters are assumed to be the same for all cycles. 

The relative convergence of the models for amplitude 

stress at high plastic strains is due to determination of 

the material parameters from stabilized cycle of the 

largest strain rang.  

 
 
3. INTERPOLATION AND EXTRAPOLATION USING 
ANN 
 

Artificial neural networks (ANN) consist of 

computational pattern based on the recognition between 

input parameters and solution of a problem. The 

biological neural system and artificial neural networks 

have similar characteristics such as pattern identification 

and capability of parallel computing. Also, the 

performance of the neurons is the basis of both systems. 

Unlike the models which make use of physical theories 

and consider predefined relations between inputs and 

outputs, ANN learns the trend between input data and 

solutions during the training phase. Therefore, the 

strength of the network sensibly depends on the number 

of data and relevance between them that are used in 

training phase. ANN can be used to predict the solution 

within the range of data as well as extrapolation beyond 

the range. The architecture of ANN consists of an input 

layer, an output layer and one or more hidden layers, 

which are located between input and output layers. This 

architecture is called multilayer network. Each neuron 

in the input layer connects to all the neurons in the 

hidden layers and each neuron in the hidden layers 

connects to all the neurons in the output layer but the 

neurons of a layer are not connected to each other. 

Synapse is the connection between two neurons and has 

a strength or weight that affects the output signal of the 

neuron. All the weights on the input side of a neuron 

accumulate and the output signal is calculated using a 

transfer function.  

Neurons of the hidden layer receive signals from 

neurons in the input layer and send signals to the 

neurons of the output layer. Finally, the output signals 

are sent by neurons of the output layer. This kind of 

feeding is called feed forward method. In the training 

phase, the ANN output is compared with the real output 

(which is measured by experiments) and error is sent 

back to the neurons of the hidden layer to update the 

weights for minimizing the error. The performance of 

ANN is represented by error function which is 

introduced as the sum of squares of the difference 

between desired and predicted outputs. Back-

propagation algorithm updates network weights in 

which error function decreases most rapidly utilizing 

gradient descent method as learning function. All the 

data should be normalized to balance the importance of 

each data during training phase. 

In this work, a multilayer feed forward artificial 

neural network with hyperbolic tangent sigmoid as 

transfer function, Levenberg-Marquardt back-

propagation for training, gradient descent weight for 

learning function and mean squared error for 

performance function are utilized and tested in the 

MATLAB package. Considering all the hysteresis loops 

with 1%, 1.5%, 3% and 4% strain ranges, four different 

types of experimental data are used for training the 

neural network, (1) the maximum stress versus 

accumulated plastic strain of the hysteresis curve; (2) 

the minimum stress versus accumulated plastic strain of 

the hysteresis curve; (3) the stress-strain curve of the 

first cycle and (4) the stress-strain curve of the 

stabilized cycle. Since there are four strain ranges, for 

each type of experimental data four individual input 

data can be obtained. For cases 1 and 2, one hidden 

layer with two neurons are used in the ANN in which 

input data is the accumulated plastic strain and target is 

the maximum and the minimum stress, respectively. 

Since, for cases 3 and 4 the relation between input data 

(strain) and output (stress) is highly nonlinear, three 

hidden layers are used in which four, six and eight 

neurons are considered in the first, second and the last 

hidden layer, respectively. Figure 7 shows ability of the 

designed ANN in learning evolution of maximum stress 

versus accumulated plastic strain for different strain 

ranges. 

For the cyclic stress-strain curve, a new method for 

training the ANN is proposed. In this method, a cycle 

denoted by ABC in Figure 8 is replaced by an expanded 

cycle indicated by A’B’C’ in the same figure.  

This is to enforce a unique correspondence between 

stress and strain in the stress-strain cycle. For the 

constructing the A’B’C’ root, AB path is considered 

first and strain magnitude of point A is subtracted from 

all points of the path. So, the entire path shifts to the left 

of stress axis. Then, by inversing the strain sign, path 

A’B’ is generated. Finally, the path BC is shifted to the 

right in which point B of this path is superimposed on 

B’ of the previously constructed A’B’ path. 
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Figure 7. A comparison between the ANN results and 

experimental data for evolution of maximum stress versus 

accumulated plastic strain 
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Figure 8. The experimental initial cycle, the modified cycle 

used for training the ANN and predicted curve by neural 

network for 2% strain range  

 

 

It must be mentioned that in the original cycle, each 

point on the strain axes corresponds to two values of 

stresses, a tensile and a compressive stress. This 

problem can be avoided by modifying the cycle as 

explained above. Figure 8 illustrates the first cycle 

(experimental) of the hysteresis loop for the strain range 

of 4%, the modified cycle used for training ANN model 

and the predicted curve by neural network. This figure 

shows an excellent agreement between experimental 

data and predicted curve from neural network. This 

could partly be due to the use of enough input data and 

neurons for training ANN. 

Finally, by restoring the expanded cycle, the normal 

cyclic stress-strain curve is obtained. Having achieved a 

good performance in the training phase, ANN will be 

used for accurate interpolation and extrapolation within 

and outside the strain ranges, respectively. For this 

purpose, the strain ranges of 2% and 5% are selected for 

interpolation and extrapolation, respectively. Figure 9 

shows variation of amplitude of stress,
a , and mean 

stress,
m , versus the accumulated plastic strain for the 

cyclic loading with the strain range of 2%. As it can be 

seen, the proposed model has a good agreement with the 

curves predicted by neural network from the first cycle, 

where the models proposed by Rahman et al. and Ohno-

Wang fail to completely simulate material response. 

Another feature of Figure 9 is that the proposed model 

can simulate all the cycles in the hysteresis loop with a 

reasonable accuracy. The results shown in Figure 10 for 

the strain range of 5% (q=2.5%) show exactly the same 

trends as described for the strain range of 2% (q=1%). 

However, proposed model has an excellent agreement 

with the results of ANN in the low and high 

accumulated plastic strain for the evolution of stress 

amplitude, but similar to other two models cannot 

simulate well the predicted curve among the range. The 

difference can presumably be due to either inadequacy 

of the number of material constants used in the 

exponential function to express the evolution of mC and
m or the exponential function itself which may have not 

been a right function to describe the evolution. 

Nevertheless, beyond the strain ranges of experimental 

data, the proposed model can simulate the initial and the 

last cycles more accurately than the other cycles in the 

hysteresis curve. Except for the initial cycles, the mean 

stress predicted by Rahman et al. and Ohno-Wang 

models is close to that predicted by the proposed model 

and obtained from the experiment. 

In order to study the ability of the proposed model in 

simulating the cyclic stress-strain curve within and 

outside the experimental strain range, a comparison 

between the proposed model, ANN and other two 

models has been made for the first and stabilized cycles 

with the strain ranges of 2% and 5%, respectively. The 

interpolated first cycle of hysteresis loop for 2% strain 

range is illustrated in Figure 11. As the figure indicates, 

the proposed model shows a good agreement with 

neural network interpolation for both compressive and 

tensile half cycles. Again, this confirms the accuracy of 

the proposed model and the procedure employed for 

identification of material parameter. The extrapolated 

stabilized cycle of hysteresis loop for 5% strain range is 

presented in Figure 12. 
 

 

 
Figure 9. Comparison between ANN interpolation and other 

models for variation of stress amplitude and mean stress 

versus accumulated plastic strain 
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Figure 10. Comparison between ANN extrapolation and other 

models for variation of stress amplitude and mean stress 

versus accumulated plastic strain 
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Figure 11. ANN interpolation and proposed model for first 

cycle of stress-strain curve 
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Figure 12. ANN extrapolation with other models for 

stabilized cycle of stress-strain curve 

 
 
As the figure suggests, the proposed model shows a 

better agreement with ANN than the other models for 

both compressive and tensile half cycles. Figure 12 also 

indicates that the difference between the proposed 

model, ANN and the other two models is not 

significant. Again, the reason is that the other two 

models are more accurate for the stabilized cycle of 

hysteresis curve at and in the vicinity of the reference 

strain range (the strain range for which material 

parameters are obtained). 
 
 
4. CONCLUDING REMARKS 
 

In this work, strain dependent cyclic plasticity model 

proposed by Khademi, Majzoobi, Bonora and Gentile 

[17] was numerically investigated. Therefore, the 

proposed material model was implemented in the 

commercial finite element code MSC. MARC and the 

numerical results were validated by comparing with 

experimental data. In addition, interpolation and 

extrapolation of experiments were predicted by artificial 

neural network. The numerical results of the proposed 

model were compared with the results of Rahman et al. 

and Ohno-Wang models as well as ANN. However, the 

proposed model is a complementary work for and 

modification into the models suggested by the pioneers 

such as Rahman et al. and Ohno-Wang who indeed 

paved the ground for the present investigations. The 

following conclusions may be derived in this paper: 

1. Material parameters for Rahman et al. and Ohno-

Wang models are obtained from the stabilized cycle of 

hysteresis loop for the largest strain range. These 

parameters don’t vary with accumulation of plastic 

strain and strain range of hysteresis loop. Therefore, the 

models can simulate only the cycles close to the 

stabilized cycle of a hysteresis curve for a strain range 

close to the range used for parameter identification. This 

approach yields a linear evolution of maximum and 

minimum stress versus accumulated plastic strain which 

is not usually seen in experiment.  

2- The proposed model which considers the 

variation of material constants versus strain range and 

accumulation of plastic strain can predict accurately all 

cycles of the hysteresis loop regardless of the strain 

range of the test. This model can simulate compressive 

half cycles in the hysteresis loop from the first to the 

last cycle. The other models lack this feature which is 

highly important for simulation of material cyclic 

behavior. 

3- If artificial neural network model trained 

properly, it can predict experimental data well and 

consequently the model can be used for interpolating 

and extrapolating the experimental data. 

4- There is a remarkable agreement between the 

proposed model and ANN within and beyond the stain 

ranges of the tests. This suggests that the proposed 

model can perfectly predict material response within 

and beyond the strain range. 

 

 

5. APPENDIX 
 

Rahman et al. model constants: 
1 4C  = 448177.5, 18336.1, 385, 121086.3  

1 4  = 39200.9, 346.5, 0, 1875.6 

Ohno-wang model constants: 
1 14C  = 142759, 26862, 4289, 7042, 8009, 2485, 1852, 

3400, 2958, 1740, 2268, 2163, 1370, 362 
1 14  = 3081, 1583, 1303, 1094, 908, 728, 655, 585, 461, 

401.7, 342, 238, 137.9, 29.2 

 
 
6. REFERENCES 
 

1. Armstrong, P.J. and Frederick, C., "A mathematical 

representation of the multiaxial bauschinger effect, Central 
Electricity Generating Board [and] Berkeley Nuclear 

Laboratories, Research & Development Department,  (1966). 



329                                        E. Khademia et al. / IJE TRANSACTIONS B: Applications  Vol. 30, No. 2, (February 2017)   321-329 
 

2. Bari, S. and Hassan, T., "Anatomy of coupled constitutive 

models for ratcheting simulation", International Journal of 

Plasticity,  Vol. 16, No. 3, (2000), 381-409. 

3. Chaboche, J.-L., "Time-independent constitutive theories for 

cyclic plasticity", International Journal of Plasticity,  Vol. 2, 
No. 2, (1986), 149-188. 

4. Ohno, N. and Wang, J.-D., "Kinematic hardening rules with 

critical state of dynamic recovery, part i: Formulation and basic 
features for ratchetting behavior", International Journal of 

Plasticity,  Vol. 9, No. 3, (1993), 375-390. 

5. Chaboche, J.-L., "On some modifications of kinematic 
hardening to improve the description of ratchetting effects", 

International Journal of Plasticity,  Vol. 7, No. 7, (1991), 661-
678. 

6. Krishna, S., Hassan, T., Naceur, I.B., Sai, K. and Cailletaud, G., 

"Macro versus micro-scale constitutive models in simulating 
proportional and nonproportional cyclic and ratcheting responses 

of stainless steel 304", International Journal of Plasticity,  Vol. 

25, No. 10, (2009), 1910-1949. 

7. Collin, J.-M., Parenteau, T., Mauvoisin, G. and Pilvin, P., 

"Material parameters identification using experimental 

continuous spherical indentation for cyclic hardening", 
Computational Materials Science,  Vol. 46, No. 2, (2009), 333-

338. 

8. Feng, X.-T. and Yang, C., "Genetic evolution of nonlinear 
material constitutive models", Computer Methods in Applied 

Mechanics and Engineering,  Vol. 190, No. 45, (2001), 5957-

5973. 

9. Rahman, S.M., Hassan, T. and Ranjithan, S.R., "Automated 

parameter determination of advanced constitutive models", in 

ASME Pressure Vessels and Piping Conference, American 
Society of Mechanical Engineers. (2005), 261-272. 

10. Yun, G.J. and Shang, S., "A self-optimizing inverse analysis 

method for estimation of cyclic elasto-plasticity model 
parameters", International Journal of Plasticity,  Vol. 27, No. 

4, (2011), 576-595. 

11. Lefik, M. and Schrefler, B., "One-dimensional model of cable-
in-conduit superconductors under cyclic loading using artificial 

neural networks", Fusion Engineering and Design,  Vol. 60, 

No. 2, (2002), 105-117. 

12. Janezic, M., Klemenc, J. and Fajdiga, M., "A neural-network 

approach to describe the scatter of cyclic stress–strain curves", 

Materials & Design,  Vol. 31, No. 1, (2010), 438-448. 

13. Mathew, M., Kim, D.W. and Ryu, W.-S., "A neural network 

model to predict low cycle fatigue life of nitrogen-alloyed 316l 
stainless steel", Materials Science and Engineering: A,  Vol. 

474, No. 1, (2008), 247-253. 

14. Purintrapiban, U. and Corley, H., "Neural networks for detecting 
cyclic behavior in autocorrelated process", Computers & 

Industrial Engineering,  Vol. 62, No. 4, (2012), 1093-1108. 

15. Tomasella, A., El Dsoki, C., Hanselka, H. and Kaufmann, H., "A 
computational estimation of cyclic material properties using 

artificial neural networks", Procedia Engineering,  Vol. 10, 

(2011), 439-445. 

16. Furukawa, T. and Hoffman, M., "Accurate cyclic plastic analysis 

using a neural network material model", Engineering analysis 

with Boundary Elements,  Vol. 28, No. 3, (2004), 195-204. 

17. Khademi, E., Majzoobi, G.H., Bonora, N. and Gentile, D., 

"Experimental modeling of strain-dependent cyclic plasticity for 

prediction of hysteresis curve", The Journal of Strain Analysis 

for Engineering Design,  Vol. 50, No. 5, (2015), 314-324. 

18. Zhang, J. and Jiang, Y., "Constitutive modeling of cyclic 

plasticity deformation of a pure polycrystalline copper", 

International Journal of Plasticity,  Vol. 24, No. 10, (2008), 

1890-1915.  

 

A Strain Range Dependent Cyclic Plasticity Model 
 

E. Khademiaa, G.H. Majzoobib, N. Bonorac 
 
a Department of Robotics, Hamedan University of Technology, Hamedan, Iran 
b Department of Mechanical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran 
c Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy 

 
 

P A P E R  I N F O   

 
 

Paper history: 
Received 03 March 2016 
Received in revised form 09 December 2016 
Accepted 22 January 2017 

 
 

Keywords:  
Simulation 

Hysteresis Loop 

Cyclic Plasticity Model 
Neural Network 
 
 
 
 
 
 
 

 هچكيد
 

 

منحنی های حلقه پسماند برای شبیه سازی عددی تغییر شکل مواد تحت بارهای چرخه ای اهمیت بسزایی دارند. اغلب مدل های 

ارائه شده فقط بخش کششی چرخه پایدار از حلقه پسماند در یک بازه کرنش مشخص را برای تعیین ثابت های مدل ماده در نظر 

افزایش تجمع کرنش مومسان و تغییر بازه کرنش حلقه پسماند بدون تغییر باقی می  می گیرند که فرض می شود این ثابت ها با

مانند. این فرض مخصوصاً هنگامی که میانگین تنش کوچک نیست و یا سخت شوندگی همسانگرد زیاد است با خطای زیادی 

چرخه ای وابسته -یک مدل ماده مومسانهمراه است. با توجه به این که توسط نویسندگان این تحقیق و بر پایه آزمایشات متعدد 

به کرنش که در آن ثابت های مدل ماده با بازه کرنش و نیز میزان کرنش مومسان تجمع یافته تغییر می یابند ارائه داده اند، در این 

متفاوت از  مقاله نشان داده می شود که مدل ماده پیشنهادی برای شبیه سازی تمام چرخه های حلقه پسماند در بازه های کرنش

دقت مناسبی برخوردار می باشد. همچنین در این مقاله نشان داده خواهد شد که اگر شبکه عصبی مصنوعی درست طراحی و 

آموزش داده شود می توان از آن به منظور میانیابی و برون یابی داده های آزمایشی استفاده نمود. نتایج این تحقیق با دو مدل 

یسه شده است. نتایج نشان می دهند که انطباق خوبی میان مدل پیشنهادی و شبکه عصبی مصنوعی چرخه ای معروف مقا-مومسان

 در بین بازه های کرنش آزمایشی و همچنین در خارج از آن ها وجود دارد.
doi: 10.5829/idosi.ije.2017.30.02b.20 

  


