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A B S T R A C T  
 

 

In this research, dynamic analysis of the rotational slender axially moving string is investigated. String 

is assumed as Euler Bernoulli beam. The axial motion of the string, gyroscopic force and mass 
eccentricity were considered in the study. Equations of motion are derived using Hamilton’s principle, 

resulting in two partial differential equations for the transverse motions. The equations are changed to 

non-dimensional form and are discretized via Galerkin’ method. The bifurcation diagrams and 
Poincare' portraits are represented in the case that the mean axial speed, the fluctuating speed and the 

mass eccentricity are respectively varied. The dynamical behaviors are numerically identified based on 

the Poincare' portraits. Numerical simulations indicate that quasi-periodic motion occurs in the 
transverse vibrations of the string by variation of axial speed and mass eccentricity. 

doi: 10.5829/idosi.ije.2016.29.06c.13 

 

 

 

NOMENCLATURE 

iD  Inside diameter of the string, m 

oD  Outside diameter of the string , m 

pA
 

Cross sectional area of the string ,  m2 

E  Young's modulus of the string, Pa 

oe  Mass eccentricity of the string, m 

I  Area moment of inertia, m4 

oI  
Polar area moment of inertia, m4 

l  Length of the string, m 

,v w  Lateral deflections, m 

p  String material density, 3kg m  

p  Axial speed of the string , m s  

  String rotational speed, rad s  

,v wC C  Lateral damping coefficients 

1
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1. INTRODUCTION 
 

Dynamic analysis of axially moving systems especially 

one-dimensional systems (beams and strings), has been 

subjected of investigations for many years because of 

their extensive applications. For instance, drill string 

(for drilling of the wells in oil and gas industries) band 

saw blades, robotic manipulator, conveyor belts, textile 

fibers, automobile and aerospace structures can be 

modeled as axially moving systems. Mentioned 

engineering devices involve the vibrations of axially 

moving beams. Traditionally, the investigations on 

axially moving beams were concentrated on 

equilibriums and periodic motions [1]. Bifurcation is a 

qualitative change in the feature of the system, such as 

the number and type of solutions, under the variation of 

one or more of its control parameter on which the 

considered system depends [2]. Argyris et al. [3] 

investigated chaotic vibrations of a nonlinear 

viscoelastic beam. In recent years, much attention has 

been paid to nonlinear dynamical behaviors, especially 

bifurcation and chaos in axially accelerating beams. 

Pakdemirli and Ulsoy [4] investigated the dynamic 

response of an axially accelerating string. In their study, 

principal parametric resonances and combination 

resonances are investigated in detail. It is found that 

instabilities occur when the frequency of velocity 

fluctuations is close to two times that of system natural 

frequency or when the frequency is close to the sum of 

any two natural frequencies.  

Oz et al. [5] investigated nonlinear vibrations of an 

axially moving beam. In this study, approximate 

solutions were sought using method of multiple scales. 

Results indicated that for frequencies close to two times 

of the natural frequency, stability and bifurcations of 

steady state solutions are analyzed. For frequencies 

close to zero, it is shown that the amplitudes are 

bounded in time. Chen et al. [6] investigated bifurcation 

and chaos of an axially moving viscoelastic string. Yang 

and Chen [7] studied bifurcation and chaos of an axially 

accelerating viscoelastic beam. They indicated that the 

periodic, quasi-periodic and chaotic motions occur in 

the transverse vibrations of the axially accelerating 

viscoelastic beam with the mean axial speed, speed 

fluctuation amplitude and the dynamic viscoelasticity as 

control parameter. Yang et al. [8] investigated non-

linear forced vibration of axially moving viscoelastic 

beams.  

In their study, the steady-state amplitude near and 

exact resonant response is predicted for forced 

vibrations of viscoelastic moving beams excited by 

foundation vibration. Results showed that the system 

vibration amplitude increases with the foundation 

vibration amplitude and the viscoelastic damping 

reduces the response amplitude. Sadeghi [9] 

investigated nonlinear dynamics of a vertical slender 

flexible cylinder supported at both ends and subjected to 

axial flow. 

Nonlinear Euler Bernoulli beam theory is used for 

the structure and, the fluid forces acting on the cylinder 

are assumed to be inviscid, frictional and hydrostatic 

ones. Finite difference method and AUTO are used as 

two numerical methods to solve the resulting set of 

ordinary differential equations. The results for a 

cylinder with various boundary conditions are presented 

in the form of bifurcation diagrams with flow velocity 

as the independent variable, supported by time histories, 

phase plane plots, PSD plots and Poincaré maps. Wang 

et al. [10] studied stability and local bifurcation in a 

simply supported beam carrying a moving mass. They 

analyzed stability and local bifurcation for 1/2 sub 

harmonic resonance.  

The results showed that some of the parameters, 

especially the moving mass velocity and external 

excitation, affect the local bifurcation significantly. 

Korayem et al. [11] investigated dynamic of moving 

cable with variable tension and variable speed. Tension 

force and the moving speed are assumed to be 

harmonic. Dynamic responses of the system calculated 

using Galerkin’s method. A comprehensive parametric 

study is carried out and effects of different parameters 

like the moving speed and tension force on the 

responses are studied both in frequency and time 

domain. Ding et al. [12] investigated nonlinear models 

of transverse vibration of axially moving viscoelastic 

beams subjected external transverse loads via steady 

state periodical response. They used finite difference 

scheme to calculate steady state response for the model 

of coupled planar and the two models of transverse 

motion under the simple support boundary. Numerical 

results indicated that the amplitude of the steady state 

response for the model of coupled vibration and two 

models of transverse vibration predict qualitatively the 

same tendencies with the changing parameters and the 

integro partial differential equation gives results more 

closely to the coupled planar vibration. Ghayesh et al. 

[13] with considering both longitudinal and transverse 

displacements investigated the nonlinear global forced 

dynamics of an axially moving viscoelastic beam.  

Hosseini et al. [14] studied free vibration and 

primary resonances of a spinning beam with six general 

boundary conditions. They employed the method of 

multiple scales to analyze the free vibrations and 

primary resonances and then presented Numerical 

examples for hinged-hinged and clamped-free boundary 

conditions. Shahgholi et al. [15] studied the free 

vibration of a nonlinear slender rotating shaft with 

simply support conditions. The nonlinear system was 

analyzed utilizing multiple scales method. In the slender 

rotating shaft the effect of shear deformation was 

negligible and rotary inertia and gyroscopic effect were 

considered. It was seen that for natural vibration of a 
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slender rotating shaft, backward and forward modes 

were involved. Sahoo et al. [16] analyzed stability and 

bifurcation of an axially accelerating beam using 

multiple scales method.  

In the aforementioned researches on transverse 

motions of parametrically excited moving strings, the 

strings undergo periodic vibrations. Most of these 

studies devoted to the problem of axial transport 

velocity. In some studies, the analysis of the dynamic 

behavior of traveling systems with time dependent axial 

velocity or with rotation has been addressed. However, 

time-dependent axial velocity and rotation have been 

considered simultaneously in this study. Drill string in 

drilling oil well in oil and gas industry is one of 

application that time dependent velocity and rotation of 

the string was considered simultaneously [17-20]. 

In this research, dynamics of an axially moving 

beam, subjected to a rotational speed, is examined 

numerically considering mass eccentricity. The 

equations of motion are obtained by means of Hamilton’ 

principle. These equations are then discretized using the 

Galerkin scheme leading to second order ordinary 

differential equations and they are changed to non-

dimensional form by defining non-dimensional 

parameters. These equations are solved using a 

numerical technique namely Rung Kutta method 

resulting in bifurcation diagrams and Poincare´ portraits 

of the system. The system dynamical behavior for 

specific sets of system parameters is also plotted by 

means of phase plane portraits and Fast Fourier 

Transforms (FFTs). The main objective of the current 

study is to determine the effect of the axial speed and 

mass eccentricity on the string dynamical behavior. 

 

 

2. EQUATIONS OF MOTION 
 

Consider a uniform string of length l , which is 

travelling at a time dependent axial speed 
p . The time 

dependent speed is assumed to vary harmonically about 

a mean axial speed. The string is assumed to be hinged 

at both ends. Shear deformation and rotary inertia are 

neglected that means the Euler Bernoulli beam model is 

used. The longitudinal and torsional vibrations are 

neglected in the model. In order to derive the equations 

of motion, extended Hamilton’s principle is used [20]: 

2

1

( ) 0
t

nc
t

T U W dt         (1) 

where,  denotes the variation, T is total kinetic energy 

of the system, U is potential energy and
ncW is the work 

done by non-conservative forces. Total kinetic energy of 

the system is: 

 
0

1

2

l
T T

p p p tT A V V I dx         (2) 

where, l is length of the string. pA is cross sectional 

area. V  is translational velocity vector of cross sectional 

area. and 
tI    

are angular velocity and the mass 

moment of inertia matrix per unit length of the string. v

and w denote the two lateral deflections of point G 

relative to xyz reference frame (see Figure 1).
p is the 

string axial speed and considered as harmonic so that,

0 1 sin( )
pp p p t     [21, 22]. Where, 

0p and
1p are 

constant and variable axial speed of the string, 

respectively.
p

 is frequency of string variable axial 

speed.
x ,

y and
z are rotation about x , y and z

axis, respectively. SubstitutingV ,    and 
tI    

in Equation 

(2) yields: 

2

2

2 20 2 2
2

2

( ( ) sin( )

( ) cos( ) )
1

2

2

x
p p p x

x
p x

l

p p o

p o

v v
A e x

t x t

w w
e x

t x t
T

v w
I I

t x t x

v w
I

t x x


  


 

 



   
       

 
          

  
      
                 

 
   

    

  
(3) 

 

 

 
Figure 1. Cross sectional area of the axial moving string under 

rotation 
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If the mass eccentricity is assumed constant along the 

string, then
0( )e x e and the cross sectional area of the 

string is symmetric,
y zI I I  , 2oI I  Where

oI is the 

moment of inertia about the string center line. By 

neglecting nonlinear terms (over order 2), the strain 

energy is written as: 

2 2
2 2

2 20

1

2

l v w
U EI dx

x x

     
     
      

  (4) 

In which v and w  are the displacements of lateral 

vibration in y and z directions, respectively and E is 

Young's modulus of the string. The virtual work due to 

lateral damping of the system can be written as [23]: 

0 0
( ) ( )

l l

nc v wW C v vdx C w wdx        (5) 

where, 
vC and

wC are lateral damping coefficients of the 

string in v  and w directions, respectively. Substituting 

Equations (3-5) in Equation (1) yields: 

2 2
2

2 2

2 3

2

4 4
2

2 2 4

2

cos( ) 0

p p v p p p

p

p p p p p p o

p p p o
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A C A

t t x

v v w
A A I

t x t x x t

v v
I EI A e t

x t x

  


   

 

  
 

  
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   

     

 
     

  

 (6) 

2 2
2

2 2

2 3

2

4 4
2

2 2 4

2

sin( ) 0

p p w p p p

p

p p p p p p o

p p p o

w w w
A C A

t t x

w w v
A A I

t x t x x t

w w
I EI A e t

x t x

  


   

 
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 

  
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   

     

 
     

    

(7) 

Where, Equations (6) and (7) are equations of motion of 

the string in transverse vibration in y and z directions, 

respectively. For a simply supported beam, the 

boundary conditions are: 

2 2

2 2

2 2

2 2

(0, ) ( , )
(0, ) ( , ) 0, 0

(0, ) ( , )
(0, ) ( , ) 0, 0

v t v l t
v t v l t

x x

w t w l t
w t w l t

x x

 
   

 

 
   

 

 (8) 

Introducing next the following non-dimensional 

quantities: 

4

p pA l
t

EI




* 0
0

e
e

l


t

t
  v

l
 

w

l
  ˆ

p p
t  

ˆ t 
2

ˆ v
v

p p

C l
C

EI A


2

ˆ p p

p p

A l

EI


 

2

ˆ w
w

p p

C l
C

EI A
  

(9) 

Equations (6) and (7) can be written in a non-

dimensional form as follows: 

2 2 2
2

2 2

3 4 4

2 2 2 2 2 4

2

ˆ
ˆ ˆ ˆ2

ˆ

ˆ
ˆcos( ) 0

p

v p p

o

p p

o

C

I I

A l l A

e

l
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 
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  

    


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   

      

   
  

    


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 (10) 

2 2 2
2

2 2

3 4 4

2 2 2 2 2 4

2

ˆ
ˆ ˆ ˆ2

ˆ

ˆ
ˆsin( ) 0

p

w p p

o

p p

o

C

I I

A l l A

e

l

    
 

      

  

    



    
   

      

   
  

    


  

 (11) 

Non-dimensional equations are discretized by Galerkin's 

technique, with the simply supported beam eigen 

functions, ( )i  , ( )j  being used as a suitable set of 

base functions and ( )iq  , ( )jh  being the corresponding 

generalized coordinates. Thus: 

1

( , ) ( ) ( )
N

i i i

i

q     


  (12) 

 

1

( , ) ( ) ( )
M

j j j

j

h     


  (13) 

Substituting Equations (12) and (13) into Equations (10) 

and (11), respectively, multiplying by ( )n  and 

integrating with respect to x from 0 to 1, and then 

considering first mode yields: 

1 1 1
2 2 2

1 1 1 1 1 1 1
0 0 0

1 1

1 1 1 1 1 1
0 0

1 1

1 1 1 1 1 12 20 0

2
1 1

(4)

1 1 1 1
0 0

ˆ ˆ

ˆ
ˆ2

ˆ

ˆ
ˆcos( ) 0

v p

p

p

o

p p

o

q d q C d q d

q d q d

I I
h d q d

A l A l

e
q d d

l

       


      



     

     

 


  




  


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  

 

 

 

  (14) 

In which dot and prime notations stand for the 

differentiation with respect to non-dimensional time and 

axial coordinate, respectively. Simulation is based on a 

Rung Kutta technique order 15s in MATLAB software. 

Simulation parameters displayed in Table 1 represent a 

typical string for case study is taken from [16, 19]. 
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1 1 1
2 2 2
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1 1 1 1 1 1
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2
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ˆ

ˆ
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p p
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h d h C d h d

h d h d
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e
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
      


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
   

  

 

 

 

 (15) 

 

 

3. BIFURCATION DIAGRAMS AND POINCARE´ 
PORTRAITS 
 

In this section, dynamical behavior of the system is 

examined numerically by means of Rung Kutta 

technique. In the calculations to construct the 

bifurcation diagrams, the transient solutions were 

discarded. At each set of parameters, the first 1900 

points of the Poincare' portraits are discarded in order to 

exclude the transient vibration, and the generalized 

coordinates associated with displacement for the next 10 

points are plotted on the bifurcation diagrams. Non-

dimensional mean axial speed, non-dimensional 

fluctuating speed and mass eccentricity are considered 

as control parameters for plotting bifurcation diagrams, 

respectively. 
 

 

3. 1. Non-dimensional Mean Axial Speed As 
Bifurcation Parameter            Non-dimensional mean 

axial speed is considered as bifurcation parameter while 

the other parameters are fixed. Figure 2a shows the 

bifurcation diagram corresponding to the generalized 

coordinate q. Column of points are seen in each point of 

bifurcation parameter. Poincare' portraits are used for 

identifying quasi-periodic and chaotic motion. For the 

non-dimensional mean axial speed range of [0, 0.005] 

the system exhibits a quasi-periodic motion while the 

motion amplitude increases. Increasing the mean axial 

speed further, the amplitude of the motion increases and 

the system experiences a jump to higher amplitude at
*

0 0.006p  . By further incrementing the non-

dimensional mean axial speed, the system exhibits 

increasing and then decreasing behavior in amplitude of 

motion repeatedly. 

 

 
TABLE 1. Parameters of the string 

210E GPa  
5rad s  20l m  

0.22oD m  29.81g m s  0.1p m s   

0.08iD m  37850p kg m   

* 0.00025oe m  

In a full Poincare' portrait, quasi-periodic motion is 

represented by a closed curve while chaos is represented 

by an infinite number of points with a fine fractal 

structure. Poincare' portrait for non-dimensional mean 

axial speed in point *

0 0.001p  in Figure 2a is shown in 

Figure 3 for generalized coordinate q. As seen in the 

figure, the system response is reached closed curve after 

transient points that represents quasi-periodic motion. 

Track of the points are shown by red arrow in Poincare' 

portraits. Bifurcation diagram corresponding to the 

generalized coordinate h is shown Figure 2b. The 

system exhibits a quasi-periodic motion for non-

dimensional mean axial speed range of [0, 0.016], while 

the motion amplitude doesn't increase significantly. As 

seen in Figure 2b, the motion amplitude of the system 

increases from *

0 0.016p  and then decreases. The 

motion amplitude at next increasing and decreasing 

state is larger than the previous. According to 

bifurcation diagram in Figure 2b, the system 

experiences jumps at *

0 0.032p  and *

0 0.034p  . 

 
 
 

 

 
Figure 2. Bifurcation diagrams for non-dimensional mean 

axial speed for the system: (a) and (b) correspond to the q and 

h, respectively 

q
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Figure 3. Poincare' portrait for non-dimensional mean axial 

speed at *

0 0.001p  in Figure 2a 

 

 

3. 2. Non-dimensional Fluctuating Speed As 
Bifurcation Parameter       Bifurcation diagrams for 

increasing non-dimensional fluctuating speed are shown 

in Figure 4. Non-dimensional fluctuating speed is 

considered as bifurcation parameter while the other 

parameters are fixed. Figure 4a shows the bifurcation 

diagram corresponding to the generalized coordinate q. 

For non-dimensional fluctuating speed range of [0, 

0.01], the system response becomes quasi-periodic and 

stays almost the same until *

1 0.015p  . The response 

decreases and stays almost the same in range of [0.022, 

0.024]. By further incrementing the non-dimensional 

fluctuating speed, the system response amplitude 

increases and then decreases until it reaches to
*

1 0.032p  . By further increasing the fluctuation speed, 

the amplitude of the motion increases and then 

decreases. Poincare' portrait for fluctuation axial speed 

at point *

1 0.021p  for generalized coordinate q is shown 

in Figure 5. Response of the system is reached closed 

curve after transient points that indicates quasi-periodic 

motion. Figure 4b shows the bifurcation diagram 

corresponding to the generalized coordinate h. By 

incrementing the non-dimensional fluctuation speed, the 

system response stays almost the same until *

1 0.025p 

.The system response increases and then decreases after 

point *

1 0.03p  . This increasing and then deceasing 

behavior is repeated by further increasing the non-

dimensional fluctuation speed. By increasing the non-

dimensional fluctuation speed, the motion amplitude 

increases. Poincare' portrait for fluctuation axial speed 

at point *

1 0.001p  for generalized coordinate h is shown 

in Figure 6. The system response is reached closed 

curve after transient points that shows quasi-periodic 

motion. 
 

3. 3. Mass Eccentricity As Bifurcation Parameter 
Figure 7 exhibits bifurcation diagram for generalized 

coordinate h with increasing mass eccentricity. As the 

mass eccentricity is increased, the amplitude of the 

motion increases accordingly. 

 

 

 
Figure 4. Bifurcation diagrams for non-dimensional 

fluctuation axial speed: (a) and (b) correspond to the q and h, 

respectively 

 

 
Figure 5. Poincare' portrait for fluctuation axial speed at 

*

1 0.021p  Figure 4a 

 

 
Figure 6. Poincare' portrait for fluctuation axial speed at 

*

1 0.001p  in Figure 4b 
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As the mass eccentricity is increased, the amplitude of 

the motion increases and then decreases. Poincare' 

portrait at point 1.05 4oe e  is shown in Figure 8. 

Dynamical behavior of the system is quasi-periodic. 

Also, by increasing the bifurcation parameter, the 

system response increases. The system hasn’t jump in 

this case. In the second case, non-dimensional 

fluctuation speed was considered. Validation of the 

results is carried out by using phase plane portraits and 

Fast Fourier Transforms (FFTs). Phase plane portrait of 

the system for mean axial speed at *

0 0.001p  is shown in 

Figure 9 that indicates quasi-periodic motion. FFT of 

Figure 9 is shown in Figure 10 and indicates quasi-

periodic motion. 
 

 

4. SUMMARY AND CONCLUSIONS 

 

Bifurcation analysis of the rotational slender axially 

moving string is investigated. The coupled equations of 

motion were derived by means of Hamilton’ principle.  

 

 

 
Figure 7. Bifurcation diagramof mass eccentricity for the 

generalized coordinate h 
 

 

 
Figure 8. Poincare' portrait of mass eccentricity atpoint

1.05 4oe e  in Figure 7 

 
Figure 9. Phase-plane portrait of the system for mean axial 

speed at *

0 0.001p  in Figure 3 

 

 
Figure 10. FFT of the system for mean axial speed as 

bifurcation parameter at *

0 0.001p  in Figure 3 

 

 

The Galerkin scheme was employed to transform the 

partial differential equations into ordinary differential 

equations. A number of variables were then introduced 

to these equations to transform them into non-

dimensional form. The non-dimensional equations then 

solved numerically by means of Rung Kutta technique 

and bifurcation diagrams and Poincare' portraits were 

plotted. In the first case, non-dimensional axial speed 

was taken as the bifurcation parameter. Poincare' 

portraits indicated that the system is quasi-periodic 

motion in directions associated with v and w. The 

motion amplitude in displacement v is more than 

displacement w. Also, by increasing the bifurcation 

parameter the system response increases. The system 

experiences some jumps in this case. In the second case, 

non-dimensional fluctuation speed was considered as 

bifurcation parameter. Poincare' portraits indicated that 

the system shows quasi-periodic motion in each two 

directions. There isn’t jump in this case. In the third 

case, mass eccentricity was taken as bifurcation 

parameter. Response amplitude of the system increases 

by increasing the mass eccentricity for generalized 

coordinate q. Poincare' portraits indicated that the 
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system is quasi-periodic motion in each two directions. 

There isn’t jump in this case too. Poincare' portraits 

show quasi-periodic motion. The system behavior is 

different for two generalized coordinate q and h. Phase-

plane portraits and FFTs are plotted to validate the 

diagrams. This research was carried out based on string 

middle rotational speed. Further studies can be done for 

different rotational speed using frequency response 

curve. 
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 هچكيد
 

 

شًد. رشتٍ بٍ صًرت تیر ايیلر بروًلی فرض در ایه تحقیق، آوالیس دیىامیکی رشتٍ دارای حرکت محًری ي چرخشی بررسی می

اوذ.معادلات شًد.حرکت محًری رشتٍ، ویريی شیريسکًپی ي خريج از مرکسیت جرم در ایه مطالعٍ در وظر گرفتٍ شذٌمی

آیذ.معادلات حرکت بٍ استفادٌ از اصل َمیلتًن استخراج شذٌ ي دي معادلٍ دیفراوسیل برای حرکت عرضی بذست میحرکت با 

َای پًاوکارٌ در شًوذ. ومًدارَای اوشعاب ي وگاشتسازی میبعذ تبذیل شذٌ ي با استفادٌ از ريش گالرکیه گسستٍشکل بی

آیىذ. رفتارَای کىىذ، بذست میی ي خريج از مرکسیت جرم تغییر میکٍ سرعت محًری میاوگیه، سرعت محًری وًساوحالتی 

َای عذدی، با تغییر سرعت محًری ي خريج از مرکسیت سازیشًوذ. شبیٍَای پًاوکارٌ تعییه میدیىامیکی بر اساس وگاشت

 دَىذ.پریًدیک را در ارتعاشات عرضی وشان میجرم، حرکت شبٍ

doi: 10.5829/idosi.ije.2016.29.06c.13 

 

 

 


