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In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-
adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states
for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first
step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement
noise in off-line. In the second step, the optimized values of above covariance matrices are injected
into EKF in order to estimate the rotor speed on-line. The estimated speed is fed back to the PI
controller and to minimize the speed error, parameters of Pl controller are tuned again using SaDE
algorithm. The simulation results show that the tuned covariance matrices Q and R improve
convergence of estimation process, quality of estimated states and PI controller improves the settling
time and stability of the system.
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1. INTRODUCTION

The PMSM is widely used in industrial drive systems
due to its compactness, superior power density, high
torque density, high efficiency, high power factor and
low maintenance cost. They are appropriate for
computerized numerical control (CNC) machines and
submarine propulsion due to their wide speed ranges. In
PMSM, rotor losses are eliminated due to the absence of
slip rings for field excitation, which make them ideal for
robotic and automatic production systems [1, 2]. In most
drive systems, closed loop control is based on the speed
or position measurement using optical encoders or Hall
Effect sensors. Use of such sensors will increase the
complexity and weight of the system, resulting in
increased cost and reduced overall reliability of the
system [3]. In most applications, due to harsh
environmental conditions or excessive wire lengths, it is
difficult to get the actual speed/position information
from the sensors to the controller. Sensorless speed
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control drive system reduces complexity, weight and
cost and improves reliability and dynamic performance
of the system [4].

Various control algorithms have been proposed to
eliminate the speed and position sensors. Among them,
Luenberger observer [5] and Kalman filter [6] are used
for linear systems. However, these methods are not
applicable for state estimation of non-linear systems. To
surmount this, many methods are proposed in literature;
such as reduced order observer [7], full order observer
[8], Sliding Mode Observer (SMO) [9], Extended
Kalman Filter (EKF) [10, 11], Model Reference
Adaptive Systems (MRAS) [12], based observers.

For stochastic non-linear systems, EKF is one of the
widely used observers for state estimation of PMSM
drive over the last decade. The EKF provides a quick
and accurate estimation of the variables with rapid
convergence and improvement in transient performance
of the system. Therefore, it is the best method for the
estimation of rotor position, speed and machine states of
a PMSM drive. The EKF estimation process is greatly
influenced by the values of system parameters and error
covariance matrices Q and R. As the order of the system
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increases the manual tuning of these matrices Q & R
becomes hard as the computational time increases. To
overcome this problem several algorithms are proposed
in literature; such as Genetic algorithm (GA) [13],
particle swarm optimization (PSO) [14], Differential
evolution (DE) [15], Self-adaptive Differential
Evolution (SaDE) [16] and so on. DE is one of the
recent powerful population based stochastic search
technique, which is an efficient and effective continuous
search method proposed by Storn and Price [17]. The
DE has been successfully applied in diverse fields and
sensitivity of DE depends on population (NP), crossover
rate (CR) and scale factor (F). In DE, for setting the best
control parameter values, a trial and error method is
used; which takes more computational time for setting
the best values. To avoid these problems an advanced
DE named Self-adaptive Differential Evolution (SaDE)
algorithm is employed. In this algorithm, trial vector
generation strategies and associated parameter values
are self adapted by learning from their previous
generating values.

The main objective of this paper is to tune the
parameters of covariance matrices Q and R using SaDE
algorithm. In the proposed scheme Q and R values are
formulated in off-line manner and these values are
injected in the corresponding matrices, to estimate the
rotor position, speed and machine states in on-line. For
closed loop operation, estimated speed is given as
feedback and hence the performance of EKF becomes a
part of the speed control. The speed error is given to the
PI controller and by tuning the parameters of controller;
the performance of overall system is improved. The
parameters of PI controller can be tuned using Zieglar-
Nichols method [18], Particle Swarm optimization
(PSO) [19], Differential evolution (DE) [17], Self-
adaptive Differential Evolution (SaDE) [20]. In this
work, SaDE algorithm is also used for tuning K, and K;
values of PI controller effectively. Finally the optimum
values of PI controller are obtained and these values are
injected into the controller, to get the better results.

2. MODELLING OF PMSM

The voltage equations for a PMSM in the rotor
reference frame can be expressed as follows:

Vd :Rsid +Ldp|d —a)el_qiq (1)
Vg = Rsig + Ly Pig + @, Lyl + ey ¢ Q)

Where, Vy, V; are d & q axes stator voltages, ig ,iq are
d & q axes stator currents, R; is stator phase resistance,
Ly, Lgare d & q axes stator inductances, yy is Rotor

flux (Permanent magnet flux), w, is electrical speed in
rad/sec.
The electromagnetic torque of PMSM is:

3. .
Te{anlq(wf —(Lq—Ld)ld)} (3)
Where, B, = number of pole pairs

The mechanical equation of the system is:

] dao,
dt

+Ba, +T, =T, “

Where, J= moment of inertia, B= friction coefficient and
T, = Load torque

Finally, the above equations are mentioned in the form
of state equations as follows:
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dig 1 . i Vq

— =—| -Rji, —ao, Lyiy —oy; [+— 6)
dt Lq|: s'q e e :| Lq

do, 1|3 _. . B T
LR GRS R g
a6,

L ®)
at )
dt

3. DESIGN OF EXTENDED KALMAN FILTER

The Extended Kalman filter algorithm is an optimal
recursive estimation algorithm for non-linear systems.
This method can be used to estimate the rotor position,
machine parameters and speed. Motor state variables are
estimated by means of measurements of stator line
voltages and currents. Due to its rapid delivery, precise
and accurate estimation, it is used in research and
applications. The feedback gain used in EKF [21]
achieves quick convergence and provides stability for
the observer. Due to its various feasibilities, EKF is
widely wused in various sensorless speed control
methods.

In this paper, to find the best linear estimation of the
state vector x, of PMSM, the discrete-time non-linear
dynamics is:

Xeor = T (X, Uy, W) (10)
Y = he (X, Uy, Vi) (11)
where:

fie (X5 Ui s Wi ) = Ag X + Byuy + W
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A =1+AT,
B, =BT,
Py (X, Ui, Vi) = Cg X + Vi

Cy=C

Xk IS system state vector, uy is input vector, w is process
noise, v, measurement noise T, is sampling time.

3. 1. Algorithm of EKF

Step-1: |Initialize the state vector and covariance
matrices x(0), P, Q and R.

Step-2: compute the Jacobian matrices for f,,hy

oy
F="X
o, (12)
oh
H==X
ox (13)

Step-3: Prediction state (time update)
To perform the time updating of state estimate and
estimation of error covariance

X = fi (X, Uy ) +x(0) (14

P =FPF' +Q (15)

Step-4: Correction state (measurement update)

To perform the measurement updating of state estimate
and estimation of error covariance by using Kalman
gain

Kalman gain matrix K = RH" /(HRHT +R) (16)
Update state prediction X; = X +K(y-y;) 17

where y; = Hx,
Estimation of error covariance matrix:

P=(I-KH)R (18)

4. TUNING OF PI CONTROLLER AND FILTER
VARIABLES BY USING SaDE ALGORITHM

SaDE algorithm was proposed by A. K. Qin and P. N.
Suganthan. In this algorithm choice of learning
strategies and two control variables F and CR are need
not be pre-specified. During the evolution process, these
values are gradually self adapted by previous
experience. SaDE could be used to minimize non-linear
and non-differentiable continuous space functions,
which gives better global search and convergence.

4. 1. SaDE Algorithm

i. Initialization Randomly initialize the population
(NP), Generation counts (G), Dimension of number of
tuning variables (D) and also choose the upper and
lower bounds of tuning parameters.

Population for generation, G is given by:

XiJ,G = leower +rand (NP’ D) {Xujpper - Xli)wer} (19)
Where, j=0,1,2,.................. ,D
ii. Trial Vector Generation Strategies To

generate promising and optimum solutions at each
generation with respect to each target vector in the
present population, one strategy will be chosen among
the available trial vector generations.

iii. Generate a new population by using trial
vector generation and control parameters
(F&CR).

Iv. If any control variable is outside the limits,
then reinitialize the trial vector.

v. Selection The trial vector is compared with
corresponding target vector in the current population. If
the trial vector is less or equal to target vector, the trial
vector will be replaced by the target vector value for the
next generation. Otherwise, target vector will remain in
the population for the next generation.

vi. Increase the generation count G=G+1

vii. Termination When the generation count
reached to its maximum value, it will be terminated.

4. 2. Tuning of EKF Parameters Using SaDE
The choice of elements of the covariance matrices P,Q
and R is important in the design of Kalman filter since it
effects the performance, convergence and stability of
the system. The initial state error covariance matrix (P)
is a diagonal matrix, which may cause initial
disturbances due to randomly chosen values. But when
the algorithm converges, these disturbances will be
disappeared. The higher noise and parameter
uncertainties in the model indicates the higher values of
parameters in Q which tends to increase of Kalman
gain; results in faster filter dynamics but, leads to poorer
steady-state performance. Measurement noise depends
upon the matrix R. Whenever there is an increase in the
value of the elements of R; current measurements are
more affected by noise and thus less reliable. This
results in the decrease of filter gain, yielding poor
transient response. The error covariance matrices Q, R
are manually tuned for EKF, so it is a time consuming
process. As an alternative to this, Self adaptive



R. Pilla et al. / IJE TRANSACTIONS B: Applications Vol. 29, No. 11, (November 2016) 1565-1573

evolutionary algorithm is used to tune the error
covariance matrices Q & R. These matrices are tuned
using the SaDE algorithm in order to obtain the
optimum values at a time after maximum number of
iterations. This improves both the transient and steady
state stability of the system by eliminating the noise.

In this proposed scheme, set the Q & R matrices
dimensions as 5 x 5 and 2 x 2, which are assumed as:

Q=diagonal of [y a, O3 0, Os]

R =diagonal of [ r,]
The objective function:

F =we +W,e, +Ws€5 +W,€, + W5 (20)

where W, ,W,,W;, W, ,W; are weights of the
corresponding state variables of error covariance
matrices Q & R, e; is integral square error of measured
and estimated values of iq , €, is integral square error of
measured and estimated values of i, e; is Integral
square error of actual and estimated values of w,, e, is
Integral square error of actual and estimated values of
6, and es is Integral square error of actual and estimated

values of T;.

Integral square error (ISE) integrates the square of
the error over time. But the square of the larger errors
will have

higher magnitude when compared to the smaller one.
So the errors with higher magnitude are easily identified

1568

and eliminated quickly while the smaller ones persist for
longer duration. Therefore, in order to get relatively the
same magnitude of the error, each error should be
multiplied by weights corresponding to their error
magnitudes.

ie. ISE = [|udt (21)
The selection of weights plays a vital role in tuning of
these parameters. Improper selection of these weights
leads to estimated values of these parameters doesn’t
track the actual values precisely. So the weights are
chosen as w;=1, w»=0.5, w;=0.02, w,=0.0027, ws=0.2.
Also initialize

Population size (NP) =50,

Initial generation (G) =0,

Dimension (D) =7 and number of strategies = 4
Learning generation = 50

Number of evolutions = n*D where n = integer
randomly choose the upper & lower bounds for
variable:

23
XIower_{

XX

{

control parameters F=[0.3 0.5] and CR = [0 1].

The optimum value of objective function is obtained by
selecting proper values of Q & R matrices by using
SaDE algorithm.
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Figure 1. EKF based sensorless speed control of PMSM
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Figure 2. Block-diagram of SaDE-EKF estimation system

TABLE 1. Simulated values of matrices Q & R using SaDE

Numberof Diagonal

iterations Diagonal elementsof Q elementsof R ISE
100 8.89 0'27?5%67 3.25 [6.96 8.38]  2.184¢*
700 [5.18 8'5?0:?]'55 214 796849  2173¢'
1050 [16.84 0 112'25 301 43s38472] 2179
1400 [16.94 %%Sozfo 6.78 (3007372211  2.008¢*

4. 3. Tuning of PI Controller Parameters Using
SaDE Algorithm After preset number of iterations
of SaDE algorithm, optimum parameter values of
diagonal elements Q and R matrices are obtained.
Finally these optimum values are injected into EKF, and
from that the estimated values of state variables are
obtained. If the estimated speed is given as feedback,
then speed error is given to the PI controller and the
parameters of Pl controller are obtained by tuning with
SaDE algorithm:

Objective function g = ﬂa,ref fwest\zdt (20)

Let population size (NP) =50, Initial generation G=0,
dimension (D) =2 and randomly choose the upper &
lower bounds for variables as:

xlower upper
So here the PI controller minimizes the settling time and
also reduces the steady state error.

= {167 16"} & X ey = {100 100}

5. RESULTS AND DISCUSSIONS

The non-linear equations of motor in d-q model given
by Equations (1), (2) & (3) are simulated using
MATLAB/SIMULINK software with motor parameters

as presented in Appendix-A to demonstrate the
performance of the proposed drive system. Along with
this the discrete-time EKF algorithm has been
implemented using embedded MATLAB function by
using dynamic state equations given in section 2, with
sampling period 2x10™ sec The embedded MATLAB
function block contains vy, Vg, ig and iq as the input
signals for EKF and the state variables are estimated at
each iteration using EKF algorithm. In order to imitate
the condition of real systems, Gaussian noise of 3x10°®
added to measured variables iy & i, For the simulation
process, initialize the states and error covariance
matrices as x(0)=(0,0,0,0,0), P(0) = diagonal of
(1,1,1,1,1). The values of covariance matrices Q and R
taken form SaDE algorithm as given in the following
Table 1.

Better objective function value is obtained by EKF
algorithm at 1400 iterations. The corresponding Q and
R values for the above obective function are injected
into the EKF and run in online to estimate the rotor
position , speed and machines states. These results
compared with those of trial and error method using
optimum Q and R values,

Q=diagonalof [0.4 4 1 2 02]

R =diagonal of [2 2]

Case-1: SaDE Tuning of EKF Parameters
(estimated) for PMSM Drive Figures 3-7 show
the estimated values of state variables ig, ig, @, 6. and T,
respectively. Figures 3 and 4 show the estimated
currents ig & iq using SaDE algorithm has less initial
overshoots and converges fastly when compared to trial
and error method. From Figure 4 it is clear that the
estimated speed using trial and error method fluctuates
between -500rpm to 1000rpm, where as using SaDE
algorithm the speed settles at 0.01 sec only. Figure 8
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shows the estimated value of load torque using SaDE
algorithm has less initial overshoots and converges
fastly when compared to trial and error method. The
measured and estimated waveforms of iy and iy are
shown in Figures 8 and 9 respectively. The measured
value of iy fluctuates between 1.7A to -1.7A and i steps
from OA to 10A, fluctuates between 7.5A to 11.5A to
generate the required torque to the system. The
estimated value of iy and i strictly converges with the
measured values and reduces the noise in the measured
value. The estimated values of currents having large
deviations due to convergence problem of state error
covariance matrix at the beginning. After 0.05 sec both
the state variables converges and settles. Figure 10
shows the actual & estimated values of rotor position
for PMSM drive. The actual rotor angle starts from 0.01
sec, while the estimated rotor angle started from 0.001
sec. In the steady state there is an error between actual
and estimated rotor positions due to usage of terminal
voltages instead of reference voltages. In Figure 11 the
actual and estimated speeds are compared and the
reference speed is given as 500 rpm. The estimated
speed is tracks the actual speed at 0.001 sec only, so
estimated speed is quickly converges due to precise
values of matrices Q & R chosen by SaDE algorithm.

Trial&error
SaDE

h“ln)m " v ™
wyre

estimated d-axis current in amp

25

o 0o0s 01 015 02 025 03 035 04 045 05
time in sec

Figure 3. Estimated d-axis currents of Trial & error and
SaDE methods
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Figure 4. Estimated g-axis currents of Trial & error and
SaDE methods
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Figure 5. Estimated speed of Trial and error and SaDE
methods
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methods
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methods
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Figure 11. Actual & Estimated waveforms of rotor speed

Case 2: SaDE Tuning of PI Controller After tuning
with SaDE algorithm the below values are obtained in
Table 2. The better values of the table is selected and
injected into PI controller and run online. These results
compared with those of trial and error method using
optimum K, and K; values i.e. K,=7 and K; =16.

TABLE 2. Simulated values of K, and K using SaDE

No. of Iterations Ko Ki ISE
1400 59.10885 33.82371 18.3194
2000 4.960035 99.15802 12.7781

Figures 12 and 13 show the rotor speed and
electromagnetic torque. From Figure 12, it is clear that
actual rotor speed having large number of ripples
initially due to improper selection of K, and K; values
in trial & error method, where as the SaDE algorithm,
gives optimum gain values of controller and hence
ripples are greatly reduced and speed is quickly
converged i.e. at 0.001 sec. From Figure 13, it is clear
that the electromagnetic torque has initial overshoot in
trial & error method; where as initial overshoots are
greatly reduced and achieves steady state quickly in
SaDE algorithm.

From the Figures 14 and 15, it is observed that even
for a 10% and 20% change in both mechanical and
electrical parameters, the EKF is robust towards
parameter variations.

zo0 | ——— Trial & error
SabE

otor speed in pm

(5] 0.2 0.4 06 0.8 1
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Figure 12. Actual rotor speed
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Figure 13. Electromagnetic Torque
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Figure 14. Estimated rotor speed under mechanical
parameter variations
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800

s 0% change in Rs Ld Ly
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o1 0.2 03 04 05 06 07 08 09 1
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Figure 15. Estimated rotor speed under electrical parameter
variations

6. CONCLUSION

In this paper, a novel approach of combining EKF with
SaDE algorithm to achieve high performance and
accurate rotor speed, machine states and rotor position
estimation in PMSM drive has been presented. The
proposed SaDE algorithm enables the noise covariance
matrices Q and R on which the EKF performance
critically depends, to be suitably selected. Since the
selection of parameters of Pl controller plays a
dominant role on the performance of the closed loop
system, these parameters are tuned using SaDE
algorithm. The performance of basic differential
evolution is enhanced using SaDE by adopting the
learning strategies and control parameters. In this
algorithm learning strategies and control parameters are
self adapted by its previous experience. The SaDE tuned
EKF is used to estimate the states of PMSM including
rotor speed. The simulation results of EKF based
sensorless speed control of PMSM shows superior
performance in terms of noise reduction, settling time,
initial overshoots and overall system stability when
compared with the trial and error method.
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Appendix A: Machine Ratings and Parameters of PMSM

Parameters Symbol Numerical value
Resistance of stator Rs 0.675 ohm
Direct axis inductance of stator Lq 0.0085 H
Quadrature axis inductance of stator Lq 0.0085 H
Flux linkages Wi 0.12 Wb
Inertia of rotor J 0.0011 Kg/m?
friction coefficient B 0.0014 Nm/s?
Pair of poles Py 3
Rated speed N 1000 rpm
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