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A B S T R A C T  
 

 

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-

adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states 

for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first 

step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement 

noise in off-line. In the second step, the optimized values of above covariance matrices are injected 

into EKF in order to estimate the rotor speed on-line. The estimated speed is fed back to the PI 

controller and to minimize the speed error, parameters of PI controller are tuned again using SaDE 

algorithm. The simulation results show that the tuned covariance matrices Q and R improve 

convergence of estimation process, quality of estimated states and PI controller improves the settling 

time and stability of the system. 

doi: 10.5829/idosi.ije.2016.29.11b.10 
 

 
1. INTRODUCTION1 

 

The PMSM is widely used in industrial drive systems 

due to its compactness, superior power density, high 

torque density, high efficiency, high power factor and 

low maintenance cost. They are appropriate for 

computerized numerical control (CNC) machines and 

submarine propulsion due to their wide speed ranges. In 

PMSM, rotor losses are eliminated due to the absence of 

slip rings for field excitation, which make them ideal for 

robotic and automatic production systems [1, 2]. In most 

drive systems, closed loop control is based on the speed 

or position measurement using optical encoders or Hall 

Effect sensors. Use of such sensors will increase the 

complexity and weight of the system, resulting in 

increased cost and reduced overall reliability of the 

system [3]. In most applications, due to harsh 

environmental conditions or excessive wire lengths, it is 

difficult to get the actual speed/position information 

from the sensors to the controller. Sensorless speed 
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control drive system reduces complexity, weight and 

cost and improves reliability and dynamic performance 

of the system [4].   

Various control algorithms have been proposed to 

eliminate the speed and position sensors. Among them, 

Luenberger observer [5] and Kalman filter [6] are used 

for linear systems. However, these methods are not 

applicable for state estimation of non-linear systems. To 

surmount this, many methods are proposed in literature; 

such as reduced order observer [7], full order observer 

[8], Sliding Mode Observer (SMO) [9], Extended 

Kalman Filter (EKF) [10, 11], Model Reference 

Adaptive Systems (MRAS) [12], based observers. 

For stochastic non-linear systems, EKF is one of the 

widely used observers for state estimation of PMSM 

drive over the last decade. The EKF provides a quick 

and accurate estimation of the variables with rapid 

convergence and improvement in transient performance 

of the system. Therefore, it is the best method for the 

estimation of rotor position, speed and machine states of 

a PMSM drive. The EKF estimation process is greatly 

influenced by the values of system parameters and error 

covariance matrices Q and R. As the order of the system 
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increases the manual tuning of these matrices Q & R 

becomes hard as the computational time increases. To 

overcome this problem several algorithms are proposed 

in literature; such as Genetic algorithm (GA) [13], 

particle swarm optimization (PSO) [14], Differential 

evolution (DE) [15], Self-adaptive Differential 

Evolution (SaDE) [16] and so on. DE is one of the 

recent powerful population based stochastic search 

technique, which is an efficient and effective continuous 

search method proposed by Storn and Price [17]. The 

DE has been successfully applied in diverse fields and 

sensitivity of DE depends on population (NP), crossover 

rate (CR) and scale factor (F). In DE, for setting the best 

control parameter values, a trial and error method is  

used; which takes more computational time for setting 

the best values. To avoid these problems an advanced 

DE named Self-adaptive Differential Evolution (SaDE) 

algorithm is employed. In this algorithm, trial vector 

generation strategies and associated parameter values 

are self adapted by learning from their previous 

generating values. 

The main objective of this paper is to tune the 

parameters of covariance matrices Q and R using SaDE 

algorithm. In the proposed scheme Q and R values are 

formulated in off-line manner and these values are 

injected in the corresponding matrices, to estimate the 

rotor position, speed and machine states in on-line. For 

closed loop operation, estimated speed is given as 

feedback and hence the performance of EKF becomes a 

part of the speed control. The speed error is given to the 

PI controller and by tuning the parameters of controller; 

the performance of overall system is improved. The 

parameters of PI controller can be tuned using Zieglar-

Nichols method [18], Particle Swarm optimization 

(PSO) [19], Differential evolution (DE) [17], Self-

adaptive Differential Evolution (SaDE) [20]. In this 

work, SaDE algorithm is also used for tuning Kp and Ki 

values of PI controller effectively. Finally the optimum 

values of PI controller are obtained and these values are 

injected into the controller, to get the better results.          
 

 

2.  MODELLING OF PMSM   
 

The voltage equations for a PMSM in the rotor 

reference frame can be expressed as follows: 

d s d d d e q qV R i L pi L i    (1) 

q s q q q e d d e fV R i L pi L i        (2) 

Where, dV , qV  are d & q axes stator voltages, di , qi  are 

d & q axes stator currents, Rs is stator phase resistance,

dL , qL are d & q axes stator inductances, ψf is Rotor 

flux (Permanent magnet flux), ωe is electrical speed in 

rad/sec. 

The electromagnetic torque of PMSM is: 

  
3

2
e n q f q d dT P i L L i

 
   
 

 (3) 

Where, nP  number of pole pairs 

The mechanical equation of the system is: 

r
r l e

d
J B T T

dt


    (4) 

Where, J= moment of inertia, B= friction coefficient and 

lT  Load torque 

Finally, the above equations are mentioned in the form 

of state equations as follows:  

1d d
s d e q q

d d

di V
R i L i

dt L L
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3. 
 
DESIGN OF EXTENDED KALMAN FILTER 

 

The Extended Kalman filter algorithm is an optimal 

recursive estimation algorithm for non-linear systems. 

This method can be used to estimate the rotor position, 

machine parameters and speed. Motor state variables are 

estimated by means of measurements of stator line 

voltages and currents.  Due to its rapid delivery, precise 

and accurate estimation, it is used in research and 

applications. The feedback gain used in EKF [21] 

achieves quick convergence and provides stability for 

the observer. Due to its various feasibilities, EKF is 

widely used in various sensorless speed control 

methods.  

In this paper, to find the best linear estimation of the 

state vector xk of PMSM, the discrete-time non-linear 

dynamics is: 

1 ( , , )k k k k kx f x u w   (10) 

( , , )k k k k ky h x u v  (11) 

where: 

( , , )k k k k d k d k kf x u w A x B u w    
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d sA I AT   

d sB BT  

( , , )k k k k d k kh x u v C x v   

dC C  

xk is system state vector, uk is input vector, wk is process 

noise, vk measurement noise Ts is sampling time. 

 

3. 1. Algorithm of EKF 
Step-1: Initialize the state vector and covariance 

matrices x(0), P, Q and R.  

Step-2: 
 
compute the Jacobian matrices for fk,hk 

k

k

f
F

x



  (12)

 

k

k

h
H

x



  (13)

 

Step-3: Prediction state (time update) 

To perform the time updating of state estimate and 

estimation of error covariance 

( , ) (0)k k kX f x u x   (14) 

1
TP FPF Q   (15) 

Step-4: Correction state (measurement update) 

To perform the measurement updating of state estimate 

and estimation of error covariance by using Kalman 

gain 

Kalman gain matrix  1 1/T TK P H HP H R    (16) 

Update state prediction  1 1X X K y y    (17) 

where 1 ky Hx  

Estimation of error covariance matrix: 

  1P I KH P   (18) 

 
 
4. TUNING OF PI CONTROLLER AND FILTER 
VARIABLES BY USING SaDE ALGORITHM 

 

SaDE algorithm was proposed by A. K. Qin and P. N. 

Suganthan. In this algorithm choice of learning 

strategies and two control variables F and CR are need 

not be pre-specified. During the evolution process, these 

values are gradually self adapted by previous 

experience. SaDE could be used to minimize non-linear 

and non-differentiable continuous space functions, 

which gives better global search and convergence. 

4. 1. SaDE Algorithm 
 
i. Initialization       Randomly initialize the population 

(NP), Generation counts (G), Dimension of number of 

tuning variables (D) and also choose the upper and 

lower bounds of tuning parameters. 

Population for generation, G is given by: 

 , (NP,D)
j j jj

upperi G lower lowerx x rand x x    (19) 

Where, j=0, 1, 2,………………, D 

 

ii. Trial Vector Generation Strategies      To 

generate promising and optimum solutions at each 

generation with respect to each target vector in the 

present population, one strategy will be chosen among 

the available trial vector generations. 

 

iii. Generate a new population by using trial 
vector generation and control parameters 
(F&CR). 
 
Iv. If any control variable is outside the limits, 
then reinitialize the trial vector. 
 
v. Selection     The trial vector is compared with 

corresponding target vector in the current population. If 

the trial vector is less or equal to target vector, the trial 

vector will be replaced by the target vector value for the 

next generation. Otherwise, target vector will remain in 

the population for the next generation. 

 

vi. Increase the generation count G=G+1 
 

vii. Termination      When the generation count 

reached to its maximum value, it will be terminated. 

 
4. 2. Tuning of EKF Parameters Using SaDE       
The choice of elements of the covariance matrices P,Q 

and R is important in the design of Kalman filter since it 

effects the performance, convergence and stability of 

the system. The initial state error covariance matrix (P) 

is a diagonal matrix, which may cause initial 

disturbances due to randomly chosen values. But when 

the algorithm converges, these disturbances will be 

disappeared. The higher noise and parameter 

uncertainties in the model indicates the higher values of 

parameters in Q which tends to increase of Kalman 

gain; results in faster filter dynamics but, leads to poorer 

steady-state performance. Measurement noise depends 

upon the matrix R. Whenever there is an increase in the 

value of the elements of R; current measurements are 

more affected by noise and thus less reliable. This 

results in the decrease of filter gain, yielding poor 

transient response. The error covariance matrices Q, R 

are manually tuned for EKF, so it is a time consuming 

process. As an alternative to this, Self adaptive 
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evolutionary algorithm is used to tune the error 

covariance matrices Q & R. These matrices are tuned 

using the SaDE algorithm in order to obtain the 

optimum values at a time after maximum number of 

iterations. This improves both the transient and steady 

state stability of the system by eliminating the noise. 

In this proposed scheme, set the Q & R matrices 

dimensions as 5 × 5 and 2 × 2, which are assumed as: 

 1 2 3 4 5Q diagonal of q q q q q
 

 1 2R diagonal of r r
 

The objective function: 

1 1 2 2 3 3 4 4 5 5F w e w e w e w e w e      (20) 

where 1w , 2w , 3w , 4w , 5w  are weights of the 

corresponding state variables of error covariance 

matrices Q & R, e1  is integral square error of measured 

and estimated values of id , e2 is integral square error of 

measured and estimated values of iq, e3 is Integral 

square error of actual and estimated values of r , e4 is 

Integral square error of actual and estimated values of 

e and e5 is Integral square error of actual and estimated 

values of Tl.  

Integral square error (ISE) integrates the square of 

the error over time. But the square of the larger errors 

will have  

higher magnitude when compared to the smaller one. 

So the errors with higher magnitude are easily identified 

and eliminated quickly while the smaller ones persist for 

longer duration. Therefore, in order to get relatively the 

same magnitude of the error, each error should be 

multiplied by weights corresponding to their error 

magnitudes. 

i.e. 
2

ISE u dt   (21) 

The selection of weights plays a vital role in tuning of 

these parameters. Improper selection of these weights 

leads to estimated values of these parameters doesn’t 

track the actual values precisely. So the weights are 

chosen as w1=1, w2=0.5, w3=0.02, w4=0.0027, w5=0.2. 

Also initialize  

Population size (NP) =50, 

Initial generation (G) =0,  

Dimension (D) =7 and number of strategies = 4 

Learning generation = 50 

Number of evolutions = n*D where n = integer 

randomly choose the upper & lower bounds for 

variable: 

   1 2 3 3 3 3 3 3 3 3........... 1 1 1 1 1 1 1D
lower l l l lX x x x x e e e e e e e       

 

   1 2 3 ........... 20 20 50 5010100100D
upper u u u uX x x x x 

 

control parameters F= [0.3 0.5] and CR = [0 1]. 

The optimum value of objective function is obtained by 

selecting proper values of Q & R matrices by using 

SaDE algorithm. 
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Figure 1. EKF based sensorless speed control of PMSM 
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Figure 2. Block-diagram of SaDE-EKF estimation system 

 

 

TABLE 1. Simulated values of matrices Q & R using SaDE 

Numberof 
iterations 

Diagonal  elementsof Q 
Diagonal  

elementsof R 
ISE 

100 
[8.89  0.29  6.67  3.25  

7.51] 
[6.96  8.38] 2.184e4 

700 
[5.18  8.75  8.55  2.14  

0.03] 
[7.96 8.49] 2.173e4 

1050 
[16.84 0.24 12.25 3.01 

2.64] 
[43.83 84.72] 2.179e4 

1400 
[16.94 0.08 9.50 6.78 

0.004] 
[30.07 37.221] 2.008e4 

 
 

4. 3. Tuning of PI Controller Parameters Using 
SaDE Algorithm       After preset number of iterations 

of SaDE algorithm, optimum parameter values of 

diagonal elements Q and R matrices are obtained. 

Finally these optimum values are injected into EKF, and 

from that the estimated values of state variables are 

obtained. If the estimated speed is given as feedback, 

then speed error is given to the PI controller and the 

parameters of PI controller are obtained by tuning with 

SaDE algorithm: 

Objective function
2

ref estF dt    (20) 

Let population size (NP) =50, Initial generation G=0, 

dimension (D) =2 and randomly choose the upper & 

lower bounds for variables as: 

 3 31 1lowerX e e  &  100 100upperX   

So here the PI controller minimizes the settling time and 

also reduces the steady state error. 
 
 

5. RESULTS AND DISCUSSIONS 
 

The non-linear equations of motor in d-q model given 

by Equations (1), (2) & (3) are simulated using 

MATLAB/SIMULINK software with motor parameters 

as presented in Appendix-A to demonstrate the 

performance of the proposed drive system. Along with 

this the discrete-time EKF algorithm has been 

implemented using embedded MATLAB function by 

using dynamic state equations given in section 2, with 

sampling period 2×10
-5

 sec The embedded MATLAB 

function block contains vd, vq, id and iq as the input 

signals for EKF and the state variables are estimated at 

each iteration using EKF algorithm. In order to imitate 

the condition of real systems, Gaussian noise of 3×10
-6

 

added to measured variables id & iq.  For the simulation 

process, initialize the states and error covariance 

matrices as x(0)=(0,0,0,0,0), P(0) = diagonal of 

(1,1,1,1,1). The values of covariance matrices Q and R 

taken form SaDE algorithm as given in the following 

Table 1. 

Better objective function value is obtained by EKF 

algorithm at 1400 iterations. The corresponding Q and 

R values for  the above obective function are injected 

into the EKF and run in online to estimate the rotor 

position , speed and machines states. These results 

compared with those of  trial and error method using 

optimum Q and R values, 

 0.4 4 1 2 0.2Q diagonal of
 

 2 2R diagonal of
 

 
Case-1: SaDE Tuning of EKF Parameters 
(estimated) for PMSM Drive        Figures 3-7 show 

the estimated values of state variables id, iq, ωr, θe and Tl 

respectively. Figures 3 and 4 show the estimated 

currents id & iq  using SaDE algorithm has less initial 

overshoots and converges fastly when compared to trial 

and error method. From Figure 4 it is clear that the 

estimated speed using trial and error method fluctuates 

between -500rpm to 1000rpm, where as using SaDE 

algorithm the speed settles at 0.01 sec only. Figure 8 
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shows the estimated value of load torque using SaDE 

algorithm has less initial overshoots and converges 

fastly when compared to trial and error method. The 

measured and estimated waveforms of id and iq are 

shown in Figures 8 and 9 respectively. The measured 

value of id fluctuates between 1.7A to -1.7A and iq steps 

from 0A to 10A, fluctuates between 7.5A to 11.5A to 

generate the required torque to the system. The 

estimated value of id and iq strictly converges with the 

measured values and reduces the noise in the measured 

value. The estimated values of currents having large 

deviations due to convergence problem of state error 

covariance matrix at the beginning. After 0.05 sec both 

the state variables converges and settles. Figure 10 

shows the actual & estimated values of rotor position 

for PMSM drive. The actual rotor angle starts from 0.01 

sec, while the estimated rotor angle started from 0.001 

sec. In the steady state there is an error between actual 

and estimated rotor positions due to usage of terminal 

voltages instead of reference voltages. In Figure 11 the 

actual and estimated speeds are compared and the 

reference speed is given as 500 rpm. The estimated 

speed is tracks the actual speed at 0.001 sec only, so 

estimated speed is quickly converges due to precise 

values of matrices Q & R chosen by SaDE algorithm. 
 

 

 

 
Figure 3. Estimated d-axis currents  of Trial & error and 

SaDE methods 

 

 

 

 
Figure 4. Estimated q-axis currents of Trial & error and 

SaDE  methods 

 
Figure 5. Estimated speed of Trial and error and SaDE  

methods 

 

 
Figure 6. Estimated rotor angle of Trial and error and SaDE  

methods 

 

 

 
Figure 7. Estimated load torques  of Trial & error and SaDE 

methods 

 

 
Figure 8. Measured & estimated waveforms of id 
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Figure 9. Measured & Estimated waveforms of iq 

 

 

 
Figure 10. Actual & Estimated wave forms of rotor angle 

 

 

 
Figure 11. Actual & Estimated waveforms of rotor speed 

 

 

Case 2: SaDE Tuning of PI Controller     After tuning 

with SaDE algorithm the below values are obtained in 

Table 2. The better values of the table is selected and 

injected into PI controller and run online. These results 

compared with those of trial and error method using 

optimum Kp and Ki values i.e. Kp=7 and Ki =16.  

 

 

 
TABLE 2. Simulated values of Kp and Ki using SaDE 

No. of Iterations Kp Ki ISE 

1400 59.10885 33.82371 18.3194 

2000 4.960035 99.15802 12.7781 

Figures 12 and 13 show the rotor speed and 

electromagnetic torque. From Figure 12, it is clear that 

actual rotor speed having large number of ripples 

initially due to improper selection of Kp and  Ki  values 

in trial & error method, where as the SaDE algorithm, 

gives optimum gain values of controller and hence 

ripples are greatly reduced and speed is quickly 

converged i.e. at 0.001 sec. From Figure 13, it is clear 

that the electromagnetic torque has initial overshoot in 

trial & error method; where as initial overshoots are 

greatly reduced and achieves steady state quickly in 

SaDE algorithm. 

From the Figures 14 and 15, it is observed that even 

for a 10% and 20% change in both mechanical and 

electrical parameters, the EKF is robust towards 

parameter variations. 
 

 

 
Figure 12. Actual rotor speed 

 

 
Figure 13. Electromagnetic Torque 

 

 
Figure 14. Estimated rotor speed under mechanical 

parameter variations 
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Figure 15. Estimated rotor speed under electrical parameter 

variations 
 

 

6. CONCLUSION 
 

In this paper, a novel approach of combining EKF with 

SaDE algorithm to achieve high performance and 

accurate rotor speed, machine states and rotor position 

estimation in PMSM drive has been presented. The 

proposed SaDE algorithm enables the noise covariance 

matrices Q and R on which the EKF performance 

critically depends, to be suitably selected. Since the 

selection of parameters of PI controller plays a 

dominant role on the performance of the closed loop 

system, these parameters are tuned using SaDE 

algorithm. The performance of basic differential 

evolution is enhanced using SaDE by adopting the 

learning strategies and control parameters. In this 

algorithm learning strategies and control parameters are 

self adapted by its previous experience. The SaDE tuned 

EKF is used to estimate the states of PMSM including 

rotor speed. The simulation results of EKF based 

sensorless speed control of PMSM shows superior 

performance in terms of noise reduction, settling time, 

initial overshoots and overall system stability when 

compared with the trial and error method. 
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Appendix A: Machine Ratings and Parameters of PMSM 

Parameters Symbol Numerical value 

Resistance of stator Rs 0.675 ohm 

Direct axis inductance of stator Ld 0.0085 H 

Quadrature axis inductance of stator Lq 0.0085 H 

Flux linkages ψf 0.12 Wb 

Inertia of rotor J 0.0011 Kg/m2 

friction coefficient B 0.0014 Nm/s2 

Pair of poles Pn 3 

Rated speed N 1000 rpm 
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 هچكيد

 
 

 (SaDE)خَد تطبيق گسترش يافتِ با الگَريتن تکاهلی تفاضلی  (EKF)در ايي هقالِ رٍشی ًَيي بر هبٌای فيلتر کالوي 

ارائِ  (PMSM)رٍتَر، سرعت ٍ حالت ّای هاشيي برای يک هَتَر سٌکرٍى با هغٌاطيس دائن برای تخويي هَقعيت 

بکار گرفتِ شذُ تا هاتريس ّای کٍَارياًس ًَيس هربَط بِ  SaDEلگَريتن شذُ است. در رٍش ارائِ شذُ در هرحلِ اٍل ا

حالت ًَيس ٍ اًذازُ گيری ًَيس در حالت خارج ازخط را تٌظين کٌذ. در هرحلِ دٍم هقادير هاتريس کٍَارياًس بْيٌِ شذُ 

باز PI بِ کٌترل کٌٌذُ خط تخويي بسًذ.سرعت تخويي زدُ شذُ-اعوال شذُ تا سرعت رٍتَر را بِ صَرت بر EKFبالا بِ 

تٌظين هی شَد.  SaDEدٍبارُ با الگَريتن  PIخَر هی شَد ٍ برای کويٌِ کردى خطای سرعت پاراهتر ّای کٌترل کٌٌذُ 

ّوگرايی فرآيٌذ تخويي ٍ کيفيت حالت Q ٍ Rًتايج شبيِ سازی ًشاى هی دّذ کِ هاتريس ّای کٍَارياًس تٌظين شذُ 

 زهاى استقرار ٍ پايذاری سيستن را بْبَد هی دّذ PIبخشذ ٍ کٌترل کٌٌذُ  ّای تخويي زدُ شذُ را بْبَد هی

doi: 10.5829/idosi.ije.2016.29.11b.10 

 

 


