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The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper
using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is
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a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The
dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is
predicted using ELM and the results are compared to those obtained using a Support Vector Machines

(SVM). The comparison of the ELM and SVM methods indicates a good performance for both

methods in the prediction of Fr. In addition to being computationally faster, the ELM method has a

higher level of accuracy (R?=0.99, MAE=0.10; MAPE=2.34; RMSE=0.14; CRM=0.02) compared with

the SVM approach.

Support Vector Machines (SVM)
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NOMENCLATURE
A cross-sectional area of flow (m/s?) s specific gravity of sediment
b bias terms of the equation \Y flow velocity (m/s)

bi threshold of the i" hidden neuron w weighting vector

Cv volumetric sediment concentration y flow depth (m)

D pipe diameter (m) Greek Symbols
d median particle diameter (m) As sediment friction factor
Dyr (=((d(s-1)A?™3))  dimensionless particle size v kinematic viscosity (m?/s)
Fr (=V/(g(s-1)/d)*®)  densimetric Froude number G, Gi* slack variables
g gravitational acceleration p water density (kg/m®)
g(x) membership function Ds sediment density (kg/m°)
H neural network output matrix ® a nonlinear function
K(Xi-xi") kernel function Subscripts

N number of hidden neurons S sediment
R hydraulic radius (m)

1. INTRODUCTION

One of the most important issues in open channel
design is the economic and optimized planning of it.

*Corresponding  Author’s Email:  bonakdari@yahoo.com

(H.Bonakdari)

Due to the through path of flow before reaching the
channel, the inflow may erode and suspend sediments
which are then transported with the flow into the open
channel. If the flow velocity for a given channel slope
(limiting velocity) is insufficient to transport the
sediment in the flow, the sediment will be deposited
within the channel. In the case of fine sediment, the

Please cite this article as: I. Ebtehaj, H.Bonakdari, A Comparative Study of Extreme Learning Machines and Support Vector Machines in
Prediction of Sediment Transport in Open Channels, International Journal of Engineering (IJE), TRANSACTIONS B: Applications Vol. 29, No.
11, (November 2016) 1499-1506



mailto:bonakdari@yahoo.com

1. Ebtehajand H.Bonakdari/ IJE TRANSACTIONS B: Applications Vol. 29, No. 11, (November 2016) 1499-1506 1500

longer it remains on the bed, the more likely
consolidation will occur which may lead to a permanent
reduction in channel depth and a reduction in the flow
cross section and changes to the velocity and shear
stress in the channel. Sediment deposition occurs more
often in dry weather, when the discharge flows are low
or at a minimum. Hence, in the design of open channel
systems sediment deposition should be avoided as much
as possible; as this will minimize maintenance and
operational costs.

One of the easiest approaches used in open channel
design is constant velocity or constant shear stress. In
this method of design, the minimum velocity value (in
the range of 0.3-0.9 m/s) or shear stress (in the range of
1-2.5 N/m?) is determined [1]. However, using this
approach is not considered to be a good practice, due to
the lack of consideration of other hydraulic parameters
including the sediment and the flow and channel
characteristics. Therefore, numerous experimental and
theorical studies to evaluate the flow hydraulic in the
open channels were conducted by many researchers [2-
6]. From this research a range of different relationships
were presented, which were mostly based on regression
analysis. The main problem of using regression
equations is they generally perform well for data upon
which they have been derived, however, for other
datasets the performance is often less good leading to
limiting velocity predictions which are either an
underestimate or overestimate with large errors.

In recent years the use of artificial intelligence
techniques has increased due to their good performance
in identifying relationships between the parameters in
non-linear systems and across a range of different
engineering fields, but particularly in hydraulics and
hydrology where the results have often been remarkably
good [7-13]. Kumar et al. [14] presented predictor
models based on genetic programming for incipient
motion, sediment transport in vegetated flow and total
bedload. Kumar et al. developed their models and
compared with several previous regression models and
found the accuracy of the results to be better than these
earlier models. Bonakdari & Ebtehaj [15] compared two
different data driven methods, namely Gene-Expression
Programming (GEP) and Group Method of Data
Handling (GMDH) for the prediction of sediment
transport in pipe channels. They presented two
equations which were derived from a wide range of
hydraulic parameters for use in practical design.
Azamathulla et al. [16] proposed a functional
relationship to predict sediment transport in pipes using
Adaptive Neuro-Fuzzy Inference Systems (ANFIS) as
an alternative approach obtaining results with high
accuracy. Najafzadeh et al. [17] predicted critical
velocity for preventing sedimentation by Evolutionary
Polynomial Regression (EPR) and the Model Tree
(MT). The authors compared the results of proposed
technique with benchmark equations and found that the

new artificial intelligence methods (MT and EPR) are
more stronger than others method.

One of the newest soft computing approaches is

Extreme Learning machines (ELM). ELM is a Single-
Layer Feed-Forward Neural Network (SLFNN) which
removes the problems of general neural networks such
as computational time and overfitting. The use of this
method in different fields of science such as feature
selection [18], non-linear time-series data analysis [19],
bioinformatics [20], and environmental engineering [21,
22] indicated a high level of accuracy.
In this study the ELM approach is developed to predict
sediment transport in open channels. The performance
of the ELM is compared with another powerful
techniques used in soft computing, namely the Support
Vector Machines (SVM) method. For this purpose, it is
first necessary to determine the effective dimensionless
parameters to represent sediment transport without
deposition in open channel flow using dimensional
analysis. Following this, the ELM and SVM methods
are used to predict the limiting velocity.

2. METHODS

2. 1. Extreme Learning Machine (ELM) One of
the classical neural networks (NN) problems is the
computational time taken to perform the calculations
due to using gradient-based learning algorithms and
iterative tuning parameters. Therefore to overcome this
problem, Huang et al. [23] introduced a new training
algorithm, a single-hidden layer feed-forward neural
network (SLFNN), with random determination of the
hidden layer neurons to establish the output weights.
Unlike gradient-based training algorithms, which only
minimize the model training error, the ELM method, in
addition to considering this issue, also randomly assigns
weights connecting inputs to the hidden nodes. In
addition, ELM solves the classic gradient-based
algorithm problem that are used only for differentiable
activation functions, and in a SLFNN they can be
trained with a non-differentiable activation function as
well [23]. Also this method avoids the problems
associated with the gradient method such as overfitting,
local minimum, and improper learning rate [24]:

With N samples defined as  (x,t;) where

(t =[ti iz Xin ] € R % =[Xig, Xz Xip ] €R"), @

standard neural network with a hidden layer,
membership function (g(x)), and the number of hidden

neurons N is defined as follows:

N

> Aolwx;+b)=0; j=12..N @
i=1

where w, =[w,...,w;, 1" and g =[B;, Biy.....5n 1" are the
vector weights that connect the input and output neurons
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to i™ neuron of the hidden layer, b; is the threshold of

the i" hidden neuron and the “” in W;.X; is the inner

product of w; and x;.

SLFNN aims to minimize the difference between the
predicted values (0;) and actual values (t) which is
defined as follows:

N
Zﬂtg(wt.xj +bt):tj j=12..N (2)
i=1
which can be present as a compact form as follows:
HB=T 3
where
H(Wl,...WN,bl,...bﬁ,xl,...x,\,) =
. S.X5) b
g(WIX:l.-'—bl) g(WN XN)+'N) (4)
g(w.xy +by) g(wg.Xg) +bg
ra
B=| ®)
T
N
)
- (6)
i ]

where H is known as a neural network output matrix.

According to the provided description, the training
process in an ELM algorithm can be explained in a
general stage: In the first stage, random values are
dedicated to weights and bias in the hidden layer
neurons, and the output value of the hidden layer using
matrix H is estimated. In the second stage, the output
weights using matrix H, and the desired values (target)
for different samples are calculated. Using matrix H to
determine the weights gives much higher computational
speeds than existing methods such as Levenberg-
Marquardts [23, 24].

The number of hidden neurons not only affects the
network complexity in order to model a nonlinear
system but also affects the ability of network to
generalize and learning. Considering many number of
hidden neurons will lead to overfitting. Due to no
existence of unique relation to calculate the number of
hidden neurons before training it should be determine
through trial and error. In this study, trial and error is
utilized to determine the maximum permissible number
of ELM hidden neurons. It is clear that increasing the
number of hidden neurons results in higher prediction
performance with the training dataset. However,
overfitting should also be considered. Increasing the
number of hidden neurons may lead to a model that
predicts the training dataset very well but has high error

in predicting the testing dataset. In such cases,
overfitting occurs.

In the present case, the number of hidden neurons
are incresed considering that the difference between the
training prediction accuracy and the testing prediction
accuracy is very low. So that, it could be mentioned that
there is no overfitting here. The number of hidden
neurons in the ELM models were considered as 15.
Also, the used activation function was sigmoidal.

2. 2. Support Vector Machine (SVM) SVMis a
new modelling technique that uses the statistical
learning theory principles [25]. This modelling
technique applies an optimized linear regression model
in a feature space to estimate the unknown values. The
feature space is defined using input data mapping from
the main space in an m-dimensional space. For a given
observational dataset with an input wvector as p-
dimensional and the target vector as one dimensional,
the relationship between the input and output can be
expressed as follows:

f(c)=w'p(x)+b U]

where ¢ is a nonlinear function and b and w are the bias
terms of the equation and weighting vector,
respectively. Optimal values of these parameters whilst
minimizing the risk function using variables i and (i*
known as the slack variables, are calculated as follows.

|
R(F) =S +e) (6 +4)) ®)
i=1
Subjected to:
di-wlo(x)-b<e+d  i=12..1
wio(x)+b-d, <e+(  i=12..1 9)
Gti 20 i-12..)

where C is a constant parameter defining the trade-off
between the determination error and flatness. Equation
(9) is solved based on defining Lagrange multipliers

(a;,a €[0,C]) and the dual problematic formulation.
The solution of this equation is presented as follows:

|
0= (@ ~a) K(4—%)+b (10)
i=l

where K(xi-xi*) is called a kernel function and x; and x;"
are two vectors in the input space (training or testing).
The Radial Basis Function (RBF) kernel function has
been applied to problems in a number of fileds and has
shown good performance due to features such as
computational efficiency and reliability [26, 27].
Therefore, in this study, the kernel function is applied
and calculated as follows:
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X - xin) (11)

K, ) =exp(-]

It should be note that the good performance of SVM
modeling is depended on accurate determination of
three parameters y, ¢ and C. In this study, the values of
these parameters were considered as 0.45, 0.05 and
0.95, respectively, through trial and error.

3. METHODOLOGY

3. 1. Dimensional Analysis From the assessment
of experimental and analytical studies in the field of
sediment transport in open channels [2, 5, 28] a number
of different parameters such as hydraulic radius (R),
flow depth (y), cross-sectional area of flow (A), flow
velocity (V), water density (p), sediment density (ps),
kinematic viscosity (v), pipe diameter (D), median
particle diameter (d), sediment friction factor (15) and
volumetric sediment concentration (Cy) were considered
to be important to estimate the minimum velocity to
prevent sediment deposition (limiting velocity). The
functional equation of limiting velocity is presented as
follows:

V=a(g,d p,ps,Cy . DL Y.R A L) (12)

In the above equation, the volumetric sediment
concentration (Cy) and sediment friction factor (/)
parameters are dimensionless parameters. Using
dimensional analysis, the effective dimensional
parameters in the relationship are represented by
different dimensionless parameters as follows:
densimetric  Froude number  (Fr=V/(g(s-1)/d)*®);
dimensionless particle size (Dg=((d(s-1)*)"?)), the
ratio of median diameter particle size to hydraulic radius
(d/R), the ratio of median diameter to pipe diameter
(d/D), the ratio of hydraulic ratio to pipe diameter
(R/D) and the square pipe diameter to the cross-
sectional area of flow (D%/A) [8, 29, 30]. Regarding the
nature of each dimensionless parameter, Ebtehaj and
Bonakdari [8] categorized the dimensionless parameters
into five different groups.

The five groups are “movement” (Fr), “flow
resistance” (As), “transport” (Cy), “transport mode” (d/R,
R/D, D°/A) and “sediment” (Dy and d/D). The Fr
parameter provides the limiting wvelocity as a
dimensionless value and is the only member of the
“movement” group and is considered as the target
parameter. Among the residual four groups, the “flow
resistance” and “transport” groups only have one
parameter whilst the “sediment” and “transport mode”
groups, respectively, have 2 and 3 different
dimensionless parameters. Hence, to consider the
parameters of all four groups, 6 different combinations
are required to calculate the limiting velocity, which can

be expressed as a dimensionless parameter, Fr, as
follows:

Fr, =®,(Cy, Dy, d /R, 4) (13)
Fr, =®,(Cy, Dy, D’ /R, 4) (14)
Fry =®4(Cy, Dy, R/ D, 4) (15)
Fr, =®,(C,,d/D,d/R, ) (16)
Fr; =®5(C,,d/D,D?/R, A) @n
Frg = ®4(C,,d/D,R/D, ) (18)

Recent study of the authors [30] showed that among the
different combinations of the above relationships, the
relationship (Fr;) shown in Equation (16) provides the
best results compared to the other relationships.
Therefore, in this study, the performance of the ELM
and SVM method is evaluated utilizing Equation (16).

3. 2. Used Data In this study to evaluate the Fr
variable, three different datasets; Vongvisessom jai et
al. [5], Ab Ghani [28] and Ota and Nalluri [31], have
been applied. Vongvisessom jai et al. [5] conducted
their experimental tests at two pipe channel with
different diamters, 100 and 150 mm. The pipes legth are
16 m. The authors used three slopes 0.002, 0.004 and
0.006. The uniform sands with different median particle
diameter (d = 0.2, 0.3 and 0.43mm) were used. Also, the
Maning roughness coefficient for clear water tests was
0.0125. Using three pipes of 154, 350 and 450 mm of
diameters, 20.5 m length and maximum flow discharge
of 0.04 m%s, Ab Ghani [28] conducted their
experimental tests. The bed of pipes was considered
smooth and rough. The test conducted on different
slopes so that the maximum was 0.006. Ota and Nalluri
[31] conducted their experimental test using a pipe with
18 m length and 305 mm diameter. The authors
surveyed the effect of sediment gradation on sediemnet
transport by considering uniform and non-uniform
conditions. The specific gravity of all used sediment
was 2.65. More details of the datasets are presented in
previous studies [8, 29, 30].

Based on presented descriptions, the experiments
have been conducted in different experimental
conditions and, therefore, provide a wide range of
hydraulic parameters for use in the analysis.

To train the model in this study, all the data were
divided into two categories: train and test. Among the
218 different datasets, 70% of all datasets (151 samples)
were selected randomly to train the model and other
datasets (67 samples) were used to test the model.
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3. 3. Goodness of Fitness In this paper, different
statistical indices such as the correlation coefficient
(R%), Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE)
and Coefficient of Residual Mass (CRM) which is an
index for trend recognition of prediction are used for
performance evaluation of each soft computing method
(ELM & SVM). The calculation of the above mentioned
indices are as follows:

(nzT,me - ZTZT)

R*= (19)

OxEMIOAZA]

n

1
RMSE = HZ:(T -T,f (20)
_1g
MAE ==3'fr, - T, | (21)
MAPE = %z L_ T ‘ (22)

CRM :[ZT,D —Z":T,m]/ ZT (23)

where Ti, and T, are the measured and corresponding
predicted value of the densimetric Froude number (F,),
respectively, and n is the number of samples. The
combination of these statistical indices is sufficient to
evaluate model performance.

4. RESULTS AND DISCUSSION

In this section, the results of modelling the densimetric
Froude number (Fr) using SVM and ELM artificial
intelligence methods are provided. Figure 1 compares
the Fr modelling results using SVM and ELM methods
in both the train and test modes to the observed
experimental values. According to Figure 1 it can be
seen that in model training mode, both the SVM (R? =
0.97) and ELM (R? = 0.98) methods have a relatively
good performance, as the majority of the estimated
values have errors in the range of + 10%. The average
relative error for both methods, SVM (MAPE = 5.82%)
and ELM (MAPE = 5.94%) is almost equal and less
than 6%. Values for the other are presented in Table 2,
and also show good performance of SVM (MAE = 0.24
& RMSE = 0.36) and ELM (MAE = 0.22 & RMSE =
0.29) methods in estimating the value of Fr. The CRM
index value for both the SVM and ELM method in
model training is positive, which indicates the
overestimate performance of the models. It is
noteworthy that the index value is relatively small

(SVM = 0.01 & ELM = 0.02). As a result, using these
methods to estimate Fr, does not lead to a significant
increase in the economic cost of the design. For small
values of Fr (Fr< 5), ELM estimations are associated
with a relative error of more than 10%, and for large
values of Fr (Fr> 5), SVM method has estimations with
errors more than 10%. But as can be seen, these method
would not be reliable in Fr estimation. Test data results
indicate that both methods for all Fr values, estimates
the variable value with less than 10% relative error, in
fact using test data that have not any role in model
training, not only reduce the SVM (R? = 0.99) and ELM
(R? = 0.99) performance, but also increase the model
accuracy as well. Table 1 shows that CRM index value
for both methods is similar to model training mode with
positive value. In fact, the modeling process is not
changed.

Table 1 presents the statistical indices which report
the model performance as an average, whilst in Figure
2, the cumulative relative error value for both the SVM
and ELM methods is provided. The general conclusion
that can be obtained from this figure is that both the
SVM and ELM methods have relatively similar
performances, as both methods present about 90% of
the estimated values with relative errors less than 10%.
Also 60% of estimations have a relative error less than
5%. The figure shows that less than 2% of the estimated
values of Fr using SVM and ELM have an error of
more than 15%.

According to the given description in Figures 1 and
2 and Table 1, it can be concluded that both presented
models in this study have a very good performance in
Fr estimation. But the computational speed of the SVM
and ELM methods are not comparable as the ELM,
trains the model much more quickly. Also in the ELM
approach only the determination of the hidden layer
neuron values is needed; whilst in the SVM method the
coefficients of the kernel function and the coefficient C
need to be optimized simultaneously and may lack
proper selection, leading to poor modelling results.

Figure 3 shows the Discrepancy Ratio (DR) for the
SVM and ELM methods. The DR is the average of the
relative predicted value to actual value. According to the
figure, most of the estimated values using the SVM
method are in the range of 0.95 <DR <1.0. It is also
observed that the minimum and maximum DR value in
the SVM method are 1 £ 0.15. The SVM and ELM
methods show the same degree of scatter indicating that
the minimum and maximum values of the DR for both
models is the same. Tables 2 and 3 indicated the results
of sensitivity analysis for ELM and SVM techniques,
respectively. Based on these tables, the weakest result is
related to model 4-4 which removed the variable Cy in
comapred with Equation (16). The mean absolute
relative error of model 4.4 is 6 time more than Equation
(16).
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The best performance of presented model in Tables
3 and 4 except model 4, is regard to model 4-2 for EIm
(R* = 0.96, MAE = -0.09; MAPE = 6.15; RMSE = 0.69;
CRM = -0.02) and SVM (R?> = 0.95, MAE = -0.09;
MAPE = 6.82; RMSE = .047; CRM = -0.03). The
difference of this model with model 4 is the lack use of
d/D as an effective pararmeters in Fr predicting.
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Figure 1. Comparison of ELM and SVM performance in
prediction of Fr (Train & Test)

TABLE 1. Statistical indices for performance evaluatation of
ELM and SVM (Train & Test)

Index SVM ELM
Train R? 0.97 0.98
MAE 0.24 0.22
MAPE 5.82 5.94
RMSE 0.36 0.29
CRM 0.01 0.02
Test R? 0.99 0.99
MAE 0.14 0.10
MAPE 3.24 2.34
RMSE 0.19 0.14
CRM 0.03 0.02

Because the effect of d and D are considered in d/R
dimnsionles parameters. Based on the statistical indices
presented in Table 1 and 2, the lack use of each
dimensionless variable presented in Equation (16) as an
input parameter in predicting Fr lead to reduction of
modeling accuracy. Therefore, all four variables in
Equation (16) are essential to reach high modeling
pefromance.
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Figure 2. Error distribution for ELM and SVM methods
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TABLE 2. Results of sensitivity analysis for ELM

Input variables R’ RMSE MAE MAPE CRM

4. Fr=®(Cy, d/R, d/D,
1)

4-1. Fr=0(Cy, d/R,d/D) 095 052 -0.12 8.11 -0.03
4-2. Fr=®(Cy, d/R, 4s) 096 036 -0.09 6.15 -0.02
4-3. Fr=0(Cy, d/D, 4) 087 063 -015 1162 -0.04
4-4. Fr=0(d/R, d/D, 4s) 075 083 -0.04 1257 -0.10

099 01 2.34 0.14 0.02

TABLE 3. Results of sensitivity analysis for SVM

Input variables R? RMSE MAE MAPE CRM

4. Fr=0(Cy, d/R, d/D, 4s)  0.99 0.14 3.24 0.19 0.03
4-1. Fr=®(Cy, d/R, d/D)  0.95 0.58 -0.10 8.84 -0.02
4-2. Fr=®(Cy, dIR, 4s) 0.95 0.47 -0.09 6.82 -0.03
4-3. Fr=®(Cy, d/D, 4;) 0.86 0.69 -0.14  12.09 -0.03
4-4. Fr=®(d/R, d/D, 4s) 0.76 0.83 -0.05 1292 -0.01

5. CONCLUSION

Concerning the importance of sediment transport in
open channels with the aim of limiting sediment
deposition, this study has used a new artificial
intelligence method to obtain an estimate of the limiting
value of velocity to minimize sediment deposition. The
numerical approach combines the fast and powerful
Extreme Learning Machines (ELM) method with the
Support Vector Machines (SVM) method. The key
parameters used in the model were obtained using
dimensional analysis. The densimetric Froude number
(Fr) was represented by a number of different
dimensionless parameters and its value was predicted by
using the ELM and SVM methods. The results showed
that both methods, SVM (R®> = 0.99, MAE = 0.14;
MAPE = 3.24; RMSE = 0.19; CRM = 0.03) and ELM
(R* = 0.99, MAE = 0.10; MAPE = 2.34; RMSE = 0.14;
CRM = 0.02) compared against the data used in this
study to train and test the models accurately estimated
the value of Fr. The error description for both methods
showed that about 90% of the estimated values using
these methods had a relative error less than 10%. Also,
the calculated DR value in this study for the ELM
showed that the index value in the weakest condition
was 1 £ 0.15. The results show that the ELM method, in
addition to giving a good accuracy in the modelling,
was computationally very efficient and, therefore, can
be used as a good alternative to the classical artificial
intelligence methods that are normally used to achieve
the optimised solutions. The results of  sensitivity
analysis for ELM and SVM show that the lack use of
each dimensionless parameters which are presented in
Equation (16), result in significant decrease in Fr

predicting. The results indicated that he d/D and Cy
have the lower and higher impact on Fr predicting.
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