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In this study, analytical solution is presented to calculate the free vibration frequencies of nonuniform
microbeams. Scale effects are modelled using modified couple stress theory and the microbeam is
assumed to be thin while Poisson's ratio effects are also taken into account. Nonuniformity is presented
by exponentially varying width among the microbeam while the thickness remains constant. Results
are presented for simply-supported, cantilever and clamped boundary conditions. First five natural
frequency parameter are calculated for different scale and nonuniformity parameters and effects of
each parameter on the results are discussed. Also, to understand the effects of Poisson's ratio, small
scale and nonuniformity on the first frequency of the nonuniform microbeam and resonance domain, a
comprehensive parametric study is done. This research is important in understanding the dynamic
behavior of microbeams and effective designs using variable cross section in this type of
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NOMENCLATURE

U Strain energy (J) E Young’s modulus (Pa)

T Kinetic energy (J) 9 Poisson's ratio

WA Lames constants 0 Rotation vector

x Curvature tensor P Density (kg/m®)

u, w Displacement components (m) h Thickness of microbeam (m)

A Variation term L Length of microbeam (m)

A Frequency parameters bo Width of microbeam (m)

E Strain tensor n Nonuniformity

o,y Typical and deviatoric stress tensor ® Natural frequency term
Dimensionless small scale parameter A Cross section (m?)

C Constant coefficients

1. INTRODUCTION

Free vibration analysis of different structures is a key
step in understanding the dynamic behavior of different
systems. There has been many studies done in order to
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Bakhshi Khaniki)

comprehend the dynamic behavior of such structures.
One of the most important structures used in different
mechanical structures are beams. Beams are modeled
and studied in different scales such as macrobeams [1-
3], microbeams [4-6] and nanobeams [7-10].

In recent years, researchers focused on making a
more efficient structure using combined or smart
materials such as composites [11-14] and functionally
graded materials (FGM) [15-18] to increase the
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efficiency of structures. Microbeams as a part of
microstructures have an important role in future designs
due to their special behaviors and less space taken. In
order to be able to have a more effective design in micro
size structures, it is neccesarry to vary the cross section
among the length of the microbeam. Small scale
structures such as micro/nano beams, plates, shell etc.
show a different type of behavior compared to macro
sized sctructures and classical continuum theories are
unable to predict their behavior with a good precision.
For this reason, different non-classical theories such as
nonlocal elastic theory [19, 20], strain gradient theory
[21], modified couple stress theory [22], etc. are
presented to model their static and dynamic behaviors.
In all these theories, modified coupled stress theory is
one of the well-known theories which is used widely by
the researchers to model the microstructures behaviors
[23-26].

Utilizing variable cross section beside the significant
behavior of mirco scale structures could lead to a more
reliable design. There have been some great studies in
order to model the vibration in nonuniform microbeams.
Akgoz and Civalek [27] studied the free vibration
analysis of axially FG nonuniform microbeams.
Classical beam theory and modified couple stress theory
were used to model the beam. Nonuniformity was
presented in three different ways, by linearly varying
the width of the beam, linearly varying the thickness of
the beam and a combination between them both. Natural
frequencies were calculated using Rayleigh—-Ritz
method.

Shafiei et al. [28] studied the nonlinear vibration of
axially FG nonuniform microbeams using modified
couple stress theory. Euler—Bernoulli beam theory and
Von-Karman’s strain were used to model the beam and
its deflections. Nonuniformity was presented by varying
the thickness and width of the beam linearly. Frequency
parameter was presented for different materials and
nonuniformity by presenting numerical solution. They
also studied [29] the vibration of the same nonuniform
microbeam under a rotation situation and effects of the
rotating speed were also presented.

These studies used linear varying in cross section of
the beams. Cem Ece [30] presented an exponential
varying model for cross section of beams where the free
vibration of macro scaled beams was modeled using
such kind of nonuniformity. Hosseini Hashemi and
Bakhshi Khaniki [31] used the same nonuniformity to
model the free vibrations of nanosclaed nonuniformed
nanobeams. Eringens nonlocal elastic theory and Euler
beam model were employed to achieve the equation of
motion and results were calculated by analytically
solving the problem. It was shown that using variable
cross section for nano scale beams could lead to a great
efficiency.

Exponentially variable cross-section beams as a part
of nonuniform structures have far less been studied in

microscale. In this study, by the frame work of modified
couple stress theory, the nonuniformity in microbeams
are modeled and analytically solved for different types
of boundary conditions and the effects of nonuniformity
and microscale effects are investigated. Figure 1 shows
a schematic representation of nonuniform microbeams
which will be discussed in this paper.

2. PROBLEM FORMULATION

Classical continuum theories are unable to model and
predict the behavior of small scale structures which led
to use of new nonclassical theories in which the
modified couple stress theory is one of the well known
theories in modeling behaviors in microstructures. This
theory describes that the strain energy of an elastic
beam is a function of not only strain tensor, but also the
curvature tensor which can be expressed as: [22]

U:%J(a:s-#y:;()dv 1)

In which ¢ and y are the typical and deviatoric part of
modified stress tensors and € and y are the strain and
curvature tensors which could be defined as [32]:

Oy = A&y Oy + 218

Yij :zﬂlzlij
1( ou, 6Uj ..
o= =L 1,]=X,,X,,X
g Z[GXJ axij J=X1 X5, X3 2

_1(a0, 09,
Aok,

where & is the Kronecker delta, | is the material length
scale parameter, A, and p are the Lames constants and

@ is the rotation vector defined as [32]:
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6, =0, =—|—|.6,=0 3
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Displacement relations for thin beams are given as:
oW (Xy,t)

%, 4)
W (X3, X5,t) =W (X,,t)
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L

Figure 1. Schematic representation of exponentially non-
uniform microbeams
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where u and w are the displacement components, x, is

the longitudinal coordinate measured from the left end
of the beam and X, is the coordinate measured from the

midplane of the beam. The longitudinal strain and
symmetric curvature tensors with respect to Euler-
Bernoulli beam model are defined as:

xlxl (/10 + Zﬂ)gxlx

Vg, =2H1° 2,5,

g _ou__, oW
e ox,’ (5)
1(06, 20,
Zxx == ==+
2 o, ox,
103w (x,,1)
2 ox?

While other strain and rotation vectors are equal to zero
and the Lame's constants are defined as:

___Ev
(1+v)(1-2v)
i ©)

2(1+v)

o

n=

where E is the modulus of elasticity andvis the
Poisson's ratio. Using Equation (1) to Equation (6), the
strain energy and kinetic energy in microbeams are

written as:
I _E@-v)I1 Al2 ow (x, t) dx
L) M o7 %

=;ﬂ{p@ff+pf[%] o

where | is the second moment of area of the beam and
A is the area of the cross-section which in this study is
variable. Also, with respect to Hamilton's principle and
taking the first variation we have:

U]

5th dt :]5(T ~U)dt =0 ®)

By putting Equation (7) into Equation (8) and doing
some calculation, governing equation of motion of
general microbeam is achieved as:

A67w (oW ),
PR e )P oxot?

2

az E@-v)I RNE a?w2 _
ox,” |\ @+v)A-2v) X,
This equation presents the dynamic behavior of a
general microbeam without any external forces.

Considering an elastic microbeam with nonuniform
variable cross section as shown in Figure 1, the cross

©)

section will be a function of the length of the beam
defined as:

b(x,)=bge"
{ é i)beNi (10)
17— M0
A(x,)=bshe™
A, =boh
|(x1):ib hée™s (1)
_ = 3
_1zb°h

where N is the nonuniformity parameter, I, and A, are
second moment of area and cross section of the
microbeam at the left end, b,and b, are the width of the
beam at the left and right end of the microbeam and h is
the thickness which is assumed to be constant. By
assuming free harmonic motion as:

W (X,,t)=W (x,)e'* (12)

and substituting Equations (10)-(12) into Equation (9),
the equation of motion of nonuniform elastic isotropic
microbeam is achieved as:

EQ-0I_ g )(3W),
Q-2 Y

N[ E@-v)I +uA|2j[aW j+

(L+v)1-2v) ox,> (13)
2 o[ E@-w)I . )| oW

[p"” N ((1+v)(172v)+'uA| H(@xfj7

pAW =0

It can be seen that by neglecting the nonuniformity
parameter N, Equation (13) will become the formal
equation of motion of uniform microbeams. Also, by
neglecting the micro scale parameter |, equation of
motion of nonuniform macro scale beams is achieved
and at last by having both N =0and | =0, the general
form of equation of motion of uniform macro beams are
achieved.

In order to present Equation (13) in nondimensional
form to prevent the scale differences in further
calculations, dimensionless variables are defined as:

(14)

2 PAL 0?

_E@-»I N
@L+v)@-2v)

where 7 is the nondimensional nonuniformity

parameter, « denotes the dimensionless small scale
parameter, X and W are the nondimensional
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coordinate measured from the left end of the beam
along the length and the dimensionless transverse
displacement.

Using Equation (14) and rewriting Equation (13) in
a nondimensional form we have:

[aw ]+2’][0W ]+(gz§z+nz)[;wj,ﬂw ~0 (15)

ox* ox®

3.SOLUTION PROCEDURE

In order to investigate the free vibration of nonuniform
microbeams, boundary conditions of the both ends of
the microbeam should be chosen. In this study,
boundary conditions of the ends of the beam is
considered to be simply supported (S), clamped (C) or
free (F).

Solution of Equation (15) subjected to either
boundary conditions can be written in a general form as:

W(X)=C,e* +C,e*") +Ce™" 40 (16)

In which A, to A, are function of natural frequency
parameter » defined as:

b / 2 q
AI:—E—S+ —4S —2p+§
LR /—452—2p+ﬂ
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17

where undefined terms are presented as:
b= 8ac —3?
8a’
_b®—4abc
8a°

12 1(. A, (18)
saeealee)

0 =3’A1 +A2—4AS°

a=1

q

N

b=n

c=A%%+n?

e=-A°

A, =c’ +12ae

A, =2¢%+27b% —72ace

(19)

Applying boundary conditions in each case leads to an
equation for determination of natural frequency. The
natural frequency equation are given below for each
boundary condition separately.

3. 1. Simply-supported Nonuniform Microbeam
For the microbeams with both ends simply-supported,
boundary conditions are defined as:

Simply —supported : W (0)=0, W "(0)=0,

W (1)=0, W "(1)=0 (20)

Applying these conditions into Equation (16) and
neglecting the constant parameters C, to C, leads to:

eA1L11 _ et [(Alz — Aaz)Lﬂ i (A42 _ Agz )] i

le Az2 _Aaz L12 (21)
2 2 2 2
el — _i+(A12+A32) Ly _Aaz_AAZ tef =0
L12 Az _Aa L12 Az _As

By solving this equation natural frequencies of simply-
supported nonuniform microbeams are achieved and

undefined parameters L,, and L,, are presented as:
L= AT (e e |+ ATAS (e —e* |+ AT (e" e ) (22)

L, =A’A} (" —e™ )+ AA7 (% —e* )+ APAT (e* —e®)  (29)

3. 2. Clamped Nonuniform Microbeam In the
same way, for the microbeams with both clamped ends,

boundary conditions are defined as:
Clamped : W (0)=0, W '(0)=0,

ped : W (0)=0, W (0) -
W (1)=0, W '(1)=0

and by substituting Equation (16) into conditions of
Equation (24) we have:

A A A, —A, L
e, e ( 1 3) 21—A3+A4 +
Lzz Az - Aa Lzz

(25)

Lzz Az 7A3 Lzz Az 7A3

By solving this equation, the natural frequencies of both
clamped end nonuniform microbeams are achieved and
undefined parameters L,, and L,, are defined as:

Ly =AA (e —e® )+ A A (M —e™ )+ A A, (e —et) (26)

L, =AA (e —e* )+ AA (&% et )+ AA (e —e*)  (27)

3. 3. Cantilever Nonuniform Microbeam At
last, by having a clamped condition in one end of the
beam and a free end on the other side, the boundary
conditions are presented as:

Cantilever : W (0)=0, W '(0) =0,

W (1)=0, W "(1) =0 (28)
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and in the same way by substituting Equation (16) into
conditions of Equation (28) and neglecting the constant

parameters C, to C,, the pure equation is achieved as:

Ap 2 Ap 2 A —A, )L
ALy 2NAT (A -A,) SRR
L32 Az _Aa L32

(29)

ZeAzAf(—l——L“ + A=A [—L“J— As =A ]+2eA‘*A 2=-0
4
L12 Az 7A3 L12 Az 7A3

where L, and L, are defined as:

L =P Ay (AT™ - AT )+ AL A (AR —Ae™ )+

(30)
AA (ATe™ -Ale")

Ly =AA (AT —Ae™ )+ AA (Ae" —ATeh )+

(31)
ARy (ATe™ —Aje™)

4. RESULTS AND DISCUSSION

In this section, in order to illustrate the nonuniformity
effects combined with scale effects on free vibration
response of micorbeams, frequency parameters are
provided for different boundary conditions. To be able
to verify the current methodology, results are achieved
and compared to those presented in previous literatures.
For this reason, by neglecting the scale effect parameter,
results are calculated for nonuniform macro beams and
compared to the natural frequency parameters calculated
by Cem Ece et al. [30]. This verification is presented for
first five frequency parameters in Table 1 for simply-
supported macrobeams with nonuniformity parameter as
n=1 and 2. In the same way, in Table 2 and Table 3,

first five frequency parameters for clamped and
cantilever macrobeams are presented in which the
results are in a great agreement. Current formulation is
also verified by neglecting the nonuniformity in the
formulation and calculating the natural frequency term
for uniform microbeams.

TABLE 1. Natural frequency parameters for a simply
supported nonuniform beam

Results are achieved for different scale parameters and
compared to those presented in previous literatures [23]
in Table 4.

After verifying the problem formulation, by varying
different parameters, effects on natural frequency
parameter are presented. Poisson's ratio is assumed to be
zero in classical beam theory and the geometrical
parameters of the microbeams are L =100um,

h=1um and b, =5um .

TABLE 2. Natural frequency parameters for a clamped
nonuniform beam

Classical beam , Clamped

n=1 n=2
Present Ref [30] Present Ref [30]
Mode 1 22.5116 22.51167 22.9377 22.93771
Mode 2 61.8596 61.85968 62.4227 62.42272
Mode 3 121.1079 121.10799 121.7227 121.72272
Mode 4 200.0741 200.07411 200.7186 200.71860
Mode 5 298.7766 298.77661 299.4401 299.44012

TABLE 3. Natural frequency parameters for a cantilever
nonuniform beam

Classical beam , Cantilever

n=1 n=2
Present Ref [30] Present Ref [30]
Mode 1 2.8583 2.85833 2.9089 2.90893
Mode 2 20.0391 20.03917 18.1752 18.17520
Mode 3 59.8708 59.87084 58.3886 58.38868
Mode 4 119.0986 119.09862 117.6921 117.69217
Mode 5 198.0696 198.06964 196.7022 196.70224

TABLE 4. Natural frequency parameters for unifrom
microbeam with different scale parameters and boundary
conditions (MHz)

Simply-supported

Classical beam , Simply supported

n=1 n=2
Present Ref [30] Present Ref [30]
Mode 1 9.7729 9.77291 9.4872 9.48725
Mode 2 39.5703 39.57036 39.8523 39.85231
Mode 3 88.9705 88.97052 89.4052 89.40520
Mode 4 158.0841 158.08418 158.5968 158.59689
Mode 5 246.9265 246.92650 247.4862 247.48629

h/l 2 4 6 8
Present 1.39984 1.74893 2.21155 2.73051
Ref [23] 1.3998 1.7489 2.2115 2.7305

Cantilever

h/l 2 4 6 8
Present 0.49872 0.62297 0.78778 0.97273
Ref [23] 0.4987 0.6230 0.7878 0.9727

Clamped

h/l 2 4 6 8
Present 3.17321 3.96444 5.01314 6.18963
Ref [23] 3.1732 3.9645 5.0131 6.1896
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In Table 5, the first five natural frequency parameters
for classical simply supported nonuniform microbeam
are calculcated and presented. Nonuniform parameter is
assumed to be #=0, 1, 2 while scale effect parameter is
presented as 0=0, 0.001, 0.003 and 0.005. It can be seen
that increasing the scale parameter leads to a lower
frequency parameter in all domain for all
nonuniformities. Increasing the nonuniform parameter,
also leads to lower fequency numbers. For clamped
nonuniform microbeams, results are presented in Table
6. Unlike the simply-supported condition, it is shown
that increasing the nonuniform parameter leads to
higher frequency parameters but same reaction is
achieved by increasing the small scale parameter which
causes lower frequency parameter.

The reason that increasing the small scale parameter
leads to lower frequency parameters is cause of the
curvature tensor being mentioned more in the strain
energy of the system which causes less rigidity and
lower frequency parameters. Also, about the different
behaviors seen by varying nonuniformity parameter
which is also seen at macro scale problem [30], it can be
explained by the situations made by having nonuniform
Cross section.

TABLE 5. First five natural frequency parameters for
classical simply supported nonuniform microbeam

TABLE 6. First five natural frequency parameters for
classical clamped nonuniform microbeam

Classical beam , Clamped

Classical beam , Simply supported
n=0
o 0 0.001 0.003 0.005

Mode 1 9.86960 9.5863 7.9529 6.2425
Mode 2 39.47841 38.3454 31.8117 24.9701
Mode 3 88.82643 86.2771 71.5763 56.1827

n=0
o 0 0.001 0.003 0.005
Mode 1 22.37327 21.7311 18.02838 14.15109
Mode 2 61.67281 59.9028 49.69595 39.00805
Mode 3 120.90338 117.4335 97.4239%4 76.47139
Mode 4 199.85945 194.1235 161.0467 126.4111
Mode 5 298.55552 289.9870 240.576 188.8364

n=1
o 0 0.001 0.003 0.005
Mode 1 22.51167 21.86559 18.1399 14.23863
Mode 2 61.85968 60.08431 49.84653 39.12625
Mode 3 121.10799 117.6322 97.58882 76.6008
Mode 4 200.07411 194.332 161.2197 126.5469
Mode 5 298.77661 290.2017 240.7542 188.9762

n=2
o 0 0.001 0.003 0.005
Mode 1 22.93771 22.2794 18.48321 14.5081
Mode 2 62.42272 60.63119 50.30023 39.48237
Mode 3 121.72272 118.2293 98.08417 76.98962
Mode 4 200.71860 194.958 161.739 126.9545
Mode 5 299.44012 290.8462 241.2888 189.3959

Mode 4 157.91367 153.3815 127.2468 99.8804
Mode 5 246.74011 239.6587 198.8232 156.0631
n=1
o 0 0.001 0.003 0.005
Mode 1 9.77291 9.4924 7.8750 6.1814

Mode 2 39.57036 38.4347 31.8858 25.0283
Mode 3 88.97052 86.4168 71.6924 56.2739

Mode 4 158.08418 153.5472 127.3842 99.9882
Mode 5 246.92650 239.8397 198.9734 156.1810
n=2
o 0 0.001 0.003 0.005
Mode 1 9.48725 9.2150 7.6448 6.0007

Mode 2 39.85231 38.7085 32.1130 25.2066
Mode 3 89.40520 86.8393 72.0427 56.5488

Mode 4 158.59689 154.0452 127.7974 100.3125

Mode 5 247.48629 240.3834 199.4245 156.5351

Exponentially nonuniformed cross-section will put the
position of the weakest part of the beam closer to the
boundary. For simply supported beams this end could
rotate freely, so the effects are well seen by having
lower frequency parameter for higher nonuniformity.
But in the clamped end condition, this end is fully fixed
and both rotations and deflections being prevented so
different types of behavior are observed. In the same
way, natural frequency parameter for cantilever
microbeam is shown in Table 7. It is shown that for all
the nonuniform exponentially variable cross sections,
adding the scale effect parameter leads to lower
frequencies parametes.

On the other hand, the ratio of the thickness to the
length of the microbeam which is called slender ratio is
an important parameter affecting the natural frequency.

In Figure 2, these effects are presented for simply-
supported, clamped and cantilever nanobeams for
different small scale parameters. It is shown that
increasing the slender ratio parameter leads to a higher
frequency parameter for all boundary conditions.
Increasing the slender ratio parameter has the most
effect in lower numbers of it and merges to a specific
number for higher amounts.
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TABLE 7. First five natural frequency parameters for
classical cantilever nonuniform microbeam

Classical beam , Cantilever

n=0
a 0 0.001 0.003 0.005
Mode 1 3.51602 3.41511 2.833209 2.223883
Mode 2 22.03449 21.4021 17.75539 13.93681
Mode 3 61.69721 59.9265 49.71561 39.02349
Mode 4 120.90191 117.432 97.42276 76.47046
Mode 5 199.85953 194.1236 161.0468 126.4112

n=1
a 0 0.001 0.003 0.005
Mode 1 4.72298 4.58743 3.805777 2.987285
Mode 2 24.20168 23.50709 19.50171 15.30756
Mode 3 63.86448 62.03157 51.462 40.39428
Mode 4 123.09790 119.565 99.19229 77.85942
Mode 5 202.06876 196.2694 162.827 127.8085

n=2
a 0 0.001 0.003 0.005
Mode 1 6.25877 6.079143 5.043317 3.958672
Mode 2 26.58350 25.82055 21.42098 16.81406
Mode 3 66.37449 64.46954 53.48456 41.98186
Mode 4 125.68471 122.0776 101.2767 79.49558
Mode 5 204.69531 198.8206 164.9435 129.4698

n=-1

a 0 0.001 0.003 0.005
Mode 1 2.85833 2.776296 2.303242 1.807894
Mode 2 20.03917 19.46405 16.14756 12.67478
Mode 3 59.87084 58.15255 48.24392 37.86831
Mode 4 119.09862 115.6805 95.96967 75.32988
Mode 5 198.06964 192.385 159.6045 125.279

n=-2
a 0 0.001 0.003 0.005
Mode 1 2.90893 2.825444 2.344016 1.839898
Mode 2 18.17520 17.65357 14.64558 11.49581
Mode 3 58.38868 56.71292 47.0496 36.93084
Mode 4 117.69217 114.3144 94.83635 74.4403
Mode 5 196.70224 191.0569 158.5027 124.4142

Also, Poisson's ratio effects on exponentially varying
nonuniform microbeams are also calculated and
presented in Figure 3 for all boundary conditions.

Simply-Supported Microbeam n = 1, v = 0.38
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(©
Figure 2. First mode frequency parameter with respect to
scale effect parameter and slender ratio: (a) simply supported,
(b) Clamped and (c) Cantilever

It is seen that increasing the Poisson's ratio from 0to
0.5 makes a small increase in the first natural frequency
parameter at first but then it starts to decrease and
reaches to zero. This kind of behavior was independent
from the boundary types and happened in the same way
for all microbeams.
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Figure 3. First mode frequency parameter with respect to
scale effect parameter and Poisson's ratio: (a) simply
supported, (b) Clamped and (c) Cantilever

c

0

5. CONCLUSION

In the present study, free vibration of exponentially
variable cross section microbeams is investigated using
different types of boundary conditions. Small scale
effects are modeled using modified couple stress theory
by adding the curvature tensor's effect on strain energy

of the microbeam. Governing equation is achieved and a
general analytical solution is presented and solved for
simply supported, clamped and cantilever boundary
conditions. Current methodology is verified by
comparing the results with previous literatures in
studying uniform microbeams and nonuniform beams.
By analytically solving the problem, results revealed
that nonuniformity and small scale effects combined
with each other have a significant effect on varying the
frequency terms. Also, it is shown that these effects are
completely different for each boundary condition type.
In order to clarify the effects of different parameters
such as Poisson's ratio, slender ratio etc. on natural
frequencies, parametric study is presented for all types
of boundary conditions.
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