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A B S T R A C T  
 

 

Gear’s normal contact stiffness played an important role in the mechanical equipment. In this paper, 

the M-B fractal model is modified and the contact surface coefficient is put forward to set up the fractal 

model, considering the influence of friction, which could be used to calculate accurately the involute 
arc cylindrical gears’ normal contact stiffness based on the fractal theory and Hertz theory. The contact 

surface coefficient is an exponential function of the load, radius of curvature and tooth line radius. The 

simulation results validate the reasonability of the contact surface coefficient and correctness of the 
fractal model. The contact surfaced coefficient increases with the increase of the load, radius of 

curvature and tooth line radius; the normal contact stiffness increases with the increase of material 

properties parameters, radius of the gear, load and fractal dimension (when fractal dimension is greater 
than 1.85, the normal contact stiffness decreases). Meanwhile, the normal contact stiffness increases 

with the decrease of roughness and decreases exponentially or linearly with the increase of friction 

coefficient. Research results are the foundation of the further analysis of arc gear contact problems. 

doi: 10.5829/idosi.ije.2017.30.01a.14 
 

 

NOMENCLATURE  
e

F A  Asperity load in the elastic state [N] 

 z x  Hight of asperity profile  [m] 
p

p  Pressure on the asperity in the plastic state [N] 

x  Position coordinate of profile  [m]  
p

F A
 

Asperity load in the plastic state [N] 

D Fractal dimension  
pe

p
 

Pressure on the asperity in the elastic-plastic state [N] 

G Parameter of roughness 
T

R  Tooth trace radius [m] 

  A constant and greater than one, 
n

  is spatial 

frequency of the random profile 
1 2
,z z

 
Number of teeth 

l
n  

An ordinal number about the profile stucture of the 

lowest cutoff frequency 
B

 
Gear width [m] 

l  
Actual interface cross section width after deformation 

[m] 
s

 
Theoretical contact area of deformation section[m2] 

l   Transverse width of asperity before deformation [m] S  
Sum of two contact bodies’(cylinder) surface area[m2] 

A  Asperity contact area  [m2] x
 

Integrative curvature radius of arc gear  [m] 

  Asperity deformation [m] c
 

Coefficient 

max
P  Maximum contact pressure [N] L

 
Length of contact section  [m] 

E General elastic modulus[MPa] 
1 2
,d d

 
Reference circle [m] 

1
E ,

2
E  Elastic modulus of body-1 and body-2[MPa] F

 
Unit line load 
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m
P

 
Critical yield pressure of asperity [N] 

n
k

 
Asperity normal stiffness of joint surface[N/m] 

f
K

 
Correction factor of sliding friction 

n
K

 
Normal stiffness of joint surface[N/m] 

f
 

Friction factor  n A
 

New distribution function 

A
 

Real area [m2] E 
 

Elastic modulus in the elastic-plastic state 

pc
A

 

Critical contact area in full plastic state[m2] 
n

K


 
Dimensionless expression of normal stiffness 

ec
A  Critical contact area in elastic state[m2] 

ec
A



 Dimensionless critical elastic deformation area  

e
p  Pessure on the asperity in the elastic state  [N] 

a
A  Nominal contact area. [m2] 

 
pe

F A  Asperity load in the  elastic-plastic state p

 Total dimensionless load  [N] 

 n A  Distribution function of asperity 
r

A


 

Dimensionless real contact area 

l
A  Asperity maximum contact area [m2] 

pc
A



 Dimensionless critical plastic deformation area 

r
A  Real area of sliding friction surface [m2] 

Z
F  Total load [N] 

N Quantity of asperities 
1 2
,d d   Pitch circle diameter  [m] 

 
2

F i  Bridging function, and i is integer ranging from 1 to 4

 

 
1

F i  Bridging function, and i is integer ranging from 1 to 4 

G


 Dimensionless parameter of roughness 
l

A


 Dimensionless asperity maximum contact area 

Greek Symbols   Fractal region expansion coefficient; 

  Top curvature radius of asperity[m] 
1 2
, 

 
Poisson's ratio of body-1 and body-2 

  Asperity deformation  [m] 
g

  Integrative curvature radius of arc gear [m] 

y


 
Softer material’s yield strength [MPa] 

t
  Pressure angle of reference circle end face[o] 

ec
  Critical elastic deformation  [m] 

1n


2
,

n
  Normal curvature radius of node [m] 

pc


 
Full plastic deformation  [m] 

b
  Tooth trace angle[o]

 

  Material characteristic parameter 
a
  Transverse contact ratio 


 

Impact factor of contact nodes 
1 2
,

a a
 

 
Addendum circle pressure angle[o] 

Subscripts y yield  

1.2 Gear-1 and gear-2 g Gear 
e Elastic p Plastic 

ec Critical elastic deformation  pc Critical plastic deformation  

pe Plastic-elastic deformation state n Normal 

t Transverse contac r Real 

 
1. INTRODUCTION 
 
The buckling or chatter vibration might happen because 

of lack of stiffness in engineering, machinery, bridges, 

buildings, vehicles and ships. So enough structure 

stiffness is required in the design. A lot of works on the 

dynamic characteristics of machine have been done by 

many researchers for a long time [1-4]. The traditional 

ways of calculating the normal contact stiffness of 

involute arc cylindrical gear (called arc gear) were finite 

element analysis and Hertz theory, which used to make 

use of geometric parameters, material parameters and 

boundary conditions etc. However, consideration of 

microcosmic characteristics was inadequate. The fractal 

theory was a new scientific method, and a series of 

fractal models of contact stiffness and contact 

mechanics were developed, one of the most typical 

models was M-B fractal model [5]. Simulation analysis 

showed the influence of microcosmic parameters on 

fractal model. Wen Shuhua et al. [6] established the 

stiffness fractal model for fixed joint interfaces and gave 

a method to calculate fractal parameters. Wei Long et 

al. [7] established the sliding friction surface contact 

mechanics model and discussed the influence of 
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different factors on 
rA  when =0.1, =0.01f  . He also 

gave the relation between the pressure and contact area 

using a cubic polynomial in the elastic-plastic stage. 

Shuyun et al. [8] established a contact stiffness model of 

machined plane to study the contact between planes 

machined by different methods. However, all above 

models paid less attention to macro properties of contact 

surfaces, such as geometry of contact bodies and contact 

ways. The model was established mainly for the contact 

properties analyses of two planes, which was not 

suitable for cylinder surfaces’ analyses. Hence, Zhao 

Han et al. [9] modified and expanded the fractal model 

and set up the normal stiffness model of two cylinder 

bodies. With the new model, he discussed the influence 

of different factors on tangential contact stiffness 

between cylinders’ joint interface where 

1 2100 , 60R mm R mm  . However, he ignored the 

friction factor, which had nonlinear vibration properties. 

Therefore, Li Xiaopeng et al. [10, 11] set up the fractal 

model of cylinder bodies, which paid more attention to 

friction.In his paper, f  ranged from 0 to 0.8. At present, 

the study about the arc gear is mostly based on the finite 

element analysis and Hertz theory [12-15]. Finite 

element analysis is based on the 3-D model. However, 

there is usually no 3-D model in the design, it is 

possible to lead to rework by choosing experientially 

parameters. On the other hand, as for Hertz theory, the 

gear strength design parameters couldn’t be chosen 

from related graphic of straight gear and helical gear; 

but fractal model could solve related problems. 

Therefore, it is necessary to study joint surface of arc 

gear by fractal model. 

In this paper, the fractal model of normal contact 

stiffness between two arc gears’ joint surfaces is 

established by combination of macro and micro 

perspective based on the Hertz theory and fractal model, 

considering the influence of friction. The influence of 

relevant parameters on the normal contact stiffness is 

revealed with numerical simulation. Research results are 

the foundation of the further analysis of arc gear contact 

problems. 

 

 
2. DISCUSSION OF ASPERITY DEFORMATION AND 
LOAD 

 
2. 1. Discussion of Asperity Deformation      
According to fractal theory, the mechanical surface with 

fractal characteristics could be described by W-M 

function [16]: 

       1 2
cos 2

l

D D n n

n n

z x G x 


  



   (1) 

where  z x

 
is hight of asperity profile, x is position 

coordinate of profile, D is fractal dimension, G is 

parameter of roughness,   is a constant and greater than 

one, 
n

  is spatial frequency of the random profile, 
l

n is 

an ordinal number about the profile stucture of the 

lowest cutoff frequency. 

In Figure 1,  is the top curvature radius of asperity, 

l  is actual interface cross section width after 

deformation, l   is transverse width of asperity before 

deformation. The relation between asperity contact area 

A  and l   is =2 /l A   . When / 2 / 2l x l    , the 

surface profile is cosine wave. 

  1 2
cos

D D x
z x G l

l

 

 / 2 / 2l x l     (2) 

According to Equation (2), the top curvature radius 

of asperity   is: 

 
 

3/ 2
2

/ 2

2 1 4 / 2 1

0

1+ z 2
=

D D D

D D D

x

l A

z G G


 
  



  
 



    
(3) 

Combining Figure 1 and Equation (2), the asperity 

deformation   is: 

 
 2 / 2

1 2 2 1
= 0 2

D

D D D D A
z G l G





   


 
 
 
 

 (4) 

1) The critical elastic deformation of asperity. 

According to Hertz theory, when asperity deformation is 

in elastic state, the maximum contact pressure 
max

P  is 

[16]: 

1

2

max

2E
P



 


 
 
 

 (5) 

where, E is the general elastic modulus, and
1

2 2

1 2

1 2

1 1
E

E E

 


 
 
 
 
 

,
1

E ,
2

E  are elastic modulus of body-1 

and body-2; 
1 2
,   are Poisson's ratio of body-1 and 

body-2. 

Considering the relative sliding friction existing in 

contact bodies, the critical yield pressure of asperity 
m

P  

is [17]: 

m
1.1

f y
P K   (6) 

 

 

 
Figure 1. Asperity deformation 



W. Yang et al. / IJE TRANSACTIONS A: Basics  Vol. 30, No. 1, (January 2017)   109-119                               112 
 

where, 
y

  is softer material’s yield strength; 
f

K is the 

correction factor of sliding friction [18], and

  

1-0.228
=

0.932exp 1.58 0.3
f

f
K

f 





 0 0.3

0.3 0.9

f

f

 

 

, f  is friction 

factor. 

According to reference [17], the relation between 

real area A and A  is /2A A  when asperity 

deformation is in the elastic state. According to 

Equation (3, 5-6), when the maximum contact pressure 

max
P

 
is equal to the critical yield pressure of asperity 

m
P , 

the asperity critical elastic deformation 
ec

  could be 

obtained, represented as 

3 / 2 / 2

/ 2 1

2
112

20

D D

f

ec D D

KA

G








 
 
 

 (7) 

where,   is material characteristic parameter, and 

= /
y

E  . 

When the asperity is in the elastic stage, combining 

Equation (4) and the relationship /2A A , the relation 

between asperity deformation   and real area A is: 

 

 

 
3 2- / 2

1 2- / 2

2- / 2

2
=

D

D D

D
G A




 (8) 

If 
ec

  , combining Equation (7) and Equation (8), 

critical contact area in elastic state 
ec

A  is:  

2/ ( 1)

2 20

8 11

D

ec

f

A G
K








 
 
 

 (9) 

2) The critical plastic deformation of asperity. 

Deformation style changes with curvature radius. In 

order to make sure the accuracy of the contact stress 

analysis, it is necessary to distinguish plastic and 

elastic-plastic deformation. Assuming 
pc

 is the full 

plastic deformation, when the asperity deformation  is 

larger than
pc

 , asperity is in the elastic-plastic 

deformation state. Now, =A A  [17]. 

According to Johnson theory [17], asperity is in the 

full plastic deformation state when  / 60
y

El    .

 / 60
y

El     is a condition to distinguish the plastic 

deformation and the elastic-plastic deformation. In this 

paper, combining Equation (3) and Johnson theory, the 

expression of A  is Equation (10) at critical plastic 

deformation point. 

2

4

12

=
60 2

D
D

D

D

y

G El
A







 




 
 
  
 

 (10) 

And =2 /l A   , =A A . According to Equation (10), 

the critical contact area in full plastic state 
pc

A  is: 

1/ (1 )
3

2

2
900 4

D
D

pc D
A G









 
 
 

 (11) 

In conclusion, if 
pc

A A , asperity deformation is in 

the full plastic deformation state; 
pc ec

A A A  , asperity 

deformation is in the elastic-plastic deformation state; 

ec
A A , asperity deformation is in the elastic 

deformation state. 

 

2. 2. Relation Between Asperity Load and Contact 
Area        1) The relation between load and contact area 

when asperity is in the elastic state. The pressure on the 

asperity 
e

p  [16] is: 

1

24

3
e

E
p



 


 
 
 

 (12) 

And the asperity load  
e

F A  is: 

 
   

 
7 3 / 2 1 / 2

1 3 / 22

3

D D

D D

e e
F A p A EG A


 

 
   (13) 

2) The relation between load and contact area when 

asperity is in the plastic state. Considering the influence 

of sliding friction, plastic deformation asperity contact 

pressure 
p

p  [19] is: 

1.1
p f y

p K   (14) 

And the asperity load  
p

F A  is: 

  1.1
p p f y

F A p A K A   (15) 

3) The relation between load and contact area when 

asperity is in the elastic-plastic state. When elastic and 

plastic deformation exist at the same time, the relation 

between contact area and contact loading becomes quite 

complex. However, the pressure of two critical 

deformation points couldn’t mutate, namely the 

changing of critical points’ contact pressure and 

deformation should be continuous. According to 

reference [20], when asperity is in the elastic-plastic 

state, the relation between load and contact area could 

be expressed as a polynomial function, where elastic-

plastic deformation of the contact area ranges from Apc 

to Aec. The elastic-plastic deformation asperity contact 

pressure’s 
pe

p  boundary condition is defined as: 

When 
pc

A A 
pe p

p p , /  /
pe A p A

dp d dp d  

When 
ec

A A 
pe e

p p , /  /
pe A e A

dp d dp d  
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According to Hermite interpolation method, the 

expression for 
pe

p in terms of A  is a cubic polynomial 

function. Taking a sample function for a cubic 

polynomial, 
2 3

3 - 2y x x . The function increases 

monotonously in the interval [0, 1], and the boundary 

values are 0,  0x y   and 1,  1x y  . 

Assuming pc

ec pc

A A
x

A A






, 
pc

A A  and 
ec

A A  are 

respectively corresponding with 0x   and 1x  . 
According to the cubic polynomial, the elastic-

plastic deformation contact pressure 
pe

p  is: 

 
2 3

3 2
pc pc

pe pc pc ec

ec pc ec pc

A A A A
p p p p

A A A A

 
   

 

    
    
     

 
(16) 

A
AA

AA

AA

AA

AEG

KAKApAF

pcec

pc

pcec

pc

D

ec

D
DD

ffffpepe



























































32

2/)1(1
2/)1(2/)37(

23

)
3

2

1.1(1.1)(





 

(17) 

 
 
3. FRACTAL MODEL OF INVOLUTE ARC 
CYLINDRICAL GEAR 
 
According to fractal theory, distribution function of 

asperity  n A was represented as [7]: 

     

   
 

 

 

2 /2 D/2 2 /2

2 /
2 /2 /2

2 / 2

2

1
1

2 /

2

D D

l

D D
D D

D

l r

D
n A A A

D D

D
A A

D



 



  

 
 





 

















 
(18) 

where,   is fractal region expansion coefficient; A is 

asperity contact area; lA  is asperity maximum contact 

area; rA  is real area of sliding friction surface. 

This distribution function applies to two planes. 

Obviously, when the contact faces were curved surface, 

quantity of asperities N would change. In theory, 

quantity of asperities increase with the increase of 

contact area, but N is always less than  n A . Therefore, 

the form of contact faces has influence on quantity of 

asperities. 

 
3. 1. Modification of Distribution Function        Arc 

gear is a new kind of gear, and its model which is 

modeled by UG software is showed in Figure 2. The 

following two are its main characteristics: tooth trace is 

part of the arc; tooth profile curve is involute spur. 
1) According to reference [15], touch strength of 

gear is always calculated at gear node. The integrative 

curvature radius of arc gear 
g

  is 

 
1 2 1 2

1 2 1 2

sin

+ 2 + cos

n n t

g

n n b

d d

d d

  


  

 
 

 

 
(19) 

where, 
t

  is pressure angle of reference circle end face; 

1n


2
,

n
  are the normal curvature radius of node, 

1

1

1 sin

2 cos

t

n

b

d 





 , 2

2

2 sin

2 cos

t

n

b

d 





 ; 

1 2
,d d   are pitch circle 

diameter;
 b
  is tooth trace angle. 

2) Arc gear could be divided into width-infinitesimal 

gear along the direction of gear width. The total length 

of contact line is the sum of the contact line of divided 

gears, so the total length of contact line L is 

2 cos 20
arcsin

cos 20 2

T a

T

R B
L

R


  (20) 

where, 
T

R  is tooth trace radius; 
a
  is transverse contact 

ratio,     
1 1 2 2

1
tan tan tan tan

2
a a t a t

z z    


    , 1 2,z z  

are number of teeth, 
1 2
,

a a
   are addendum circle 

pressure angle; B is gear width. 

3) Assuming that two contact bodies are uniform in 

texture and isotropic, the quantities of asperities on the 

contact faces satisfy the following relation 

   n A n A   (21) 

where,   is impact factor of contact nodes, called 

contact surface coefficient. 

Because the quantities of asperities on contact faces 

satisfy exponential function, assuming that contact 

surface coefficient is an exponential function,   was 

represented as: 

=

c

T

x

Rs

S


 
 
 

 (22) 

where, s   is  theoretical  contact  area  of  deformation 
 
 

 
Figure 2. Involute arc cylindrical gear 
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section; S  is the sum of two contact bodies’(cylinder) 

surface area; x  is integrative curvature radius of arc 

gear, =
g

x  ; c is coefficient, 1/ 2c  . 

According to the Hertz theory, geometrical shape of 

deformed section is rectangle. s is the product of 

deformed width of contact section 

1

2

4
g

F

E





 
 
 

 and the 

length of contact section L  (length of contact line), 

represented as: 

1

2

4
g

F
s L

E






 
 
 

 (23) 

where, F is unit line load. 

The contact of the gear could be regarded as the 

contact of the two deformed cylinders showed in Figure 

3. The radius of two cylinders is respectively the normal 

curvature radius of node 1n


2
,

n
 . Therefore, the contact 

area S  represented as: 

 
1 2

2
n n

S L     (24) 

According to the Equations (19)-(20) and Equations 

(22)-(24), Equation (22) can be rewritten as: 
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where, 
1 2,d d  are reference circle, and

1 1
d d 

22, d d   

(standard installation) Assuming that F=1000 N, B=35 

mm, RT=50 mm, E=
11

2 10 Pa, d1=125 mm and d2 could 

be changed; Figure 4 (a) could be obtained. 

It revealed that   was always less than 1. It meant that 

  satisfied assumption, quantities of asperities on 

contact faces were always less than  n A . When 
2

d  

approached 0,   approached 0; 
2

d was approached 

infinite,   approached 1,but it was always less than 1, 

now, which was equivalent to contact between 

cylindrical surface and plane, but it was still different 

from M-B model, so   must be theoretically less than 

1. 

 

 

 
Figure 3. Contact of gear 

Changing F, and ensuring other conditions to be 

fixed, Figure 4 (b) could be obtained. When F 

approached 0,   was minimum, not equal to 0, there 

was no contact stress, but there was contact, so   

wasn’t equal to 0. With the increase of F,   increased 

within a narrow range, and was always less than 1. 

Because the asperity always existed on contact faces, 

complete contact was impossible. The changing trend of 

  with
T

R  was showed in the Figure 4 (c),   increased 

with the increase of
T

R , 
T

R  was tending to be infinite, 

  was always less than 1, it agreed to limit of  . In 

conclusion, the choice about   is reasonable. 

Based on the reasonable analysis of  , the new 

distribution  function was put forward in this paper, 

represented as: 
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3. 2. Arc Gear Normal Contact Stiffness    According 

to reference [21], the asperity normal stiffness of joint 

surface 
n

k  is  

 
1

22 /
n

k E A   (27) 

The normal stiffness of joint surface 
n

K  is 

= ( )
n n

K k n A dA  (28) 

The asperity deformation has elastic stage, elastic-

plastic stage and plastic stage. However, each asperity 

deformation is just one of three deformations. The 

normal stiffness represents the ability of resisting plastic 

deformation. According to reference [10], in the elastic-

plastic stage, stress decreases, deformation increases, 

and elastic modulus decreases, so elastic modulus

0.9E E  . There exists no stiffness in the plastic stage. 

So, the normal stiffness of joint surface 
n

K  can be 

rewritten as: 
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Equation. (29) can be rewritten as dimensionless 

expression *

nK
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where, *

rA  is dimensionless real contact area, 

arr AAA /*  ; *

ecA is dimensionless critical elastic 

deformation area, aecec AAA /*  ; 
*

pcA  is dimensionless 

critical plastic deformation area, apcpc AAA /*  ; aA  is 

nominal contact area.  

According to the relation among real area, critical 

elastic deformation area and critical plastic deformation 

area, the relation between real area and asperity load 

could be divided into following three situations. 

when 
pcl AA  , total load 

lA

pz dAAnAFF
0

)()( , divided 

both sides by EAa
. The total dimensionless load 

expression of *p  is:  
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where, 4/)2(

2/

1

22

2
)( D

D

D

DD
Dg 








 
  ; )(1 iF  is bridging 

function, and i is integer ranging from 1 to 4, 

 2/)2(*2/)2(*

1
2

2
)( Dn

pc

Dn

l AA
Di

iF  


 ; 
aAGG /*  ; 

2/)2(

*
* )2(

D

r

a

l

D

AD

A

A
A

l 





. When ecl AA  , the total load 


pcA

pz AFF
0

)( dAAn )(  
l

ec

ec

pc

A

A
e

A

A
pe dAAnAFdAAnAF )()()()( , 

divided both sides by EAa . The total dimensionless load 

expression of *p  is: 

 

2/)1(*1*

2/)1(2/)37(

3*

2

2*

2

*

223**4

2*

2

*

222**3

43
2*

1

2

2
*

2
*

4

2

23
*

2

23
*

3
2*

2

1**

3

2
1.1)(

])1()2(3

)3(3)4([
)(

2
)(

])1(

)2(2)3([
)(

3
)(

)()()()(

)(1.1

)()(

5.1

D

ec

D

DD

f

pcpc

pc

pcec

pc

pc

pcec

D

r

D

ec

D

rf

D

ec

D

r

D

r

D

AG

KDK

AFAF

AFF
AA

DH

AF

AFF
AA

DH

DHDHADgDK

AADgK

AADgADgGp

DWhen























































     

(33) 



W. Yang et al. / IJE TRANSACTIONS A: Basics  Vol. 30, No. 1, (January 2017)   109-119                               116 
 

 )()()(
4

3

31.1

ln

6

5.1

43
4

3
*16

14

1

4

1
*

4

3
*

16

1

4

1

*

*

4

3
*2

1
*

16

1

4

3

4

1

*

DHDHDKA

AAK

A

A
AGp

DWhen

r

ecrf

ec

l
r
















 
(34) 

where 4/)2(

2/2/)1(2/)37(

2

22

)23(3

2
)( D

DDD

D

D

D

D
Dg 










 


 

 ;

2/)23(

2/)2(3

2
)(

D

DD

D
Dg



 






 



; 4/)2(

2/)2(

4

2

2
)( D

D

D

D
Dg 













  ; 

 2/)2(*2/)2(*

2
2

2
)( Dn

pc

Dn

ec AA
Di

iF  


 , and i is integer ranging 

from 1 to 4.
 
 

 

 

4. PARAMETERS ANALYSES OF ARC GEAR 
FRACTAL MODEL 
 
4. 1. The Influence of Load on the Normal Contact 
Stiffness          The influence of load on the normal 

contact stiffness was revealed in Figure 5. Simulation 

showed that normal contact stiffness increased with the 

increase of contact load, and the bigger D was, the faster 

the increase rate was. Because of the contact area Ar 

increased with the contact load, which would lead to the 

increase of resistance capacity to deformation. 

Therefore, it was beneficial to improve the normal 

stiffness by increasing the contact load. 

 
4. 2. The Influence of Fractal Dimension on the 
Normal Contact Stiffness        The influence of fractal 

dimension on the normal contact stiffness was revealed 

in Figure 6. 
Simulation showed that normal contact stiffness 

increased nonlinearly with the increase of fractal 

dimension, because the critical deformation area 

decreased with the increase of fractal dimension, 

resulting in the increase of quantities of elastic 

deformation asperity, stiffness was improved. 
 

 

Figure 5. Relation curves between stiffness and contact 

force at different fractal dimensions 

 

Figure 6. Relation curves between stiffness and fractal 

dimension at different characteristic length scales 

 

 

However, when D was greater than 1.85, normal contact 

stiffness decreased with the increase of fractal 

dimension, because the outline became more and more 

refined with the increase of fractal dimension, and 

quantities of plastic and elastic-plastic deformation 

asperity added. Finally, the stiffness decreases. What’s 

more, the smaller parameter of roughness was, the 

bigger rate of increase or decrease was. Therefore, it 

was beneficial to improve the normal stiffness by 

increasing reasonably the fractal dimension. 

 
4. 3. The Influence of Parameter of Roughness on 
Stiffness              The influence of parameter of 

roughness on stiffness was revealed in Figure 7. 

Simulation showed that normal contact stiffness 

increased with the decrease of roughness on stiffness, 

rate of increase was bigger with bigger load and smaller 

parameter of roughness. Therefore, it was beneficial to 

improve the normal stiffness by decreasing parameter of 

roughness. 
 
4. 4. The influence of Friction Coefficient on 
Stiffness        The influence of friction coefficient on 

stiffness was revealed in Figure 8.  

Simulation showed that normal contact stiffness 

decreased with the increase of friction coefficient. When 

the friction coefficient was between 0 and 0.3, the 

normal contact stiffness decreased linearly with the 

increase of friction coefficient; when the friction 

coefficient was between 0.3 and 1, the normal contact 

stiffness decreased exponentially with the increase of 

friction coefficient. 
 

 

Figure 7. Relation curves between stiffness and contact 

force at different roughness 
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Rate of decrease became smaller with the increase of 

fractal dimension. Therefore, it was beneficial to 

improve the normal stiffness by decreasing friction 

coefficient at bigger fractal dimension. 

 
4. 5. The Influence of Material Properties 
Parameters on Stiffness        The influence of 

material properties parameters on stiffness was revealed 

in Figure 9. Simulation showed that normal contact 

stiffness increased with the increase of material 

properties parameters. Ey /  ,
y  is softer 

material’s yield strength. Therefore, it was beneficial to 

improve the normal stiffness by improving softer 

material’s yield strength. 
 
4. 6. The Influence of Contact Surface Coefficient 
on Stiffness        The influence of contact surface 

coefficient on stiffness was revealed in Figure 10. 

Figure 10 (b) is the magnifying figure. 
 
 

 

D=1.60 

 

D=1.50 

Figure 8. Relation curves between stiffness and friction 

coefficient at different fractal dimensions 

 

 

Figure 9. Relation curves between stiffness and material 

properties parameters at different fractal dimensions 

 

(a) 

 

(b) 

Figure 10. Relation curves between stiffness and contact 

force at different contact surface coefficient 

 

Simulation showed that normal contact stiffness 

increased with the increase of contact surface 

coefficient at the same load, but rate of decrease wasn’t 

big. According to Figure 4, the contact surface 

coefficient increased with the increase of gear radius 

and load. Therefore, it was beneficial to improve the 

normal stiffness by increasing gear radius and load. 

 
 
5. CONCLUSION 
 
In this paper, the M-B fractal model was modified and 

the contact surface coefficient was put forward to set up 

the fractal model, considering the influence of friction, 

which could be used to calculate accurately normal 

contact stiffness between two arc gears’ joint interfaces 

based on the fractal theory and Hertz theory. The 

simulation results validated the reasonability of the 

contact surface coefficient and revealed the contact 

surfaced coefficient increased with the increase of the 

load, radius of curvature and tooth line radius. 

Simulation results showed that the normal contact 

stiffness increased nonlinearly with the increase of 

fractal dimension. However, when fractal dimension 

was greater than 1.85, the normal contact stiffness 

decreased with the increase of fractal dimension. In 

addition, the smaller parameter of roughness caused the 

bigger rate of increase or decrease and the normal 

contact stiffness increased with the decrease of 

roughness and increase of material properties 

parameters, radius of the gear and load. Furthermore, 

when the friction coefficient was between 0 and 0.3, the 
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stiffness decreased linearly with the increase of friction 

coefficient. When the friction coefficient was between 

0.3 and 1, the stiffness decreased exponentially with the 

increase of friction coefficient, and rate of decrease 

became smaller with the increase of fractal dimension. 

Many parameters of model were selected 

empirically in the simulation. It must be careful to 

calculate the stiffness of actual product by the fractal 

model of normal contact stiffness, although simulation 

showed that the model was right in theory. In order to 

settle the problem, the authors will do test and validate 

study for the normal contact stiffness in following 

study. 
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 هچكيد
 

 
اصلاح شد و  MBسفتی تماس عادی دنده نقش مهمی در تجهیزات مکانیکی ایفا کرده است. در این مقاله، مدل فراکتال 

ضریب سطح تماس برای راه اندازی مدل فراکتال، با درنظرگرفتن تاثیر اصطکاک ها که می تواند برای محاسبه دقیق سفتی 

تماس عادی قوس گستران استوانه ای بر اساس تئوری فراکتال و نظریه هرتز مورد استفاده قرار گیرد، رو به جلو به قرار 

تابع نمایی از بار، شعاع انحنا و دندان شعاع خط است. نتایج شبیه سازی، منطقی  داده شده است. ضریب سطح تماس،

ضریب سطح تماس با افزایش بار، شعاع انحنا و خط بودن ضریب سطح تماس و درستی مدل فراکتال را اعتبار می بخشد. 

چرخ دنده، بار و بعد فرکتال  دندان شعاع افزایش می یابد، سختی تماس عادی با افزایش خواص پارامترهای مواد، شعاع

در همین حال، سفتی  است، سختی تماس عادی کاهش می یابد(. ۸۵/۱افزایش می یابد )هنگامی که بعد فرکتال بیشتر از 

نتایج  تماس عادی با کاهش زبری افزایش و به صورت نمایی و یا خطی با افزایش ضریب اصطکاک کاهش می یابد.

 تحلیل بیشتر از مشکلات تماس دنده قوس است. تحقیقات پایه و اساس تجزیه و

doi: 10.5829/idosi.ije.2017.30.01a.14 

 

 

 


