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A B S T R A C T  
 

 

Two phenomena can produce chattering: switching of input control signal and the large amplitude of 
this switching (switching gain). To remove the switching of input control signal, dynamic sliding mode 

control (DSMC) is used. In DSMC switching is removed due to the integrator which is placed before 
the plant. However, in DSMC the augmented system (system plus the integrator) is one dimension 

bigger than the actual system and then, the plant model should be completely known. To overcome this 

difficulty, a fuzzy system is employed to identify the unknown nonlinear function of the plant model 
and then, a robust adaptive law is developed to train the parameters of this fuzzy system. The other 

problem is that the switching gain may be chosen unnecessary large to cope on the unknown 

uncertainty. To solve this problem, another fuzzy system is proposed which does not need the upper 
bound of the uncertainty. Moreover, to have a suitable small enough switching gain an adaptive 

procedure is applied to increase and decrease the switching gain according to the system 

circumstances. Then, chattering is removed using the DSMC with a small adaptive switching gain 
(ASG). As a case study, nonlinear chaotic Duffing-Holmes system is selected. 

doi: 10.5829/idosi.ije.2016.29.08b.07 
 

 
1. INTRODUCTION1 
 

1. 1. Sliding Mode Control (SMC)          It has been 

shown that the SMC, because of its invariance property, 

is a powerful tool in facing structured or unstructured 

uncertainties and disturbances that always produce 

difficulties in the realization of designed controller for 

real systems [1-3]. Note that invariance is stronger than 

robustness [3].  

The invariance property is the motivation of 

researchers in use of SMC for various applications [4-7] 

especially is precise systems [8]. The greatest 

shortcoming of SMC is chattering, the high (but finite) 

frequency oscillations with small amplitude that 

produce heat losses in electrical power circuits and wear 

mechanical parts [3]. Chattering is often due to the 

excitation of high frequency un-modeled (ignored) 

dynamics (sensors, actuators and plant) [9]. Excitation 

of these dynamics is due to two causes: high controller 

gain and high frequency switching of input control 

signal [9]. 

                                                           

1*Corresponding Author’s Email: akarami@shahroodut.ac.ir (A. 

Karami-Mollaee) 

1. 2. Chattering               Four design methodologies 

have been proposed to overcome this problem: 

boundary layer, adaptive boundary layer, higher order 

SMC (HOSMC) and DSMC. Boundary layer and 

adaptive boundary layer methods cannot preserve the 

invariance property of SMC. Nevertheless, these two 

methods are adopted [10, 11], because they can reduce 

or suppress switching of input control signal by 

employing a high gain control inside the boundary layer 

[1-3, 9, 11]. Use of high gain control causes instability 

inside the boundary layer leading to chattering [9]. 

HOSMC is proposed to reliably prevent chattering [3, 

12]. In higher order SMC the effect of switching is 

totally eliminated by moving the switching to the higher 

order derivatives of desired output [12]. Many 

algorithms are proposed for implementation of second 

or higher order SMC [13]. However, the main drawback 

is that the control methods generally require the 

knowledge of higher order derivative of surface [13]. As 

far, when the relative degree is 2, the usually non-

measurable surface derivative must be estimated by 

means of some observer, for example high-gain 

observer [14] or sliding differentiator [15]. Moreover, 

chattering cannot be suppressed only by removing the 
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switching. For example, it has been shown [16] that in 

HOSMC chattering may happen in some methods such 

as power-fractional algorithm and super-twisting 

algorithm. Both of these algorithms utilize a continuous 

nonlinear function with infinite gain. In DSMC an 

integrator (or any other strictly low-pass filter) is placed 

before the input control signal of the plant [17]. Then, 

switching is removed from the input control signal since 

the integrator filters the high frequency switching which 

is, due to the use of SMC [17]. However, in DSMC the 

augmented system is one dimension bigger than the 

actual system and then the plant model should be 

completely known when one needs to use SMC to 

control the augmented system states [17]. 
 
1. 3. Fuzzy Systems           In the past decades, fuzzy 

logic is used in the structure of controllers in nonlinear 

systems [18] and researchers have proposed various 

fuzzy SMC (FSMC) methods (see [18] and references 

therein). Generally, these methods can be classified into 

two categories: direct and indirect approaches [18]. In 

direct approaches, SMC is implemented by a fuzzy 

system. But, in indirect approaches, fuzzy system is 

used to meet a secondary goal in SMC. 
 

1. 4. The Proposed Approach          SMC consists of 

three phases: reaching phase (the time needed for hitting 

to the sliding surface), sliding phase (sliding on a stable 

manifold) and steady state phase [1]. To preserve the 

invariance property during the sliding and steady state 

phases and guarantee reaching to the sliding surface in 

finite time, one should use the reaching law [9]: 

)(ssigns   where,   is a positive large enough 

constant. It is known that use of this sign function 

causes, high frequency switching with amplitude  , 

called the switching gain [9]. The switching gain should 

be greater than the upper bound of the uncertainty [1, 3, 

9]. But, in practical systems this bound is usually 

unknown. This leads to a large conservative value of   

and may cause an unsuitable control effort. Therefore, 

from an engineering point of view, a controller that can 

be auto-adjusted with ASG seems interesting. 

Therefore, chattering can be suppressed by [9]: 
1. Removing the effect of high frequency switching 

of input control signal. 

2. Reducing the amplitude of the switching, i.e., 

reducing the switching gain. 

In this paper a method is presented, having the 

above two characteristics, by employing ASG and 

DSMC. Therefore, the proposed method will alleviate 

the two reasons that can excite un-modeled dynamics. 

Two fuzzy networks are implemented. The first indirect 

fuzzy system is used to overcome the drawback of 

DSMC and is employed to identify the plant model. The 

second direct fuzzy system is used as a controller which 

does not need the upper bound of the uncertainty. To 

guarantee the robustness of these fuzzy networks (fuzzy 

identification network and fuzzy controller network), a 

new robust adaptive law is developed for each network. 

Finally, an adaptive procedure is proposed which results 

the suitable small enough switching gain. According to 

this adaptive procedure, the gain of the switching 

increases or decreases based on the system conditions. 

Then, chattering is removed completely using the 

DSMC with a small ASG. 
 

1. 5. Paper Organization           The remainder of this 

paper is organized as follows: in section 2 we provide 

the preliminary background about the problem. In 

section 3 the fuzzy identification method is proposed. 

Section 4 is devoted to design adaptive fuzzy DSMC 

methodology. In section 5 we have a brief comparison. 

Then, in section 6 we discuss simulation results to 

verify theoretical concepts presented in previous 

sections. The conclusion is given in section 7. For 

simplicity of reading the paper, the proof of theorems 

and lemma is in a separate section as an appendix 

(section 8). 
 

 

2. PROBLEM FORMULATION 
 

The proposed approach is depicted in Figure 1 and we 

will describe each block diagram in the next sections. 

Consider the following single input nonlinear system: 

),(

1,,2,1:1

uXfx

nixx

n

ii



 




 (1) 

with input u  and accessible states T
nxxxX ],,[ 21  .  

Note that the function ),( uXf  is unknown. The goal is 

to have the states of this system, i.e. vector X , track the 

states of the following stable linear system, i.e. variables 

niyi ,,2,1:  , which is used as a reference model. 

d

n

i

iin

ii

uydy

niyy










1

1 1,,2,1:





 (2) 

and nitdi ,,2,1:)(   can be time varying coefficients. 

Equation (1) can be written as follows: 

),( uXfBXAX   (3) 

 

 
Figure 1. The structure of proposed controller 
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Matrixes A  and B  are with appropriate dimensions. 
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(4) 

We can write: 

),()( uXfBXAAXAX ss   (5) 

or: 

),( uXgBXAX s   (6) 

where: 






n

i

ii xauXfuXg

1

),(),(  
(7) 

and: 
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(8) 

Assume that ia  are such that sA  is stable, i.e., for any 

symmetric positive definite matrix Q , there exists a 

symmetric positive definite matrix P  satisfying the 

following Lyapunov equation: 

QAPPA s
T
s   (9) 

 

 

3. IDENTIFACATION ALGORITHMS 
 

According to the fuzzy theorems, Gaussian fuzzy 

basis functions (GFBF) can approximate any real 

continuous function on a compact set with any arbitrary 

accuracy. This means that the GFBF has universal 

approximation property [19]. In order to estimate the 

nonlinear function ),( uXg , a singleton fuzzifier with 

product inference engine and a defuzzifier as weight 

sum of each output rule is used” 

),(ˆˆ uXwg T  (10) 

where mw ˆ  is the weight vector estimate of rules, 

and mn  1:(.)  is the Gaussian membership 

function (GMF) vector. Then, the fuzzy model of 

Equation (6) can be written as: 

),(ˆˆˆ uXwBXAX T
s 

  (11) 

where T
nxxxX ]ˆ,ˆ,ˆ[ˆ

21  is the identified model state 

vector. Due to the approximation capability of the 

GFBF, there exists an ideal weight vector w  with 

arbitrary large enough dimension m  such that the 

system (6) can be written as follows: 

X
T

s BuXwBXAX   ),(  (12) 

where X  is an arbitrary small reconstruction error. We 

also make the following two assumptions. Where, are 

common in the control systems literature and are due to 

universal approximation property of the GFBF. 

Assumption 1: The GFBF reconstruction error is 

bounded by B , i.e.  BX  . 

Assumption 2: The ideal weight is bounded by a known 

positive value wB  such that wBw  . 

Now, the following estimator is proposed: 

)ˆ(),(ˆˆˆ XXkuXwBXAX x
T

s  


 (13) 

By subtracting (13) from (12), we obtain: 

XkBuXwBXAX xX
T

s
~

),(~~~
 


 (14) 

where )(ˆ)()(
~

tXtXtX   and www ˆ~   are the state 

and parameter estimation errors. 

Theorem 1: Given the assumptions 1 and 2 for the 

system (12) and the estimator (13), and using the 

following weight adaptive law: 

wXkkXBPuXkw we
T

w ˆ
~

4
~

)(),(ˆ    (15) 

Then, estimation error )(
~

tX  converges to zero if 

xk . wk  and ek  are arbitrary positive scalar 

constants and )(min Q  and )(min P  are the smallest 

eigenvalues of positive definite matrices Q  and P , 

which satisfy Lyapunov Equation (9) and )(max P  is 

the largest eigenvalue of P . 

Proof: In appendix, from Equations (A.1) to (A.10). 

Remark 1: The result of this theorem can be written 

as: 

0
~

lim 




X

t
k x

 
(16) 

 

 

4. CONTROLLER DESIGN 
 

A. State feedback 

According to Equations (7) and (10) we can write: 

XCAuXwuXf s
T  ),(ˆ),(ˆ   (17) 

pcs
Text Box
Where are
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where,
nC  ]1,0,0,0[  . To apply the DSMC to 

system (1), we define the following augmented system: 

ux

xx

nixx

uXfx

n

nn
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n
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
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),(ˆˆ

 
(18) 

where 1ˆ nx  is the fuzzy identification of unknown 

variable 1nx  and: 

u
wuXXCAX

X
wwuxX T

s
TT

n



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








 ˆ),(,ˆˆ),,( 1

  (19) 

Now, we define the following variables: 

YXeeeE
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







 
(20) 

Then, augmented reference system can be written as 

follows: 

dn

ii

d

n

i

iin

uDYy

niyy

uydy

















 

1

1

1

1

,,2,1:  
(21) 

Then, we have: 

)()(

ˆ 111

vDXuuuuvDE

uuvvDXDXuDYu

uDYuyxe

ad

aad

dnnn





 













 (22) 

We define the following linear state feedback. 

vDXu a   (23) 

and the following variable: 

duuuW   )(   (24) 

We obtain: 

WvDEen 1  (25) 

Such that, v  is the new input control signal to be 

calculated via SMC and ),,,( 1 uuxXW n   is a matched 

uncertainty. The matched uncertainty can be cancelled 

out directly by the input [8]. 

Remark 2: Variable W  is considered as uncertainty 

due to its dependency to unknown variable 1nx . 

The control problem now is finding a suitable input 

control signal )(tv  such that the states of system (18), 

aX , track the states of system (21), Y , or equivalently 

the error dynamics E  in (25) converge to zero in finite 

time. 
B. Fuzzy adaptive controller with ASG 

Now, we define the following sliding surface. 

dteeeetets
t

nnnnn   
0

1122111 )()()(    (26) 

From the universal approximation capability of GFBF, 

there exist  ,  , and c such that: 

 ),,),(()( ctsvtv f   (27) 

where,   is the approximation error and fv  is a fuzzy 

system in the following form with input )(ts . 

))(exp(),,(

)],,(,),,,(),,,([

),,(

],,,[

),,(),,(

22

222111

21

1

iiiii

T
MMM

T
M

T
M

i

iiiif
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

















 (28) 

In this stage, we propose the following control law. 

))(()ˆ,ˆ,ˆ),((ˆ)( tsvctsvtv cf    (29) 

where fv̂  is the approximation of fv  and ̂ , ̂ , and ĉ  

are estimates of the desired parameters  ,  , and c . 

Moreover, cv  is the compensation controller to 

compensate the approximation error  . Applying (29), 

Equation (25) becomes: 

WvvDEe cfn  ˆ1  (30) 

Consequently: 

cfnnnnn vvveeeeets   ˆ)( 1122111    (31) 

Defining, ff vvv ˆ~   we have: 

  ˆˆˆ~ TT
fff vvv  (32) 

Now define  ˆ~
  and  ˆ~

  then: 









~~ˆ~~ˆ

ˆˆ)
~ˆ()

~ˆ(~

TTT

TT
fv

 (33) 

If the vector of GMF is linearized using Taylor series 

expansion, 
~

 can be written as: 

TOHBcA tt ..
~~~
   (34) 

where ccc ˆ~  ,  ˆ~
  and H.O.T denotes higher 

order terms and: 
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(36) 

Substituting (34) into (33) leads to: 









ˆ~~ˆ~ˆ

~~ˆ~
)..

~~(ˆ~

T
t

T
t

T
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T
f

BcA

TOHBcAv
 (37) 

Now, we use Equations (31) and (37): 

c
T

t
T

t
T vBcAts   ˆ~~ˆ~ˆ)(  (38) 

Such that  
~~

..ˆ TT TOH  is the uncertain term 

and is assumed to be bounded by a constant bound, i.e. 

  . We assume that this bound is unknown and use 

an estimate of it denoted by ̂ . Here, we propose a 

method which can decrease or increase the switching 

gain ̂  according to the system conditions. In the 

proposed approach, )(ˆ t  is defined as follows: 

)0(ˆˆ,))((ˆ)(ˆ 0
0

10   
t

dst  (39) 

or: 

01 ˆ)0(ˆ)),ˆ((ˆ   s  (40) 

and: 

  01)ˆ(
2

)ˆ( 0
1  


 sign  (41) 

Constants 02 q , 01   and 00   are design 

parameters and )0(ˆˆ0    is the bounded initial value 

of )(ˆ t . Note that we can select 0̂  arbitrary. 

Lemma 1: If the following condition is satisfied: 

00ˆ    (42) 

Then, the ASG of Equations (40) and (41) guarantee 

that: 

0:)(ˆ 0  tt   (43) 

Proof: In appendix, form Equations (B.1) to (B.9). 

Theorem 2: Consider the error dynamics (30) with 

the input control signal of (29). Then, the error 

trajectory converges to zero if the following adaptation 

laws are incorporated. 
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(44) 

Proof: In appendix, from Equations (C.1) to (C.7). 
 

 
5. ADVANTAGES AND COMPARISON 
 

The other choice of ASG is as follows [20]: 

01 ˆ)0(ˆ,ˆ   s  (45) 

Despite the fact that this ASG shows that the 

estimated switching gain ̂  is increased until the error 

trajectory is driven into sliding mode, this ASG has 

three severe practical disadvantages: 

1. In case of a large initial distance from the sliding 

surface, the estimated switching gain will increase 

quickly due to this error and not because of 

perturbation. This may result in a switching gain 

which is significantly larger than necessary. 

2. Noise on the measurements will prevent s  to ever 

become exactly zero, so increase of the adaptive 

estimated switching gain will continue. This causes 

instability of the closed loop system. The rate of 

increase depends on the value of 1 . 

3. The adaptation law can only increase the estimated 

switching gain but never decrease it. Thus if the 

circumstances change such that a smaller switching 

gain is permitted, the adaptation law is not able to 

adapt to these new circumstances. 

But, the proposed approach in Equations (40) 

and (41) has the following advantages: 

1. In the case of a large initial distance from the sliding 

surface, the estimated switching gain will increase 

quickly, resulting the distance to shrink. Once this 

distance is smaller than 1 , this gain will decrease 

again. 

2. Noise on the measurements does not disturb the 

adaptation procedure if the constant 1  is not chosen 

very small. 

3. The ASG law can increase )(ˆ t  again according to 

lemma 1. Moreover, )(ˆ t  will not converge to zero. 

 

6. SIMULATION RESULTS 
 

In this section we apply the proposed controller to 

control uncertain Duffing-Holmes system [21, 22]: 
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)()()cos()()()()(

)()(

1
3
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21

tdtutqtxtxptxptx

txtx








 (46) 

To ensure the existing of chaos in the absence of 

control, the parameters 1p , 2p , q  and 1  are chosen 

as 11 p , 25.02 p , 3.0q  and 11   with the 

initial condition of TTxxX ]5.2,1[)]0(),0([)0( 21  . Then, 

we have: 

)()()cos(

)()()(),,(

1

3
12211213

tdtutq

txtxptxpuxxfx






 (47) 

For the indirect fuzzy system we choose a GMF vector 

with three inputs ),,( 21 uxx  and nine rules as follow: 

9,,2,1:5)5(exp

),,(

22
2

2
1

21





















iiuxx

uxxi
 (48) 

The output of defuzzifier is ),,(ˆ
21 uxxf . The indirect 

fuzzy network tuning parameters are chosen as 5wk , 

70xk and 30ek . Other parameters are chosen as: 






















89

10
,

500400

300400
sAP  (49) 

The initial conditions of the weight vector are chosen as 

 Tw 0,,0,0)0(  . Notice that, these initial conditions 

can be chosen arbitrary. The objective is to make the 

states of system (46) track the states of the following  

linear system: 

 









duyyy

yy

212

21

35


 (50) 

Moreover, du  is a periodic step signal and 

]3,5,0[ D . All the initial conditions of the 

parameters  , c ,   are set to be zero and 05.0ˆ0   

and also we choose 9M . Moreover: 

5.0,5,10,5.0 4321    (51) 

In both simulations we applied an external load 

disturbance 1)( td  at st 10  and also: 

2.0,15.0 10    (52) 

The simulations are done by MATLAB with sample 

time of 0.001. The procedure for calculating u  is as 

follows: 

1. Define and calculate ),( uX  as Equation (48). 

2. Calculate weight vector ŵ  from Equation (15). 

3. Calculate ),(ˆ uXf  from Equation (17). 

4. Calculate sliding surface using Equation (26). 

5. Calculate parameters of Equation (44). 

6. Calculate v  via Equation (29). 

7. Calculate u  using Equation (23). 

8. Calculate u  by numerical integrating of u . 

Figures (2), (3) and (4) show the simulation results. 

From Figure (4.b) we can see that the switching gain 

increases at first to force the error trajectories toward 

the sliding surface but it decreases when the trajectories 

reach near the surface while, the input control of system 

is without switching (Figure (4.d)). From Figure (4.b)  

 

 

 
 

Figure 2. (a) and (c) f  and its estimation f̂  (output of the indirect fuzzy system), (b) and (d) error between the f̂  and its actual 

value f . 
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Figure 3. Reference signal tracking of augmented system: (a) first state, (b) second state, (c) third state and (d) input control signal of 

reference system. 

 

 

 
Figure 4. (a) Sliding surface, (b) switching gain, (c) input control signal of state feedback and (d) input control signal of system. 

 

 

we can see that at st 10  the switching gain 

increases to overcome on the disturbance and then starts 

to decrease again. 

To show the effectiveness of the proposed method the 

simulation has been done using Equation (45). Figures  

(5), (6) and (7) show the simulation results. From Figure 

(7.b) we can see increase of switching gain which leads 

to unstability. Moreover, the switching gain increases 

(Figure (7.d)). From Figure (7.b) we can see that at 
st 10  the switching gain increases again. 
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Figure 5. (a) and (c) f  and its estimation f̂  (output of the indirect fuzzy system), (b) and (d) error between the f̂  and its actual 

value f . 

 

 

 
Figure 6. Reference signal tracking of augmented system: (a) first state, (b) second state, (c) third state and (d) input control signal of 

reference system. 
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Figure 7. (a) Sliding surface, (b) switching gain, (c) input control signal of state feedback and (d) input control signal of system. 

 

 

7. Conclusion 
 

In this paper, a new method for designing DSMC based 

on variable structure control technique is proposed for 

nonlinear systems. Two fuzzy networks are 

implemented. To solve the problem of DSMC an 

indirect fuzzy system is employed to identify the 

unknown nonlinear function of the plant model and then 

a robust adaptive law is developed to train the 

parameters of the fuzzy network. The second direct 

fuzzy system is used as a controller; use of an upper 

bound for uncertainty is not necessary in design of the 

controller. Therefore, proposed approach will be 

applicable to practical systems where this bound may 

not be known. Then, an adaptive switching gain is used 

to guarantee increase and decrease of the switching gain 

according to the system conditions. Then, chattering is 

removed due to the implementation of DSMC via 

adaptive switching gain. The proposed method also 

preserves the main property of SMC such as invariance. 

The proposed method is applied for synchronization of a 

chaotic system. Simulation results show the 

effectiveness of this method. 
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8. APPENDIX: PROOF OF THEOREMS AND 
LEMMAS 
 

Proof of Theorem 1: Consider the following Lyapunov 

function: 

ww
k

XPXtV T

w

T ~~

2

1~~

2

1
)( 

 
(A.1) 

Taking the derivative of )(tV  yields: 
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1
)(   (A.2) 

Substituting Equations (9) and (14) in the above 

equation gives: 
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(A.3) 

since ww  ˆ~  , using the tuning law (15) in the above 

equation gives: 

wwXkXPXkBPXXQXtV T
e

T
xX

TT ˆ~~
4

~~~~~

2

1
)(    (A.4) 

Considering the properties of positive definite matrixes 

Q  and P , and using www ~ˆ  , the above equation 

yields: 

 
  XwBwkBP

XPkQtV
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(A.5) 

Now, we define 
X

B ~  as follows: 
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(A.6) 

Therefore: 
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or: 

   
Xx BXXPkQtV ~minmin2

1 ~~
)()()(    (A.8) 

Take    
Xx BXXPkQt ~minmin2

1 ~~
)()()(    and 

suppose 
X

BX ~
~

  then, one can write 0)(  tV  . 

Integration from zero to t  yields: 

)0()()()(0
00

VtVdd
tt

    (A.9) 

when t , the above integral exists and is less than 

or equal to )0(V . Since )0(V  is positive and finite, 

according to the Barbalat’s lemma [1] we will have: 

    0
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)()(lim)(lim ~minmin2
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and note that  )()( minmin2

1
PkQ x    is greater than 

zero. Then, (A.10) implies that 
X

t
BX ~

~
lim 


 whose 

result is decreasing X
~

 until it becomes less than 
X

B ~ . 

This guarantees that 
X

B ~  is the upper bound of X
~

 and 

it is clear that 0lim ~ 


X
k

B
x

. Then, X
~

 or X
~

 will 

converge to zero if xk . 

Proof of Lemma 1: Letting   ˆ~ , then 

  00 ˆ~)0(~ . From Equations (39) and (41) we 

can write: 
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The right hand side of the above equation is the sum of 

continuous functions. Therefore, )(~ t  is a continuous 

function such that 00
~    (Equation (42)). Before )(~ t  

becomes smaller than 0  it must pass 0  at a time 1t  

such that: 

),0[:)(~
10 ttt    (B.2) 

where: 
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and at 1tt   we have 0
~    i.e.: 
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Now suppose that there is a time 2t  such that: 
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then: 
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Using Equation (B.4) we can write: 
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It means that: 
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and this contradict with assumption (B.5), i.e.: 
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Proof of Theorem 2: Consider the following Lyapunov 

function: 
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Now, we drive derivative of this function with respect to 

time: 
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From lemma 1 we have 0
~    therefore: 

    0~   ssV  (C.4) 

Then, V  is negative semi-definite, i.e.: 
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Which imply that s , ~ , 
~

, c~  and 
~

 are bounded. By 

taking    st)(  one can write 0)(  tV  . 

Integration from zero to t  yields: 
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when t , the above integral exists and is less than 

or equal to )0(V . Since )0(V  is positive and finite, 

according to the Barbalat’s lemma [1] we obtain: 
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Since     is greater than zero, (C.7) implies that 

there exists a finite time ft  such that 0)( fts  and 

thus 1,,2,1:0lim 
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 هچكيد
 

 
ضًَذ: سَییچیٌگ سیگٌال کٌتزل ٍرٍدی ٍ داهٌِ یشرگ ایي سَییچیٌگ )تْزُ سَییچیٌگ(. دٍ عاهل هَجة تَلیذ چتزیٌگ هی

در کٌتزل حالت لغشضی کٌین. تزای حذف سَییچیٌگ سیگٌال کٌتزل ٍرٍدی اس کٌتزل حالت لغشضی دیٌاهیکی استفادُ هی
گیز تِ افشٍدى ایي اًتگزالاها،  هی ضَد.سَییچیٌگ کِ تاعث حذف  ضذُگیز قثل اس سیستن قزار دادُ یک اًتگزالدیٌاهیکی 

)سیستن تِ ّوزاُ  کِ تزای اعوال کٌتزل حالت لغشضی تِ ایي سیستن افشٍدُ خَاّذ ضذسیستن، هَجة افشایص درجِ سیستن 
اس یک سیستن فاسی  ،ٍ ضٌاسایی هذل سیستن تزای حل ایي هطکل .هطخص تاضذ، هذل ٍ دیٌاهیک سیستن تایذ گیز(اًتگزل

دّین. هطکل دیگز ایي است کِ تْزُ ضَد کِ پاراهتزّای آى را تا کوک یک رٍش تطثیقی هقاٍم آهَسش هیاستفادُ هی
سیستن فاسی سَییچیٌگ هوکي است تزای غلثِ تز ًاهعیٌی تیص اس هقذار لاسم تشرگ اًتخاب ضَد. ایي هطکل ًیش تا کوک یک 

دیگز ٍ تذٍى ًیاس تِ کزاى تالای ًاهعیٌی حل خَاّذ ضذ. تِ علاٍُ، تزای داضتي یک تْزُ سَییچیٌگ هٌاسة کَچک، یک 
ًوایذ. تٌاتزایي، چتزیٌگ تا استفادُ اس کٌتزل ًوایین کِ ایي تْزُ را هطاتق ضزایط سیستن کن ٍ یا سیاد هیرٍش تطثیقی استفادُ هی

ی تِ ّوزاُ تْزُ سَییچیٌگ کَچک تطثیقی، حذف خَاّذ ضذ. در ًْایت رٍش پیطٌْادی تِ سیستن حالت لغشضی دیٌاهیک
 َّلوش اعوال ضذُ است.-غیزخطی آضَتی دافیٌگ
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