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ABSTRACT

This investigation deals with M*/G/1 queueing model with setup, bulk- arrival, loss-delay and balking.
The provision of second optional service apart from essential service by an unreliable server is taken
into consideration. We assume that the delay customers join the queue when server is busy whereas
loss customers depart from the system. After receiving the essential service, the customers may opt for
the optional service with some probability or may leave the system. The server is unreliable and hence
may breakdown in both essential and optional service cases and requires a setup time before being
repaired. The service during essential service, setup times and repair times for both cases are general
distributed while the service time during optional service is exponential. Using the supplementary
variable technique, the equations governing the model are constructed. The steady state queue size
distribution is then obtained using Laplace transform and probability generating functions. The

Supplementary variables
Queue size

numerical results for various performance indices have been obtained and illustrated graphically.
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1. INTRODUCTION

Queueing models are widely used to study the behavior
of various types of congestion problems of day to day as
well as industrial problems which are encountered in
telecommunication, manufacturing systems, computer
systems and many others. In such systems the jobs may
arrive in batches and after getting the essential service
may opt for optional service or leave the system. The
server may be unreliable and requires a setup time
before being repaired. Bulk arrivals queues have also
find several applications in telecommunication and
computer systems, transportation and distribution
systems, manufacturing and production systems, etc. In
recent past, the important contributions on queueing
systems with bulk arrivals are due to Borthakur and
Medhi [1], Chaudhry and Templeton [2], and many
other researchers. Lee et al. [3] has studied M/G/1 batch
arrival queue with N-policy and multiple vacations.
Batch arrival retrial queues with multiple vacations and
starting failures have been studied by Krishna Kumar
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and Madheswari [4]. M*/G/1 queue with feedback and
server vacations based on a single vacation policy was
investigated by Madan and Al-Rawwash [5]. Ke and
Lin [6] proposed maximum entropy approach for batch-
arrival queue under N policy with an un-reliable server
and single vacation. A batch arrival retrial queueing
system with two phases of service and service
interruption was analyzed by Choudhury et al. [7]. Jain
and Chauahn [8] developed a working vacation queue
with second optional service and unreliable server.
Strategic behavior in a observable fluid queue with an
alternating service process was analyzed by Economou
and Manou [9].

In many real life situations, due to overloading or
long run of operating time, the servers may break down.
Queueing problems with service station subject to break
down were studied by many researchers; to cite a few,
we refer Avi-ltzhak and Naor [10] and also Neuts and
Lucantoni [11]. Ke [12, 13] proposed server
breakdowns for M/G/1 queueing system. Recently, Ke
[14] analyzed a batch arrival queues under vacation
policies with server breakdowns and startup/closedown
times. An M/G/1 retrial queueing system with two
phases of service subject to the server breakdown and
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repair was made by Choudhury and Deka [15]. Wang et
al. [16] developed optimization of the T policy M/G/1
queue with server breakdowns and general startup
times. A queue with working breakdowns was analyzed
by Kalidas and Kasturi [17]. Yang and Wu [18] studied
cost minimization analysis of a working vacation queue
with N-policy and server break down.

Queues with balking have received considerable
attention of researchers working in the area of queueing
theory (cf. Abou-El-Ata and Shawky [19]; Abou-EIl-Ata
and Hariri [20]. Thomo [21] proposed a multiple
vacation M*/G/1 model with balking. Jain and Sharma
[22] studied controllable multi server queue with
balking. Jain and Sharma [23] developed finite capacity
queueing system with queue dependent servers and
discouragement. Cochran and Broyles [24] developed
nonlinear queuing regressions to increase emergency
department patient safety: Approximating reneging with
balking. Machine repair problem with spares, balking,
reneging and N-policy for vacation was developed by
Sharma [25]. Yu et al. [26] considered equilibrium
strategies of the unobservable M/M/1 queue with
balking and delayed repair.

Due to some constraints, often customers would not
like to wait for service when all servers are busy and
hence, are lost to the system. The loss customers are
those which cannot wait in the system when all service
positions are occupied whereas the delay customers can
wait in the system in such a case. Single unreliable
server interdependent loss and delay queueing model
with controllable arrival rate under N-Policy was
discussed by Sharma [27]. User optimal state dependent
routing in parallel tandem queues with loss was made
by Spicer and Ziedins [28]. Fan [29] developed a
queueing model for mixed loss-delay systems with
general inter arrival processes for wide-band calls. Kim
et al. [30] considered erlang loss queueing system with
batch arrivals operating in a random environment.
Network queue and loss analysis using histogram-based
traffic models was analyzed by Orallo and Carbo [31].
Transient analysis of loss and delay bulk service
Markovian queue under N-policy was discussed by
Sharma [32]. Gupta et al. [33] developed optimal
revenue management in two class pre-emptive delay
dependent Markovian queues.

In this paper, we consider a queue-dependent
M*/G/1 queueing system with loss-delay customers,
balking, second optional service and setup time before
repairing of unreliable server. The remaining paper is
organized as follows. In section 2, we give the model
description and notations to be used for mathematical
formulation. The queue size distribution and
performance indices are given in sections 3 and 4,
respectively. In section 5, we deduce some special cases
by setting appropriate parameters. To explore the effect
of various parameters on performance indices, the
sensitivity analysis is carried out in section 6. The noble

features and future scope of the model proposed are
outlined in the final section 7.

2. MODEL DESCRIPTION

Consider an M*/G/1 queue with loss-delay customers.
The system consists of an unreliable server who renders
essential and optional services to the jobs. For modeling
the queueing system the following assumptions are
made:

The loss and delay customers arrive in batch of size
X in Poisson fashion with arrival rate A, and Aq,
respectively. The customers may balk with balking
probability & when server is in busy state, and &, and ¢,

(& and ;) are the joining probability when the server is

in broken down (under set up) state for essential and
optional service case, respectively. Since the server is
unreliable it may breakdown during both essential and
optional service period and is sent for repair; the
repairman starts the repair after some setup time. After
the repair the server starts serving the customer with the
same efficiency as before breakdown. Only delay
customers arrive when server is in broken down state
and under the setup or repair state.

The time of essential service is assumed to be
general distributed. The time of optional service is
assumed to be exponentially distributed. After the
completion of the essential service the customer may
opt for the second service with probability 6; which is
optional or may leave the system with probability (1- 0).
The following notations are used for modeling purpose:
X random variable denoting the batch size
Ck probability distribution of X, i.e. c,= Pr(X=Kk)
C(2) probability generating functions (PGF) of the
batch size X
X —c'qy Mean batch size [E(X)].

X, =C"() 2" factorial moment of batch size

B(.), Hi(), Gi() Cumulative distribution functions
(c.d.f) of service time (B), setup time (H) and repair
time (G) where index i=1 and 2 corresponding to
essential and optional service.

b(x), hi(x), gi(x) probability density functions (p.d.f)
of B, Hi Gi(i=1,2) b"(),h, g Laplace-Stieltje’s
transform (LST) of B, H;, G; where i=1,2 6 probability
of opting the optional service 1/; mean times of
essential and optionalservice.

a; (i=1, 2) is failure rate of the server when he has
broken down during essential and optional service,
respectively.

Denote 6 =l+o(vi+y),1=12" Aj=4,+4, Now

b(x) h.(y) a9 .
ﬁl(X):l*B(X) ’Vi(y)zlin(y) and 7i(y)=l*Gi(y)'I=1’2’ are
the hazard rate for essential service time, setup time and
repair time, respectively.
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The second moment of essential service time, setup
time and repair time are given by
@ =(-1)?p%(0), v? = (-1’ (0)
and y* = (-2)*¢;®(0), i =12
respectively.
The transient probabilities for different states are
defined as follows:

Q(t) probability that the server is idle at time t

~B(t,x)dx joint probability at time t, with n customers
in the queue, the server is on and a customer is being
provided essential service with elapsed service time
lying between x and x + dx.

P.@(tx) probability at time t, with n customers In
the queue, the server is on and a customer is being
provided the optional service.

S, V(t,x,y)dy joint probability at time t, with
customers in the queue, the elapsed service time is equal
to x, the server is broken-down when providing
essential service and is waiting for repair with elapsed
setup time lying between y and y + dy.

S, @(ty)dy joint probability at time t, with n

customers in the queue, and the server is broken-down
when providing optional service and is waiting for
repair with elapsed setup time lying between y and y +
dy.
R.Y(t,x,y) dy joint probability at time t, with n customers
in the queue, the elapsed service time is equal to x, the
server is broken-down when rendering essential service
and the server is under repair with elapsed repair time
lying between y and y+ dy.

R.\P(ty) dy joint probability at time t, with n
customers in the queue, the server is broken-down when
rendering optional service and the server is under repair
with elapsed repair time lying between y and y+dy.

3. QUEUE SIZE DISTRIBUTION

Using the above assumptions and the notations, we

construct the governing equations of our model as follows:

3. 1. Governing Equations

[SﬁAJQ(t) (- e)jP“(t X) 21, (X)lx+ 11, P (1) o
(?ﬁj&“’(t,x):—(Answl(x)wlw:“(t,x)
ox ot

2

+jﬂl(y)R1 (t,x, y)dy+A, sch @ (x), n>0
0

[% + g]w (€% y) = ~(Ay + 0, (PSP (T, X, Y)

" (3)
+ 2,6 2.6S5P (txy), n>0
[5*%}*9 (%) =—(Ae&; + AR (t.,Y) "

+2,6 ¢ RY, (tx,y), n>0
k=1

d o
FOUE
. n (5)

+ [ BORO @ y)dy+Age Y ¢ P

0 k=1

n

(Ao + 1, + @, )PP () + 0] 1, (PP (t,X)
0

(;+8JSP (tY) = (e, +0,(1))SP (4 Y)

ot

n ®)
+ﬂ“dgzzcksr(3<(tly)v n>0
9L OIR®t,x,y) = ~(Aaes + S (Y)IRD (L, Y)
ay ot n 1N d“2 2 n ’ (7)

+/152ch @ (t,y), n>0

The above equations are to be solved subject to the

following boundary conditions:

RY(t,0) = (L-6) j P&t X)X+ 4,PA (1), >0 8)

R (t,0) = (L-0) [ R (t, )1, (X)dx+ 11,P (t, )
0

, 9)
+A4Y 6 Q, (t), n>0

k=1
SO, x,0)=a,PP (t,x), n>0 (10)
R® (t, x,0) :]O.Sn(“ (t, y)o,(y)dy, n>0 (11)

0
SPt,0)=a,PO(t), n>0 (12)
RO (L0)= [ SO (& y)v,(y)dy, n>0 13)
0
Normalizing condition is given by
+Z{ t)+I ’(t,y)dy+].Rn(2)(t,y)dy+TPn‘”(t,x)dx
° (14)

+]st1 t,X,Y) dxdy+j[1_fRl t,X, y)dxdy}
00 00

Taking Laplace-Stieltjes transforms, above Equations
(2)-(7) yield:

(54 A0)Q"(5) ~1= (- O)] Py (5, X0, (X)X + 41, P2 (5),n >0 (15)
0

%Pn*(l)(s,x)+(s+/\ﬂg+ﬂ1( )+a1)P (5 X)=A gzckpn(k 5,%)
T (16)
AR (s xy)dy, n>0

0
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%S:‘” (8% Y)+ (5 + A4 +0,(1))S,7 (5,%,¥) =
; (17)
2460 ¢S (s,xy), n>0
k=1
0 R*(l) ' *®)
o BN+ Ae+ AR (5x.y)
(18)
=1 5120k R®(s,x,y), n>0
(s+ Ao+ oy + ;)PP (5) = 0 11, ()P, (5,X)dx
2 (19)
+[ BRD (s, y)dy+ A e PP (s), n>0
0 k=1
—S,2(5,y) +(s+ 2, +0,(¥))$,? (s,Y)
(20)
=1 8zZC S, %(s,y), n>0
Ri®(5,¥) +(5+ 445 + B (R, (5, )
(21)

=Xy e RD(s,y), n>0
k=1

Similarly, taking Laplace-Stieltjes transforms of
boundary conditions (8)-(13), we get:

P (s,0) = (1— 0)j PO (s, X) 1 (X)dx+ 1£,P P (s), n>0 (22)

P (5.0) = (L 0) [ P (5, X)at, (X)dx + 1,72 (5, %)
0

n (23)
+Age) ¢ Qr(s), n>0
k=1
5, X0)=a 5,X), n> (24)
S, (s,%,0) =, P, (s,x) 0
R (s,%0) = [0y(y)S," (s, y)dy, n>0 (25)
0
S @(s,0)=a,P(s), n>0 (26)
Ri®(5,0) = [0, ()8, (s, y)dy, n>0 @7)
0

Laplace-Stieltjes transforms of normalizing condition
yields:

Q’(S)+2{F’J“’ (5)+

[ s [R50

. - . (28)

+_[Pn*“)(s, x)dx+”8 ) (s, x, y)dxdy + ” O (s,x,y dxdy}
00 00

0

3. 2. Generating Functions Define the following

generating functions:

(29)

Multiplying Equations (16)-(21) by z" and summing
over n, we obtain:

%P*@(s, 2X)+[s+ 1, (X)+a, + Mg
» (30)
~AiC@IP ™ (s,%) = [ B(YR™ (5,2,%,y)dy

0

éS*‘”(s,z,x, y)+[s+o(y)+ A8

(31)

- 2,6C(@2)15™ (s,2,%,y) =0
S RO(5,2,%,y) +[5+ B, () + Agé]

oy (32)
- 1,6,C(D)IR™(s,2,%,y) =0
[$+ 1, +a, + Ay — AgeC(2)IP™ P (s,2) =

(A 2 ) (33)
0 1 (0P (5,2, X)dx+ [ B, (YR (5,2, y)dly
ES*‘Z’ (s,2,y) +[s+0,(y) + 445,

oy (34)
~1,6,C(2)1S (s,2,y) =0
LR (s,2,y)+[s+ f,(y) + Ayt

oy (35)

—2,&,C(2)IR™(s,2,y)=0

Similarly, multiplying Equation (22) by z" and Equation
(23) by z° and summing over n and using Equation (15),
we get:

PO (5,0,2) =1-[s+Age — Ae C(DIQ(S)

+(1- G)T PO (s, X, 2)p, (X)dx + 12,P " (s, 2) (36)

0
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Proceeding in similar manner with Equations (24)-(27),
we have:

S (s,z,x0)=a,P (s, z,x) (37)
R (s, z,x,0) = Tul(y)s*“) (s,z, y)dy (38)
0
S (s,2,0)=a,P ™ (s,2) (39)
R (5,2.0) = [1,(1)S ™ (52, Y)dy (40)
0

3. 3. Computation of Partial Generating Functions
Solving the differential Equations (31), (32), (34) and
(35), and wusing Equations (37)-(40), after some
algebraic calculations, we have:

S (sl a Z) — alp*(l) (S, X, Z)eflsﬂasl{lfc(l)}]y ﬁl(y) (41)
SO (5. ,2)=a, p@ (s, Z)e—[5+ﬂd€z{1—C(Z)}]y ﬁz(y) (42)

RO (s,x,Y,2) = a,P" O (s,x,2)h, [s + A,6,{L-C(2)}]

e s tCOMIG, () (43)
R (s,y,2) = a,P"? (s, 2y [s + 4, £,{L-C(2)}] ”
xe (NG (y) (44)
3. 3. 1. Busy States Equations (41)-(42), give:

[ ALOR™ (52030 = P 6,2 0T A - C s

x9y[s + A4ei{L-C(2)}]

0

[ BR® (5,2,y)dy = ,P"® (s, )y + Ay &:£1-C(2)}]
0 (46)

x;[s+24,{1-C(2)}]
Using Equation (45) in Equation (30), we obtain after
some algebra:
P (s,x,2) =P (s,0,2) exp{-f, (s, 2)}B(X) (47)
where f,(s,2) =s+ A, efl-C(2)}+ o,

—a,h [s+ A6 {L-C(2)}g, [s + L& fL-C(D)}

(48)
f,(8,2)=s+A,e{l-C(2)}+,
—a[s+ 46,{1-C(D)}g,[s + 4 £,{1-C(D)}]
and TP*(” (s,%,2) =P (s,0,2)b™{f,(s,2)} (49)
0
Using Equations (33), (45) and (49), we get:
* W
P (s, 7) = b {f (s, 2)}P" (s,2,0) (50)

f,(s,2) + 1,
Integrating Equation (47) w.r.t. ‘x’, we obtain:

1-b™{f,(s,2)}

*1) _
PR ey

1P @ (s,2,0) (51)

3. 3. 2. Setup States Performing similar procedure
for Equations (41) and (42), we obtain:

) _ 1075, 9)} N[5+ 4,6 f1-C(@DH po
3 (S’Z)_o{ f.(5,2) } siaeicay L o0d (62
e[0T 2 Wil + Ayefl-COMN
S()(S’Z)’az[ fz(s,z)wj s+ A,edl-C(2)} PU(s02)  (53)

3. 3. 3. Repair States
w.r.t. ‘y’, we get:

Integrating Equation (43)

R (s, x,2) = a,P"™ (5,0, )N [s + 4,61 - C(2)}]
LOils+A4efl-C(@)Y (54)
[s + Ayefl-C(2)}]

Again integrating Equation (54) w.r.t. ‘x’, we finally
find:
R0(5,2) = a{l—b*{ fs, z)}} Q.ls + 4y~ C()}]

{f.(s,2)} [s+2,6{1-C(2)}] (55)
xh[s+2,6fl-C(2)P™(5,0,2)

Likewise, we obtain:

RO (s,2) :az[eb*{fl(s,z)}} Qo[+ Z42,41-C()}]

f,(8,2)+ 1, | [s+46,{1-C(2)}] (56)
x[s+4,6,{1-C(2)}IP(s,0,2)

From Equation (36), we get:

[ mlh-fs+ A -Ac@K6)]
[2-0C8 5,21, (5,2) + ] 0B { (5, DK, 5,20}

P"®(s,2,0) (57)

3. 4. Evaluation of Generating Functions Now,
the probability generating function of the number of
customers in the queue, irrespective of the type of
service being provided is obtained as:

2
P'(s,2)=) P ™(s,2)+5"(s,2) +R""(s,2)

n=1

[1-b'{H, (5,2}
{f,(s,2)}
PP R )
s+4e{l-C(2)}
al%h[[s +,64l-C@M
b'{f,(s,z
o fz({S, Z()‘*'L];
hyfs+ 4, {1-C2)}]
s+A,6,f1-C(2)}
Tols + Ae4L-Clz

M,
stiecy M ed-CEnh

(58)

=P(s,2,0)

x{l+a,

2
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Putting z=1 in Equation (58), we get:
Q+P (D=1 (59)

Applying the arguments of the Rouche’s theorem in
Equation (58), we obtain the unknown probability Q" (s) .

4. PARTICULAR MODELS

We shall now discuss some special cases of the above
model by specifying some parameters as follows:
Model I: Model without setup time.

The queue size distribution in this case is given by:

(s, :i{ (s,2)+R )}
L0 s}, s+ Aaf-CoN
{2} [ s+hef-ca}
PLAGICLY) {MZ g;[swz{l—cu)}]}
f (s,2)+p, s+46,{L-C(2)}
where f,(s,2) =s+ A {l-C(2)}+a,
—a,g;[s+2,6{1-C(2)}]
f,(5,2) =s+A,e{l-C(D)}+a,
~a,9;[5+ 4,&,{1-C(2)}]

Model II: In this case we consider the model without

loss customer and without balking behavior. So, the new
arrival — rate iS4 =Ac = Aog =4 = A& Wherei=land 2,

Now, our model corresponds to M*/G/1 queue with
second optional service, setup and unreliable server. In
this model, the queue size distribution is obtained as:

=pP(s,2,0)

(60)

P (s,2)+S™(s,2)+R™ (s, 2)

n=

CN(G5,2) 1 .

T D(s,z )Lm }LC(Z)Q}

where N(s,2) = [1-b"{y,(s,2)}[,(5,2) + 11,]
+00'{y, (s, 2) I, (s.2)

and (61)

D(s,2) =[z—b{y (s, )}y, (5, 2) + 1,
+00"{y, (s, 2)}w, (5, 2)
v,(5,2)=s+{1-C(2)}+,
—ayh[s+2{1-C(2)}g;[s + H1-C(2)}]
v,(5,2)=s+ AM{1-C(2)}+«,
—a,y[s+ MH1-C(2)}]g;[s + H1-C(2)}]
Model III: M*/G/1 queue with second optional

service and unreliable server.
In this case, we set arrival rate as

A=A, =A,e=2¢ =16 Wherei=1land?2.
Now, the queue size distribution is given by:

2
=) P(s,2)+R™(s,2)

_ N’(s,z){ 1 9 }
D'(s,2)| s+A-4C(2)
where N'(s,2) = [1-b™{&,(5, 2)}[&, (5, 2) + 44,
+OD{6(5.2)¥,(5.2) 62)
D'(s,2) =[z _b*{é:l(sn )}, (s,2) + 1]
+0b{&,(5,2)}&,(5,2)

and

&(s.2) =s+ M{1-C(2)}+a -y 9y [+ H{1-C(2)}]
&,(s,2) =5+ M1-C(D)}+a, —ay95[s + H{1-C(2)}]

5. PERFORMANCE INDICES

(a) Long run probabilities of the server’s states
Now, we evaluate the probabilities for different states of
the server by applying the well-known Tauberian
property, which is stated as:
. - N(0,2)
P'(2)=slimP"(s,2) = D0.2) [0-Q]
Putting z=1 in the above equation and applying
L’Hospital’s rule, we get:

P16, +6p, 5, AX
22 _|-Q| where p, = 63
- p15, szé][ ! u ©3)

POD) =

The normalizing condition is given by Q+P(0,1)=1.
The probability of the server being idle is:

1—&—0&; for model |
Q= H H
1- pd, — 6p,5,; for model Il and 111
where
: : (64)
O, = (Ape + 4y6a17,) and @, = (A& +446,0,7,)
and
¢ =l+ay, 1=12
The probability of the server being busy:
*(1)
Py =lim lim SZP (s,2)
MJrHM; for model | (65)
=\ H Hy
P +6p,; for model Il and 111

The probability of the server being under setup (only for
case II):

2
Ps = L'Lnl |S|LT?) S; S ™M (s,2) =pavi+0p,a5v, (66)
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The probability of the server being under repaired:

21 s—0

2
P, =lim lim s> R (s, 2)
n=1

Ayedy e, X Aol e, X
a0 e2n - for model |
H M (67)
=P+ O0P,755 for model I
Py, + 00,0575, for model IlI

(b) Average Queue Length
The average number of customers in the queue is:

E(Q)=lim sP(s)1)

1
2{1— Xo,5,-0 X0,
U

2

2

{(xcbl)?ﬁf’ + %xz{cm +(&}
} I

+2@?2[&®1®2+%®§]
H, Hy
B ‘ Tear®
+A05(X)2[ﬂdglalﬁlyf2’+€mH;for model |
2
= ;{(li)zéfﬂfz’+/1X2(b‘lﬂ1+9§) (68)
2[1_/7151 _‘9/7252] H,
+ 20(%’151/)252 + (p252)2 )* ii(/’ﬁﬁAl +0p,a,4, )}
for model I

7 9
_ (AX)Zgz/f‘”mx (¢,p,+0==
2&’/’141"%2(2]{ e s Hy

+ 29(P1§1p242 + (.02442)2 )+ j‘i(plal}/l(ﬂ + apzaz}/;ﬂ )]v
for model I

where, A, =@ +2v,y, +v?,i=12

6. SPECIAL CASES

Now, we deduce results for average queue length for
some special cases as follows:

Case I: In case of single arrival model i.e. when X=1,
our model tallies with that of Wang et al. [16], and we
get:

1 ¢
— = P pP et
2[1_p1§1 _gngz] o Hy (69)

+ 20(P1§1Pz§z + (p2§2)2 )+ j'(/310‘171(2) + szaz}’f) )]

Case II: For M/G/1 queueing model with reliable server
and second optional service we put X=1 and a;=0,=0 in
Equation (68). This model is similar to the one studied
by Madan and Al-Rawwash [5]. In this case, the
average queue length reduces to:

E(Q) = _r [fﬁf“ L 26[@ + ﬂzﬂ
2{1—1@ _ﬂ:| Hy Hy My

Hy

EQ) =

(70)

Case III: On substituting 6=0, X=1 and a;=0,=0 in
Equation (68), we get results for classical M/G/1 model
(cf. Gross and Harris,) as:

_ 2 l(2)
2[1_iﬁ1]

E(Q) (71)

7. SENSITIVITY ANALYSIS

In this section, the analytical results obtained in the
previous section are numerically computed by a
program developed in MATLAB software. We explore
the effect of different parameters on various
performance measures. In MATLAB program, we make
the following assumptions for computation purpose:
e  Service time distribution for essential service is 2-
Erlang
e  Batch size distribution of the arrival is geometric
with mean 2
e  Repair times of the server when broken down
during both essential and optional services are 2-
Erlang
The default parameters are 1=0.3,
0=0.5, W=7, =3, ou=1, =2, B;=1/2, 3,=1/3
We study the effects of various parameters on
average queue length E(Q) as depicted in Figures 1(a)-
(H). In Figures 1(a)-(f), we display the trends of average
queue length against arrival rate A, mean batch size
E(X) or X , service rate py, and py, failure rate o and
repair rates {3 for different distributions.

20 -
—— ME2M
18 1 —B&— W/ Gamimai
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= 10 1
5
2
D T I T T 1
03 04 05 06 07 08
i
(@)
120
100 —x— MEZN
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o t {
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Figure 1. Average queue length for different distribution by

varying (a) arrival rate A, (b) batch size X (c) service rate
(d) service rate Y, (e) failure rate a and (f) repair rate 8

In Figures 1(a)-(f), we notice that for Gamma
distribution, the queue length is greater as compared to
2-Erlang distribution. We also observe that the E(Q)
increases with the increase in the arrival rate as depicted
in Figure 1(a). The queue length also increases as

increase the mean batch size, as shown in Figure 1 (b).
Figures 1(c) and (d) demonstrates the effect of service
rate w;and p, on E(Q). We note that the queue length
first decreases sharply up to p;=4 (u,=2) and there after
decreases gradually. From Figures 1(e) and (f), we see
that with the increase (decrease) in the failure (repair)
rate, the queue length increases (decrease), which is
what we expect from experience.

8. CONCLUSION

In this paper, we have discussed the loss-delay queue
wherein customers arriving in batches. We have dealt
with a model which incorporated the realistic situations
of unreliable server and second optional service.
Making use of Laplace transform and probability
generating function, the queue size distribution is
explicitly derived. The sensitivity analysis done
provides an insight to the decision makers to design and
control sensitive descriptors for the improvement of the
model.

The other noble feature of our investigation is the
inclusion of balking behavior which makes our model
more realistic to the present day scenario in computer,
telecommunication, transport, manufacturing and many
other congestion situations. The concept of setup of the
repairmen is also seems to be more closer to real time
system as before starting repair, the repairman needs
some time in traveling, in fixing its tools, etc.
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