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A B S T R A C T  
 

 

The buckling torque may be much less than the yield torque in very thin rectangular tubes under 

torsion. In this paper, simple closed-form formulae are presented for buckling analysis of long hollow 

rectangular tubes under torsion. By the presented formulae, one can obtain the critical torque or the 
critical angle of twist of the tube in terms of its geometrical parameters and material constants. First, an 

approximate function for critical angle of twist, including a part in terms of the Poisson’s ratio and 

another part in terms of geometrical parameters with unknown coefficients are considered. Then, the 
unknown coefficients are found by a mini-max optimization method and also by using the accurate 

results obtained by the finite element method. The formulae can be used for a wide range of 

dimensions of hollow rectangular tubes. The numerical studies show that the maximum error of the 
presented formulae is less than 10%.  

 

doi: 10.5829/idosi.ije.2015.28.08b.16 
 

 

 
1. INTRODUCTION1 
 

Thin-walled hollow members are widely used in 

mechanical, aerospace, and structural engineering 

applications. Torsional analysis of structures is an 

important topic in mechanical and structural engineering 

and it is of great interest for engineers and is one of the 

active researches [1-4].  

Hollow tubes have high strength and rigidity in 

torsion, but the thinness of these structures can cause 

instability problems, which play an important role in 

design of the hollow members under torsion. Two 

different cases of torsional instability may occur in 

beams.  

In the first case, a torsional load is applied to the 

beam and when the load reaches to its critical value a 

torsional instability occurs [5]. In the second case, a 

load other than a torque, (e.g. bending moment or axial 

load) is applied to the beam; however, a torsional 

instability occurs in the beam [6]. In this paper, the first 

                                                           

1*Corresponding Author’s Email:  mhemat@shirazu.ac  (M. R. 
Hematiyan) 

case, i.e. instability of hollow rectangular tubes under 

torsion is studied. 

According to thin-walled theory [7], the torsional 

rigidity of a hollow tube and the shearing stress in 

different parts of the cross-section of the tube under 

torsion can be simply estimated. However, the critical 

torque or the critical angle of twist of a hollow tube, 

which causes instability, cannot be computed simply by 

a closed-form formula. 

Donnell presented a formula for evaluation of 

buckling shear stress of circular hollow tubes under 

torsion in terms of Young modulus, thickness, radius, 

and Poisson’s ratio [8]. 

Wittrick and Curzon derived criteria for the local 

buckling of polygonal tubes due to combined 

longitudinal compression and torsion [9]. Mao and Lu 

developed a method for buckling analysis of laminated 

cylindrical shells under torsion subjected to mixed 

boundary conditions [10]. They found the solution in 

terms of a double trigonometric series, which satisfied 

the mixed boundary conditions.  

Sofiyev studied the dynamic instability of 

nonhomogeneous orthotropic cylindrical thin shells 

under torsion [5]. Zhang and Han investigated the 
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behavior of imperfect cylindrical shells under torsion 

[11]. In their research, a boundary layer theory of shell 

buckling was used to obtain an analytical solution. 

Shen developed the boundary layer theory for 

buckling analysis of anisotropic laminated circular thin 

shells under torsional loading [12]. Shen developed a 

method for post-buckling analysis of functionally 

graded shells under torsion in a thermal environment 

[13]. Shen considered temperature with uniform 

distribution on shell surface and non-uniform 

distribution in the thickness direction. Results showed 

that the volume fraction of the constituents of the 

functionally graded material had an effect on buckling 

load and post-buckling behavior of the shell. 

Takano investigated the effects of anisotropy, 

transverse shear stiffness, length, and their interactions 

on buckling of thin and moderately thick cylinders 

under pure torsion and under combined axial 

compression and torsion [14]. Takano showed that the 

buckling load of a cylindrical shell is affected not only 

by anisotropy and transverse shear stiffness but also by 

shell length.  

Gonçalves and Camotim using the generalized beam 

theory and the finite element method investigated the 

instability of hollow beams with polygonal cross-

sections under uniform torsion [15]. They have stated 

that local plate-type buckling is critical in very thin 

hollow polygonal members, but as the thickness 

increases, distortional buckling may become critical. 

Although buckling of rectangular hollow beams 

under torsion is investigated by several researchers; 

however, to the authors’ best knowledge, there is no 

report presenting closed-form formulae for buckling 

analysis of rectangular tubes under torsion. In this study, 

simple closed-form formulae for buckling analysis of 

rectangular hollow tubes under torsion are presented. 

The formulae are systematically generated using the 

numerical results obtained from a large number of 

accurate finite element analyses. The accuracy of the 

presented formulae is investigated too. The most effort 

has been made to obtain simple and relatively accurate 

formulae.  

 
 

2. FORMULATION OF THE PROBLEM  
 

In this part, the formulation for buckling analysis of 

hollow circular tubes is reviewed first and then the 

formulation for rectangular hollow tubes is presented. 

 

2. 1. A Review of Formulae for Buckling of Thin-
Walled Hollow Tubes under Torsion       Simple 

equations for torsion of thin-walled hollow tubes can be 

found in standard textbooks of mechanics of materials. 

These equations can be expressed as follows [16]:  

ctA

T

2
  (1) 

 
(2) 

where, τ is the shear stress, T is the applied torque, t is 

the thickness, Ac is the area bounded by the center line 

of the wall cross-section, α is the angle of twist per unit 

length, and G is the shear modulus. It should be 

mentioned that Equation (1) cannot accurately estimate 

the shearing stresses at internal corners of hollow 

members [17].  

Donnell presented an approximate formula 

describing the critical shear stress for buckling of long 

circular hollow tubes [8]. Timoshenko and Gere 

modified the Donnell formula for the critical buckling 

load of long circular tubes and presented their formula 

as follows [18]:  
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where E is Young modulus, ν is Poisson’s ratio, t is the 

thickness and r is the radius of the circular hollow tube. 

The critical torque can be obtained from Equation (1) as 

follows:  

 (4) 

By using Equations (1), (3), and (4) the critical angle of 

twist (per unit length) is found as follows:  
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As it can be seen, this equation is written as a 

multiplication of two parts. The first part is expressed in 

terms of the Poisson’s ratio, and the second part is 

expressed in terms of the geometrical parameters. 

 

2. 2. Problem Statement and Dimensionless 
Parameters          A rectangular tube of length L and 

thickness t is considered. The dimensions of the cross-

section of the tube are represented by a and b (a>b) as 

shown in Figure 1. The longitudinal axis of the tube 

coincides with the z-direction, and the cross-section is in 

the xy plane. The angle of twist at the first end at z=0 is 

assumed to be zero, while the other end at z=L is free to 

twist and is subjected to the torque T. Two different 

cases are considered for warping constraint at the two 

ends of the tube. In a case, the free warping condition 

(uniform torsion) and in another case the fixed warping 

condition is considered. The objective is to find closed-

form formulae for computation of the critical value of 

the angle of twist or the applied torque that causes the 

tube to buckle. 


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Figure 1. The geometry of the rectangular tube and its cross-

section 
 

 

 
Figure 2. First mode of buckling for a rectangular tube: a) 

, (distorsional buckling), b) ,

004.0* t  (plate-type buckling) 
 

 

Dimensionless geometrical parameters for the 

problem are expressed as follows:  

, ,  (6) 

The dimensionless angle of twist and dimensionless 

shearing stress are respectively defined as follows:  

 (7) 

E


 *

 (8) 

There are two types of buckling shape for 

rectangular tubes under torsion: 1) distortional buckling, 

and 2) local plate-type buckling [15]. These types of 

buckling shape are shown in Figure 2. When the beam 

wall is very thin, the local plate-type buckling occurs as 

the first buckling mode. However, for beams with larger 

wall thicknesses, the distortional buckling is the critical 

(first) mode. The relative displacement of longitudinal 

edges is very small in the local plate-type buckling; 

however, it is considerable in distortional buckling. 

The local plate-type buckling of rectangular tubes under 

torsion is approximately similar to that of a simply 

supported rectangular plate under pure shear. Unlike the 

local plate-type buckling, the distortional buckling can 

be considered in the category of global buckling modes.   

 The numerical studies, which will be described in 

next sections show that buckling torque corresponding 

to a very thin beam may be much less than its yield 

torque. On the other hand, it is observed that the 

buckling shearing stress is usually greater than the yield 

shearing stress in rectangular tubes in which the 

distortional buckling mode is the first mode. Therefore, 

in this work, the buckling of very thin-walled 

rectangular tubes, which have practical importance, are 

investigated. 
Similar to Equation (5), we assume that the critical 

angle of twist per unit length of the rectangular tube can 

be approximately expressed by multiplication of a 

function in terms of the Poisson’s ratio ν and a function 

in terms of the geometrical parameters. Therefore, the 

critical angle of twist per unit length in a dimensionless 

form is expressed as follows: 

),()( **

21

* btggcr    (9) 

The expressions for the functions 1g  and 2g  are found 

using accurate numerical data obtained from the finite 

element method (FEM). Similar approaches have been 

successfully used by Shahpari and Hematiyan [19], and 

Shirazi and Hematiyan [20], for stress and deformation 

analysis of members under torsion.  

 

 

3. COLLECTING NUMERICAL DATA USING THE 
FEM 
 
As previously mentioned, the formulae will be 

constructed using the FEM results. At first the validity 

and correctness of the finite element modeling is 

checked by comparing the FEM result for buckling 

analysis of a square tube with the result reported by 

Wittrick and Curzon [9]. A square tube with parameters 

L=2 m, a=b=0.1 m, 3.0  and t=0.001 m is 

considered. For the FEM analysis of the problem the 

software ANSYS 13.0 is used. 3200 8-node shell 

elements (SHELL281) is considered for modeling of the 

square tube. The value for the critical angle of twist of 

the square tube obtained using the FEM is 2.45×10
-2

, 

while the value reported in the literature [9] is 2.50×10-2, 

which shows a difference of only 2%. It should be 

1* b 04.0* t 1* b

a

t
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b
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mentioned that the solution by Wittrick and Curzon is 

based on some assumptions with a small approximation.    

To obtain appropriate expressions for the functions 

1g  and 2g  in Equation (9), we use the FEM to calculate 

the critical value of the angle of twist in terms of ν, t*, 

and b*. A large number of cases in which the local 

plate-type buckling is critical are considered and 

analyzed using the FEM. The Poisson's ratio is assumed 

to be between 0.15 and 0.45. For better approximation, 

two formulae are generated for expressing the buckling 

load of rectangular tubes. The first formula is generated 

for the following range of variables:  

 (10a) 

 (10b) 

The second formula is expressed for the following 

range:  

 (11a) 

 (11b) 

In most of rectangular tubes made of conventional 

materials with geometrical parameters out of the above 

mentioned ranges, yielding occurs before buckling. 

For buckling analysis of the rectangular tube using 

the FEM, the first end at z=0 is held fixed in x and y 

directions, while the other end at z=L is subjected to the 

following displacement boundary conditions. 

yzux   (12) 

xzuy   (13) 

where, ux and uy represent displacements in x and y 

directions, respectively. Two different warping 

conditions are considered for the tube ends. In the first 

case the free warping condition (uniform torsion), i.e. 

, and in the second case the fixed warping 

condition, i.e.  is considered. The critical value of 

α for the first buckling mode is found through the FEM 

analysis. 408 different cases were analyzed using the 

FEM software ANSYS 13.0 to collect required data. In 

each case, more than 2000 8-node shell elements were 

used to discretize the rectangular tube. A mesh study 

was performed in each case in order to ensure that the 

used mesh was adequately refined. In all cases the 

values of a and 
*L  have been set to 0.2 and 10, 

respectively. Using a numerical study, it was observed 

that for the considered rectangular tubes with plate-type 

buckling and  the critical angle of twist is 

approximately independent of the length. We observed 

that the critical angle of twist for rectangular tubes with 

very large length is at most 3% smaller than that for 

corresponding tubes with 10* L . As examples, the 

variations of the dimensionless critical angle of twist in 

terms of the dimensionless length for two different 

rectangular tubes are shown in Figure 3. It can be seen 

that the critical angle of twist is with a good 

approximation, independent of the tube length for 

. The critical value of the angle of twist for each 

case of the 408 cases was computed using the FEM. As 

example, the obtained results for  are depicted 

in Figures 4 and 5. As it can be seen from Figures 4 and 

5, the critical angle of twist increases with increase in 

thickness.   

 

 

 
Figure 3. Variation of the dimensionless critical angle of twist 

in terms of the dimensionless length of two rectangular tubes 

with  and  
 

 

 
Figure 4. Results for critical angle of twist for rectangular 

tubes with  and  obtained using the 

FEM 

 

 

 
Figure 5. Results for critical angle of twist for rectangular tubes 

with 25.0  and 02.001.0 *  t  obtained using the FEM 

01.0002.0 *  t

12.0 *  b

02.001.0 *  t

14.0 *  b

0zu

0zu

10* L

10* L

25.0

3.0 1* b

25.0 01.0002.0 *  t
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4. THE APROXIMATE CLOSED-FORM FORMULAE 
FOR THE BUCKLING ANALYSIS OF RECTANGULAR 
TUBES UNDER UNIFORM TORSION (FREE 
WARPING CONDITION) 

 
The variation of the dimensionless critical angle of 

twist, i.e. 
*

cr , with respect to Poisson ratio can be 

represented by a quadratic function with an acceptable 

accuracy. However, variation of 
*

cr , with respect to *t

and *b  cannot be approximated by a simple polynomial. 

Many different equations for expressing 
*

cr  
in terms of 

ν, t
*
, and b

*
 were examined. Finally, the following 

function was selected. 

54 )())((),,( **

32

2

1

*** cc

cr btcvcvcbtv   (14) 

The formula given in Equation (14) is relatively simple 

and can represent  with an appropriate accuracy. The 

unknown parameters  to  in Equation (14) can be 

found by solving an optimization problem. In other 

words, these unknown parameters should be found in a 

way that the computed value of  from Equation (14) 

has a small difference with the corresponding FEM 

solution (with a fine mesh). The optimization problem 

can be expressed as a mini-max problem [21, 22] as 

follows: 

  niFi  ..., 2, 1,)(Max  Minimize   (15) 

where 
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),,(),,(
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F
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),,( ***

iiicr btv  and ),,( ***

iiicr btv  represent the dimensionless 

critical angle of twist, computed using the proposed 

formula given in Equation (14) and the FEM, 

respectively. , , and   are known 

values for Poisson’s ratio, dimensionless thickness, and 

dimensionless edge length, respectively. The design 

variables of the optimization problem, which should be 

found are  to . The mini-max problem is solved 

using MATLAB software by a method based on the 

sequential quadratic programming [23]. 

As previously mentioned, the unknown coefficients 

are found for two different ranges of the independent 

variables. A formula is found for the first range of 

variables given in Equation (10) and the other formula 

is found for the second one given in Equation (11). Two 

formulae can represent the variations of 
*

cr better than 

only one formula. The obtained formulae are: 

12.0,01.0002.0

)())(5.154.232.17(

**

873.0*978.1*2*



 

bt

btcr 
 (17a) 

14.0,02.001.0

)())(5.184.52.52(

**

870.0*987.1*2*



 

bt

btcr 
 (17b) 

The constants in Equations (17a) and (17b) are 

found using the numerical results obtained from 120 and 

84 FEM analyses, respectively.  

Equations (15a) and (15b) can be expressed as 

follows: 

1.978 0.873

2 1
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cr
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(18b) 

Both of the above equations can be used for 10* L  

and 45.015.0  v . The maximum error of the 

formulae in Equations (18a) and (18b) in comparison 

with accurate FEM solutions are 6 and 5%, respectively. 

The critical shearing stress and critical torque can be 

found using Equations (1) and (2), respectively, which 

yield to: 

crcr
ba

abG


)( 
  (19) 

crcr
ba

tGba
T 

)(

2 22


  (20) 

The dimensionless critical shearing stress can be 

expressed as follows: 

*

*

*
*

)1)(1(2
crcr

b

b






  (21) 

Now, we consider a rectangular tube with 3.0 , 

1* b , and 02.0* t . We obtain 0127.0* cr  from 

Equation (17b) and 00244.0* cr  from Equation (21). 

Assuming the rectangular tube is made of steel with 

GPa 70G , we get MPa 445cr , which is a relatively 

large value. Larger values of 
*t  correspond to larger 

values of cr . This result shows that buckling analysis 

of rectangular tubes with 02.0* t  is more important 

than tubes with 02.0* t . 

*
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5. THE APROXIMATE CLOSED-FORM FORMULAE 
FOR THE BUCKLING ANALYSIS OF RECTANGULAR 
TUBES WITH FIXED WARPING CONDITIONS AT 
TWO ENDS 
 
The formulae presented in the previous section were 

developed for rectangular tubes with no warping 

constraints at their ends. In other words, we assumed the 

warping is uniform along the longitudinal axis of the 

tube.  

For rectangular tubes with warping constraint at 

ends, the warping will not be uniform along the 

longitudinal axis of the tube. These are usually named 

non-uniform torsion. Warping of closed section 

members in uniform or non-uniform torsion is usually 

much more less than that for open-section members. 

The critical values of the angle of twist of a rectangular 

tube for cases with and without warping constraints are 

very close to each other. However, we have found 

separate formulae for rectangular tubes with warping 

constraints. 

The closed form formulae for evaluation of the 

critical angle of twist of rectangular tubes with warping 

constraint at two ends can be expressed as follows. 

1.974 0.892
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(22b) 

These formulae are found by an approach similar to 

the one for rectangular tubes without warping 

constraint. Both of the above equations can be used for 

10* L  and 45.015.0  v . The maximum error of the 

formulae in Equations (22a) and (22b) in comparison 

with accurate FEM solutions are 5 and 6%, respectively.

 

 

6. CONCLUSIONS  
 
Simple closed-form formulae were presented for 

buckling analysis of hollow rectangular tubes under 

torsion with or without warping constraints. By the 

presented formulae, one can simply calculate the critical 

angle of twist of the tube in terms of its geometrical 

parameters and material constants. 

The formulae can be used with a good 

approximation for a wide range of dimensions of hollow 

rectangular tubes. The presented formulae are 

independent of the tube length; however they are 

suitable for rectangular tubes with a dimensionless 

length greater than 10. 

There are two sources of errors in the formulae, the 

error due to using the approximate functions for 

expressing the critical angle of twist and the error due to 

assuming that the critical angle of twist is independent 

of the tube length. However, the numerical studies 

showed that the maximum overall error of the presented 

formulae is less than 10%.   
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هچكيد
 

قرار دارند گشتاور پیچشی کمانش ممکن است خیلی کمتر از های توخالی دارای جداره خیلی نازک با مقطع مستطیلی که تحت پیچش  در میله

های توخالی با مقطع مستطیل شکل ارائه  هایی ساده با فرم بسته برای تحلیل کمانش میله گشتاور پیچشی تسلیم آنها باشد. در این مقاله فرمول

چش بحرانی میله را برحسب پارامترهای هندسی و ثوابت مادی آن توان گشتاور بحرانی یا زاویه پی های ارائه شده می شود. با استفاده از فرمول می

بدست آورد. ابتدا یک تابع تقریبی شامل یک قسمت برحسب نسبت پواسون و قسمت دیگری بر حسب پارامترهای هندسی با ضرایب 

خطای بدست آمده  تفاده از نتایج کمسازی و همچنین با اس شود. سپس ضرایب نامشخص با استفاده از یک روش بهینه نامشخص درنظر گرفته می

های  های مستطیلی توخالی با دامنه وسیعی از ابعاد هندسی هستند. بررسی ها قابل استفاده برای میله آیند. فرمول از روش المان محدود بدست می

 درصد است. 01های ارائه شده کمتر از  دهد که خطای بیشینه فرمول عددی نشان می
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