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A B S T R A C T  
 

 

In this study, analytical solution is presented to calculate the free vibration frequencies of nonuniform 

microbeams. Scale effects are modelled using modified couple stress theory and the microbeam is 

assumed to be thin while Poisson's ratio effects are also taken into account. Nonuniformity is presented 
by exponentially varying width among the microbeam while the thickness remains constant. Results 

are presented for simply-supported, cantilever and clamped boundary conditions. First five natural 

frequency parameter are calculated for different scale and nonuniformity parameters and effects of 
each parameter on the results are discussed. Also, to understand the effects of Poisson's ratio, small 

scale and nonuniformity on the first frequency of the nonuniform microbeam and resonance domain, a 

comprehensive parametric study is done. This research is important in understanding the dynamic 
behavior of microbeams and effective designs using variable cross section in this type of 

microstructures. 

doi: 10.5829/idosi.ije.2017.30.02b.19 
 

 

NOMENCLATURE 

U
 

Strain energy (J) E Young’s modulus (Pa) 

T Kinetic energy (J) ϑ Poisson's ratio 

μ, λ Lames constants θ  Rotation vector 

χ Curvature tensor ρ Density (kg/m3) 

u, w  Displacement components (m) h
 

Thickness of microbeam (m) 

Δ Variation term L Length of microbeam (m) 

Ai Frequency parameters b0 Width of microbeam (m) 

Ε Strain tensor η Nonuniformity 

σ, γ Typical and deviatoric stress tensor ω Natural frequency term 

α  Dimensionless small scale parameter A Cross section (m2) 

iC  Constant coefficients    

 
1. INTRODUCTION1 
 

Free vibration analysis of different structures is a key 

step in understanding the dynamic behavior of different 

systems. There has been many studies done in order to 
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Bakhshi Khaniki) 

comprehend the dynamic behavior of such structures. 

One of the most important structures used in different 

mechanical structures are beams. Beams are modeled 

and studied in different scales such as macrobeams [1-

3], microbeams [4-6] and nanobeams [7-10].  

In recent years, researchers focused on making a 

more efficient structure using combined or smart 

materials such as composites [11-14] and functionally 

graded materials (FGM) [15-18] to increase the 
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efficiency of structures. Microbeams as a part of 

microstructures have an important role in future designs 

due to their special behaviors and less space taken. In 

order to be able to have a more effective design in micro 

size structures, it is neccesarry to vary the cross section  

among the length of the microbeam. Small scale 

structures such as micro/nano beams, plates, shell etc. 

show a different type of behavior compared to macro 

sized sctructures and classical continuum theories are 

unable to predict their behavior with a good precision. 

For this reason, different non-classical theories such as 

nonlocal elastic theory [19, 20], strain gradient theory 

[21], modified couple stress theory [22], etc. are 

presented to model their static and dynamic behaviors. 

In all these theories, modified coupled stress theory is 

one of the well-known theories which is used widely by 

the researchers to model the microstructures behaviors 

[23-26]. 

Utilizing variable cross section beside the significant 

behavior of mirco scale structures could lead to a more 

reliable design. There have been some great studies in 

order to model the vibration in nonuniform microbeams. 

Akgöz and Civalek [27] studied the free vibration 

analysis of axially FG nonuniform microbeams. 

Classical beam theory and modified couple stress theory 

were used to model the beam. Nonuniformity was 

presented in three different ways, by linearly varying 

the width of the beam,  linearly varying the thickness of 

the beam and a combination between them both. Natural 

frequencies were calculated using Rayleigh–Ritz 

method.  

Shafiei et al. [28] studied the nonlinear vibration of 

axially FG nonuniform microbeams using modified 

couple stress theory. Euler–Bernoulli beam theory and 

Von-Kármán’s strain were used to model the beam and 

its deflections. Nonuniformity was presented by varying 

the thickness and width of the beam linearly. Frequency 

parameter was presented for different materials and 

nonuniformity by presenting numerical solution. They 

also studied [29] the vibration of the same nonuniform 

microbeam under a rotation situation and effects of the 

rotating speed were also presented. 

These studies used linear varying in cross section of 

the beams. Cem Ece [30] presented an exponential 

varying model for cross section of beams where the free 

vibration of macro scaled beams was modeled using 

such kind of nonuniformity. Hosseini Hashemi and 

Bakhshi Khaniki [31] used the same nonuniformity to 

model the free vibrations of nanosclaed nonuniformed 

nanobeams. Eringens nonlocal elastic theory and Euler 

beam model were employed to achieve the equation of 

motion and results were calculated by analytically 

solving the problem. It was shown that using variable 

cross section for nano scale beams could lead to a great 

efficiency. 

Exponentially variable cross-section beams as a part 

of nonuniform structures have far less been studied in 

microscale. In this study, by the frame work of modified 

couple stress theory, the nonuniformity in microbeams 

are modeled and analytically solved for different types 

of boundary conditions and the effects of nonuniformity 

and microscale effects are investigated. Figure 1 shows 

a schematic representation of nonuniform microbeams 

which will be discussed in this paper. 

 
 
2. PROBLEM FORMULATION 
 

Classical continuum theories are unable to model and 

predict the behavior of small scale structures which led 

to use of new nonclassical theories in which the 

modified couple stress theory is one of the well known 

theories in modeling behaviors in microstructures. This 

theory describes that the strain energy of an elastic 

beam is a function of not only strain tensor, but also the 

curvature tensor which can be expressed as: [22] 

 :
1
  dV  
2

:
V

U       (1) 

In which σ and γ are the typical and deviatoric part of 

modified stress tensors and ε and χ are the strain and 

curvature tensors which could be defined as [32]: 
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where δ is the Kronecker delta, l is the material length 

scale parameter, 
0  and μ are the Lames constants and 

  is the rotation vector defined as [32]: 

1
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2
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3

 0 x   (3) 

Displacement relations for thin beams are given as: 
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Figure 1. Schematic representation of exponentially non-

uniform microbeams 
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where u and w are the displacement components, 
1x   is 

the longitudinal coordinate measured from the left end 

of the beam and 
3x is the coordinate measured from the 

midplane of the beam. The longitudinal strain and 

symmetric curvature tensors with respect to Euler-

Bernoulli beam model are defined as:   

1 1 1 10 ) ( 2x x x x     

1 2 1 2

2 2x x x xl   
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(5) 

While other strain and rotation vectors are equal to zero 

and the Lame's constants are defined as:     
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(6) 

where E is the modulus of elasticity and is the 

Poisson's ratio. Using Equation (1) to Equation (6), the 

strain energy and kinetic energy in microbeams are 

written as: 
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(7) 

where I is the second moment of area of the beam and 

A  is the area of the cross-section which in this study is 

variable. Also, with respect to Hamilton's principle and 

taking the first variation we have: 

 
0 0

0

t t

L dt T U dt      (8) 

By putting Equation (7) into Equation (8) and doing 

some calculation, governing equation of motion of 

general microbeam is achieved as:   
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(9) 

This equation presents the dynamic behavior of a 

general microbeam without any external forces. 

Considering an elastic microbeam with nonuniform 

variable cross section as shown in Figure 1, the cross 

section will be a function of the length of the beam 

defined as:  
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where N is the nonuniformity parameter, I0 and A0 are 

second moment of area and cross section of the 

microbeam at the left end, 0b and 1b are the width of the 

beam at the left and right end of the microbeam and h is 

the thickness which is assumed to be constant. By 

assuming free harmonic motion as: 

   1 1, i tw x t W x e   (12) 

and substituting Equations (10)-(12) into Equation (9), 

the equation of motion of nonuniform elastic isotropic 

microbeam is achieved as: 
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(13) 

It can be seen that by neglecting the nonuniformity 

parameter N , Equation (13) will become the formal 

equation of motion of uniform microbeams. Also, by 

neglecting the micro scale parameter l , equation of 

motion of nonuniform macro scale beams is achieved 

and at last by having both 0N  and 0l  , the general 

form of equation of motion of uniform macro beams are 

achieved.  

In order to present Equation (13) in nondimensional 

form to prevent the scale differences in further 

calculations, dimensionless variables are defined as: 
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(14) 

where   is the nondimensional nonuniformity 

parameter,   denotes the dimensionless small scale 

parameter, X and W are the nondimensional 
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coordinate measured from the left end of the beam 

along the length and the dimensionless transverse 

displacement. 

Using Equation (14) and rewriting Equation (13) in 

a nondimensional form we have:  

 
4 3 2

2 2 2 2

4 3 2
2 0

W W W
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x x x
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3. SOLUTION PROCEDURE  
 
In order to investigate the free vibration of nonuniform 

microbeams, boundary conditions of the both ends of 

the microbeam should be chosen. In this study, 

boundary conditions of the ends of the beam is 

considered to be simply supported (S), clamped (C) or 

free (F).  

Solution of Equation (15) subjected to either 

boundary conditions can be written in a general form as:  
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where undefined terms are presented as: 
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(19) 

Applying boundary conditions in each case leads to an 

equation for determination of natural frequency. The 

natural frequency equation are given below for each 

boundary condition separately. 

 

3. 1. Simply-supported Nonuniform Microbeam       
For the microbeams with both ends simply-supported, 

boundary conditions are defined as:   
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Applying these conditions into Equation (16) and 

neglecting the constant parameters 1C  to 3C leads to: 
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(21) 

By solving this equation natural frequencies of simply-

supported nonuniform microbeams are achieved and 

undefined parameters 11L  and 12L  are presented as: 
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3. 2. Clamped Nonuniform Microbeam       In the 

same way, for the microbeams with both clamped ends, 

boundary conditions are defined as: 
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and by substituting Equation (16) into conditions of 

Equation (24) we have: 
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By solving this equation, the natural frequencies of both 

clamped end nonuniform microbeams are achieved and 

undefined parameters 21L  and 22L  are defined as: 
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3. 3. Cantilever Nonuniform Microbeam       At 

last, by having a clamped condition in one end of the 

beam and a free end on the other side, the boundary 

conditions are presented as: 
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and in the same way by substituting Equation (16) into 

conditions of Equation (28) and neglecting the constant 

parameters 1C  to 3C , the pure equation is achieved as: 
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where 31L  and 32L  are defined as: 
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AA A A
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L A A A e A e A A A e A e

A A A e A e

    



 (30) 

   

 

31 2 1

32

    2 2     2 2

32 1 2 1 2 1 3 3 1

    2 2

2 3 2 3

 
AA A A

AA

L A A A e A e A A A e A e

A A A e A e

    



 (31) 

 

 

4. RESULTS AND DISCUSSION  
 

In this section, in order to illustrate the nonuniformity 

effects combined with scale effects on free vibration 

response of micorbeams, frequency parameters are 

provided for different boundary conditions. To be able 

to verify the current methodology, results are achieved 

and compared to those presented in previous literatures. 

For this reason, by neglecting the scale effect parameter, 

results are calculated for nonuniform macro beams and 

compared to the natural frequency parameters calculated 

by Cem Ece et al. [30]. This verification is presented for 

first five frequency parameters in Table 1 for simply-

supported macrobeams with nonuniformity parameter as 

1   and 2. In the same way, in Table 2 and Table 3, 

first five frequency parameters for clamped and 

cantilever macrobeams are presented in which the 

results are in a great agreement. Current formulation is 

also verified by neglecting the nonuniformity in the 

formulation and calculating the natural frequency term 

for uniform microbeams. 

 

 
TABLE 1. Natural frequency parameters for a simply 

supported nonuniform beam 

Classical beam , Simply supported 

2   1    

Ref [30] Present Ref [30] Present  

9.48725 9.4872 9.77291 9.7729 Mode 1 

39.85231 39.8523 39.57036 39.5703 Mode 2 

89.40520 89.4052 88.97052 88.9705 Mode 3 

158.59689 158.5968 158.08418 158.0841 Mode 4 

247.48629 247.4862 246.92650 246.9265 Mode 5 

Results are achieved for different scale parameters and 

compared to those presented in previous literatures [23] 

in Table 4.  

After verifying the problem formulation, by varying 

different parameters, effects on natural frequency 

parameter are presented. Poisson's ratio is assumed to be 

zero in classical beam theory and the geometrical 

parameters of the microbeams are 100L m , 

1h m  and 
0 5b m . 

 

 

TABLE 2. Natural frequency parameters for a clamped 

nonuniform beam 

Classical beam , Clamped 

2   1    

Ref [30] Present Ref [30] Present  

22.93771 22.9377 22.51167 22.5116 Mode 1 

62.42272 62.4227 61.85968 61.8596 Mode 2 

121.72272 121.7227 121.10799 121.1079 Mode 3 

200.71860 200.7186 200.07411 200.0741 Mode 4 

299.44012 299.4401 298.77661 298.7766 Mode 5 

 
 

TABLE 3. Natural frequency parameters for a cantilever 

nonuniform beam 

Classical beam , Cantilever 

2   1    

Ref [30] Present Ref [30] Present  

2.90893 2.9089 2.85833 2.8583 Mode 1 

18.17520 18.1752 20.03917 20.0391 Mode 2 

58.38868 58.3886 59.87084 59.8708 Mode 3 

117.69217 117.6921 119.09862 119.0986 Mode 4 

196.70224 196.7022 198.06964 198.0696 Mode 5 

 

 

TABLE 4. Natural frequency parameters for unifrom 

microbeam with different scale parameters and boundary 

conditions (MHz) 

Simply-supported 

8 6 4 2 /h l  

2.73051 2.21155 1.74893 1.39984 Present 

2.7305 2.2115 1.7489 1.3998 Ref [23] 

Cantilever 

8 6 4 2 /h l  

0.97273 0.78778 0.62297 0.49872 Present 

0.9727 0.7878 0.6230 0.4987 Ref [23] 

Clamped 

8 6 4 2 /h l  

6.18963 5.01314 3.96444 3.17321 Present 

6.1896 5.0131 3.9645 3.1732 Ref [23] 
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In Table 5, the first five natural frequency parameters 

for classical simply supported nonuniform microbeam 

are calculcated and presented. Nonuniform parameter is 

assumed to be η=0, 1, 2 while scale effect parameter is 

presented as α=0, 0.001, 0.003 and 0.005. It can be seen 

that increasing the scale parameter leads to a lower 

frequency parameter in all domain for all 

nonuniformities. Increasing the nonuniform parameter, 

also leads to lower fequency numbers. For clamped 

nonuniform microbeams, results are presented in Table 

6. Unlike the simply-supported condition, it is shown 

that increasing the nonuniform parameter leads to 

higher frequency parameters but same reaction is 

achieved by increasing the small scale parameter which 

causes lower frequency parameter.  

The reason that increasing the small scale parameter 

leads to lower frequency parameters is cause of the 

curvature tensor being mentioned more in the strain 

energy of the system which causes less rigidity and 

lower frequency parameters. Also, about the different 

behaviors seen by varying nonuniformity parameter 

which is also seen at macro scale problem [30], it can be 

explained by the situations made by having nonuniform 

cross section. 

 
TABLE 5. First five natural frequency parameters for 

classical simply supported nonuniform microbeam 

Classical beam , Simply supported 

0    

0.005 0.003 0.001 0   

6.2425 7.9529 9.5863 9.86960 Mode 1 

24.9701 31.8117 38.3454 39.47841 Mode 2 

56.1827 71.5763 86.2771 88.82643 Mode 3 

99.8804 127.2468 153.3815 157.91367 Mode 4 

156.0631 198.8232 239.6587 246.74011 Mode 5 

1    

0.005 0.003 0.001 0   

6.1814 7.8750 9.4924 9.77291 Mode 1 

25.0283 31.8858 38.4347 39.57036 Mode 2 

56.2739 71.6924 86.4168 88.97052 Mode 3 

99.9882 127.3842 153.5472 158.08418 Mode 4 

156.1810 198.9734 239.8397 246.92650 Mode 5 

2    

0.005 0.003 0.001 0   

6.0007 7.6448 9.2150 9.48725 Mode 1 

25.2066 32.1130 38.7085 39.85231 Mode 2 

56.5488 72.0427 86.8393 89.40520 Mode 3 

100.3125 127.7974 154.0452 158.59689 Mode 4 

156.5351 199.4245 240.3834 247.48629 Mode 5 

TABLE 6. First five natural frequency parameters for 

classical clamped nonuniform microbeam 

Classical beam , Clamped 

0    

0.005 0.003 0.001 0   

14.15109 18.02838 21.7311 22.37327 Mode 1 

39.00805 49.69595 59.9028 61.67281 Mode 2 

76.47139 97.42394 117.4335 120.90338 Mode 3 

126.4111 161.0467 194.1235 199.85945 Mode 4 

188.8364 240.576 289.9870 298.55552 Mode 5 

1    

0.005 0.003 0.001 0   

14.23863 18.1399 21.86559 22.51167 Mode 1 

39.12625 49.84653 60.08431 61.85968 Mode 2 

76.6008 97.58882 117.6322 121.10799 Mode 3 

126.5469 161.2197 194.332 200.07411 Mode 4 

188.9762 240.7542 290.2017 298.77661 Mode 5 

2    

0.005 0.003 0.001 0   

14.5081 18.48321 22.2794 22.93771 Mode 1 

39.48237 50.30023 60.63119 62.42272 Mode 2 

76.98962 98.08417 118.2293 121.72272 Mode 3 

126.9545 161.739 194.958 200.71860 Mode 4 

189.3959 241.2888 290.8462 299.44012 Mode 5 

 

 

Exponentially nonuniformed cross-section will put the 

position of the weakest part of the beam closer to the 

boundary. For simply supported beams this end could 

rotate freely, so the effects are well seen by having 

lower frequency parameter for higher nonuniformity. 

But in the clamped end condition, this end is fully fixed 

and both rotations and deflections being prevented so 

different types of behavior are observed.  In the same 

way, natural frequency parameter for cantilever 

microbeam is shown in Table 7. It is shown that for all 

the nonuniform exponentially variable cross sections, 

adding the scale effect parameter leads to lower 

frequencies parametes.  

On the other hand, the ratio of the thickness to the 

length of the microbeam which is called slender ratio is 

an important parameter affecting the natural frequency.  

In Figure 2, these effects are presented for simply-

supported, clamped and cantilever nanobeams for 

different small scale parameters. It is shown that 

increasing the slender ratio parameter leads to a higher 

frequency parameter for all boundary conditions. 

Increasing the slender ratio parameter has the most 

effect in lower numbers of it and merges to a specific 

number for higher amounts. 
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TABLE 7. First five natural frequency parameters for 

classical cantilever nonuniform microbeam 

Classical beam , Cantilever 

0    

0.005 0.003 0.001 0   

2.223883 2.833209 3.41511 3.51602 Mode 1 

13.93681 17.75539 21.4021 22.03449 Mode 2 

39.02349 49.71561 59.9265 61.69721 Mode 3 

76.47046 97.42276 117.432 120.90191 Mode 4 

126.4112 161.0468 194.1236 199.85953 Mode 5 

1    

0.005 0.003 0.001 0   

2.987285 3.805777 4.58743 4.72298 Mode 1 

15.30756 19.50171 23.50709 24.20168 Mode 2 

40.39428 51.462 62.03157 63.86448 Mode 3 

77.85942 99.19229 119.565 123.09790 Mode 4 

127.8085 162.827 196.2694 202.06876 Mode 5 

2    

0.005 0.003 0.001 0   

3.958672 5.043317 6.079143 6.25877 Mode 1 

16.81406 21.42098 25.82055 26.58350 Mode 2 

41.98186 53.48456 64.46954 66.37449 Mode 3 

79.49558 101.2767 122.0776 125.68471 Mode 4 

129.4698 164.9435 198.8206 204.69531 Mode 5 

1     

0.005 0.003 0.001 0   

1.807894 2.303242 2.776296 2.85833 Mode 1 

12.67478 16.14756 19.46405 20.03917 Mode 2 

37.86831 48.24392 58.15255 59.87084 Mode 3 

75.32988 95.96967 115.6805 119.09862 Mode 4 

125.279 159.6045 192.385 198.06964 Mode 5 

2     

0.005 0.003 0.001 0   

1.839898 2.344016 2.825444 2.90893 Mode 1 

11.49581 14.64558 17.65357 18.17520 Mode 2 

36.93084 47.0496 56.71292 58.38868 Mode 3 

74.4403 94.83635 114.3144 117.69217 Mode 4 

124.4142 158.5027 191.0569 196.70224 Mode 5 

 

 

Also, Poisson's ratio effects on exponentially varying 

nonuniform microbeams are also calculated and 

presented in Figure 3 for all boundary conditions. 

 
 

 

It is seen that increasing the Poisson's ratio from 0 to

0.5  makes a small increase in the first natural frequency 

parameter at first but then it starts to decrease and 

reaches to zero. This kind of behavior was independent 

from the boundary types and happened in the same way 

for all microbeams. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. First mode frequency parameter with respect to 

scale effect parameter and slender ratio: (a) simply supported, 

(b) Clamped and (c) Cantilever 
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(a) 

 
(b) 

 
(c) 

Figure 3. First mode frequency parameter with respect to 

scale effect parameter and Poisson's ratio: (a) simply 

supported, (b) Clamped and (c) Cantilever 

 
 
5. CONCLUSION 
 
In the present study, free vibration of exponentially 

variable cross section microbeams is investigated using 

different types of boundary conditions. Small scale 

effects are modeled using modified couple stress theory 

by adding the curvature tensor's effect on strain energy 

of the microbeam. Governing equation is achieved and a 

general analytical solution is presented and solved for 

simply supported, clamped and cantilever boundary 

conditions. Current methodology is verified by 

comparing the results with previous literatures in 

studying uniform microbeams and nonuniform beams. 

By analytically solving the problem, results revealed 

that nonuniformity and small scale effects combined 

with each other have a significant effect on varying the 

frequency terms. Also, it is shown that these effects are 

completely different for each boundary condition type. 

In order to clarify the effects of different parameters 

such as Poisson's ratio, slender ratio etc. on natural 

frequencies, parametric study is presented for all types 

of boundary conditions. 
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 هچكيد
 

 
تحقیق، حل تحلیلی ارتعاشات آزاد میکروتیرها با سطح مقطع متغیر ارائه شده است. اثرات ابعادی به کمک تئوری در این 

تنش کوپل اصلاح شده مدل سازی شده است. میکروتیر باریک فرض شده اما اثرات ضریب پواسون درنظر گرفته شده 

ا ضخامت ثابت فرض شده است. نتایج برای شرایط است. تغییر شکل در سطح مقطع تیر به صورت نمایی در عرض تیر ب

تکیه گاهی دوسر پین شده، دوسرگیردار و یک سر گیردار ارائه شده است. پنج فرکانس طبیعی اول ارتعاشی برای مقادیر 

تر اثرات ضریب پواسون،  مختلف ترم ابعادی و ناهمگنی سطح مقطع بدست آمده است. علاوه بر این، جهت درک مناسب

ابعادی و ناهمگنی سطح مقطع روی فرکانس اول ارتعاشی میکروتیرهای سطح مقطع متغیر و شناخت نواحی تشدید، اثرات 

 مطالعه پارامتریک جامع ارائه شده است.
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