
IJE TRANSACTIONS B: Applications Vol. 28, No. 8, (August 2015)  1160-1168 

 
Please cite this article as: M. Mahdizadeh and M. Eftekhari, A Novel Cost Sensitive Imbalanced Classification Method based on New Hybrid Fuzzy 
Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms, International Journal of Engineering (IJE), TRANSACTIONS B: 

Applications Vol. 28, No. 8, (August 2015)  1160-1168 

 
 

International Journal of Engineering 
 

J o u r n a l  H o m e p a g e :  w w w . i j e . i r  
 

 

A Novel Cost Sensitive Imbalanced Classification Method based on New Hybrid 

Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms 

 
M. Mahdizadeh*, M. Eftekhari 

 
Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran 

 

 

P A P E R  I N F O  

 
 

Paper history: 
Received 20April 2015 
Received in revised form 10June 2015 
Accepted 30 July2015 

 
 

Keywords: 
Cost Sensitive Learning 
Fuzzy Clustering 
Fuzzy Rule-based Classification Systems 
Evolutionary Algorithms 
Lateral Tuning 
 

 
 

 

 

A B S T R A C T  
 

 

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based 

classification system. A novel cost metric is proposed based on the combination of three different 

concepts: Entropy,  Gini index and DKM criterion. In order to calculate the effective cost of patterns, a 
hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This hybrid 

algorithm finds difficult minority instances; then, their misclassification cost will be calculated using 

the proposed cost measure. Also, to improve classification performance, the lateral tuning of 
membership functions (in data base) is employed by means of a genetic algorithm. The performance of 

the proposed method is compared with some cost-sensitive classification approaches taken from the 

literature. Experiments are performed over 37 imbalanced datasets from KEEL dataset repository; the 

classification results are evaluated using the area under the curve (AUC) as a performance measure. 

Results reveal that our hybrid cost-sensitive fuzzy rule-based classifier outperforms other methods in 

terms of classification accuracy. 

 

doi: 10.5829/idosi.ije.2015.28.08b.08 
 

 

 
1. INTRODUCTION1 
 

The classification modeling creates a model to map 

between a set of instances and a set of class labels. It is 

used to classify new data and is a well-studied technique 

in data mining and machine learning [1]. There is a 

range of classification modeling algorithms such as 

neural network, k-nearest neighbor, support vector 

machine (SVM), fuzzy rule based classification systems 

(FRBCSs), decision tree, and Bayesian network. 

Because the FRBCSs provide an interpretable model for 

the user, they are very useful tools in machine learning 

[2]. The proposed method uses FRBCS as the classifier. 

Training data for classification problems, 

significantly influences the classification accuracy. 

Most standard learning algorithms assume or expect 

balanced class distributions or equal misclassification 

                                                           

1*Corresponding Author’s Email: mh.mahdizadeh@gmail.com (M. 

Mahdizadeh) 

costs. One of the main problems in data mining is the 

class imbalance problem. It occurs, in the binary case, 

when there exists a considerable difference between the 

number of instances in each class. The minority class 

refers to a class with less data, while the majority class 

refers to that with most number of instances. This 

situation is difficult while trying to identify the minority 

class. Therefore, many methods have been proposed to 

address the imbalanced learning problem which is 

divided into two main categories: data sampling and 

algorithmic modification. In the first approach, training 

instances are modified in such a way as to balance the 

sample size for different classes based on a resampling 

strategy. The second one modifies current classification 

algorithms to consider the imbalanced distribution of 

data [3-6]. 

Cost-sensitive learning methods combine both data 

and algorithm approaches. They consider a cost matrix 

that describes the costs for misclassifying any particular 

instance. The aim of this paper is to create a novel cost 

metric for weighting rules of FRBCS algorithm. A 
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special metric is proposed to evaluate misclassification 

of a minority sample as a majority one. If a majority 

sample is misclassified as a minority one, the associated 

cost is 1. Guessing the correct class does not bear any 

cost. In this study, a cost-sensitive FRBCS is introduced 

for imbalanced classification problems; it is efficient in 

terms of classification accuracy. This method is based 

on the following three stages: 

 Cost modification: a special metric is employed to 

compute the misclassification cost of minority class 

instances. To do this, minority instances whose 

labeling may be difficult, are selected and their cost 

values change according to the proposed metric. 

 Fuzzy rule-based classifier generation: fuzzy rules 

are generated for classifying and limiting the number 

of rules to a constant (named Q). 

 Lateral tuning: finally, genetic algorithm (GA) is 

utilized to tune a set of membership functions; a new 

metric is also proposed for fitness evaluation. 

In order to assess the performance of the proposed 

approach, 37 imbalanced datasets, that are imbalanced 

binary classification problems, are used from the KEEL 

repository [7]. The AUC measure is employed to check 

the accuracy of the model. To check whether there exist 

significant differences among the results, some non-

parametric statistical tests are employed. 

This paper is arranged as follows. First, section 2 

introduces the problem of imbalanced datasets and the 

evaluation measures; section 3 describes in detail, each 

stage of the proposed approach; section 4 shows the 

results from 37 datasets; and the conclusions of this 

work is given in section 5. 

 

 

 

2. IMBALANCED DATASETS IN CLASSIFICATION 
 

In this section, the concept of imbalanced datasets is 

described. Then, some evaluating measures are 

introduced for this kind of problems.  

 

2. 1. Imbalanced Dataset            Any dataset that 

shows an unequal distribution between its classes can be 

considered imbalanced. Since the imbalanced 

classification problem is implicit in most real world 

applications (e.g. risk management, finance, e-mail or 

micro seismic hazards in coal mines), it has attracted 

most academia, industries and government funding 

agencies [8]. In most applications, a minority class 

usually represents the concept of interest. Therefore, it 

is necessary to predict minority instances with the 

highest precision without decreasing the precision of the 

majority instances. This goal is hard to obtain.   

On the other hand, standard classifier algorithms 

have a bias towards the majority class. Consequently, 

the instances that belong to the minority class are not 

classified correctly in comparison with the majority 

class. As mentioned before, there are two main types of 

solutions to solve the problem of imbalanced datasets: 

 Solutions at the data level: in this kind of solution, it 

is expected to balance the class distribution on 

training data by over-sampling the minority class 

(minority instances) or under-sampling the majority 

class (majority instances) [3, 5]. 

Solutions at the algorithmic level: these solutions try to 

adapt existing classifier learning algorithms to bias 

towards the small class, such as [4, 6]. 

 

2. 2. Evaluation Measures      Evaluation measures 

have a fundamental role in the classification. To 

evaluate the performance of classifiers, the most direct 

way is an analysis based on the confusion matrix. In a 

binary class, samples can be divided into four groups 

after a classification process [9]. Accuracy is the most 

commonly used measure for these purposes:   

).()( FNTNFPTPTNTPAccuracy   (1) 

However, to classify the class imbalance problem, 

accuracy does not distinguish between the number of 

correct labels of different classes. Thus, instead of using 

accuracy, more suitable metrics are taken into account. 

One appropriate metric that could be used to measure 

the performance of classification over imbalanced 

datasets is AUC: 

2)1( raterate FPTPAUC   (2) 

where TPrate is the percentage of positive cases that is 

correctly predicted to be positive and FPrate the 

percentage of negative cases that is incorrectly predicted 

to be positive. 

 

 
 

3. PROPOSED METHOD: COST SENSITIVE FUZZY 
RULE BASED IMBALANCED CLASSIFIER (CS-
FRBIC) 
 

As mentioned earlier, this paper aims to modify the 

variable costs of misclassification of different classes 

when dealing with an imbalanced problem. It is usually 

crucial to recognize the minority instances rather than 

the majority ones. Therefore, our method just modifies 

the cost of misclassifying minority instances and does 

not deal with changing the cost of misclassifying 

majority ones (C(-,+)=1), so that C(+,-)> C(-,+). This 

section explains our research framework and builds the 

cost-sensitive fuzzy rule-based classifier for imbalanced 

problems (named CS-FRBIC).  
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We know that it is more difficult to label data which 

is close to the boundaries than data located far away 

from them. Therefore, the proposed method finds the 

examples whose classification is difficult. Amongst 

them, the minority examples are chosen and their cost 

will be changed. These costs are used in the weighting 

formula of fuzzy rule-based classifier. Finally, lateral 

tuning can be applied to obtain a more accurate model.  

As shown in Figure 1, our proposed research 

framework consists of some steps. In the first step, 

FCM-FPSO [10] is used to cluster the training data and 

to find the difficult instances. Then, the variable costs of 

minority instances are modified. In the second step, the 

fuzzy rule base classifier is generated. In the final step, 

lateral tuning of the involved membership functions is 

employed. In the following sections, each step is 

described in detail. 

 

 

3. 1. Step1: Cost Modification        In this phase, the 

misclassification cost of minority samples is computed. 

In most works, if a dataset has k classes, the cost matrix 

is k×k [11-13]. In these works, if a minority sample is 

misclassified as a majority one, the associated 

misclassification cost is a constant number such as 

Imbalanced Ratio (IR is defined as the ratio of the 

number of instances of the majority class to the minority 

class); this penalty is the same for all minority samples. 

In our method, binary datasets are used, but the cost 

matrix is not a 2×2 matrix (it is an n×2  matrix: n is the 

number of instances). To obtain this matrix, first the 

difficult minority samples are found and then their cost 

is just changed. The cost of misclassification of the rest 

of samples is 1.  

Figure 2 illustrates the borderline (Figure 2(b)) and 

difficult samples (in terms of imbalanced classification) 

of a binary dataset (Figure 2(a)). If an example is close 

to the decision boundary of a class, classification may 

be difficult, and if an example is far away from the 

decision boundary of a class, may be easy to classify. 

The classification difficulty degree of an example which 

is regarded as its distribution characteristic may be 

expressed by some metric information measuring its 

degree of closeness to decision boundaries (it is correct 

for imbalanced classification).  

If our method can predict the difficult minority 

samples correctly, better classifiers will be built and 

more minority samples will be predicted correctly (see 

Figure 3(a)). If difficult minority samples are 

misclassified, the decision region generated by the 

algorithm is close to those instances. Consequently, the 

instances that belong to the minority classes are 

misclassified more often than those belonging to the 

majority class (Figure 3 (b)).  Figure 1. The framework of proposed method 

 

Lateral tuning step 

Initialize 
parameters of GA 

Run GA algorithm 

Membership function 
modification 

 
Stop 

Condition satisfied? 

 

Build classifier 

No 

Yes 

Initialize parameters of FCM and FPSO 

Create a swarm with p particle 

and Initialize x, v, pbest, gbest 

 

Run FPSO algorithm 

 

Run FCM algorithm 

 

 

Calculate Info, Dif, PositiveDifand cost (Equations (4-7)) 

Terminating 

Condition of FCM-FPSO 
satisfied? 

 

Yes 

Yes 

No 

Start 

No 

Cost modification step 

 

Yes 

No 

Stop condition 
satisfied? 

 

Stop condition 

satisfied? 

 

Generate Fuzzy rules 

and calculate rule weigh 

(Equation (12)) 

Select Q rules with 

the highest weight 

Fuzzy rule based 

classifier generation step 

  



1163                       M. Mahdizadeh and M. Eftekhari / IJE TRANSACTIONS B: Applications Vol. 28, No. 8, (August 2015)  1160-1168 

 

 Figure 2. (a) Difficult samples. (b) Borderline samples 

 

 

 Figure 3. (a) Classifying the difficult minority samples 

correctly. (b) Misclassifying the difficult minority samples
 

 

 

 

Cost-sensitive learning algorithms associate high 

misclassification costs for minority instances which 

misguide the search towards the minority class. If the 

cost associated with minority instances is too high, or if 

the specific cost-sensitive algorithm is easily biased 

towards the minority class, it can be observed that the 

decision region generated by the algorithm is far away 

from those instances. Therefore, it is needed to bias 

those algorithms in a way that they push the boundary 

towards the minority instances, but still classify both 

classes correctly. On the other hand, cost-sensitive 

solutions seek to minimize the high cost errors. So, if 

the algorithm associates high misclassification costs for 

the difficult minority instances rather than other 

minority instances, misclassification probability of these 

instances will decrease and therefore the final classifier 

will be more accurate. 

Even in the cases that there are clear boundaries 

among the labeled data of different classes, data in the 

same class still has some characteristics representing its 

degree of proximity to the class boundaries. It is easy to 

understand that the characteristic of a data point located 

far away from the class boundaries is different from that 

of a data point located near the class boundaries. Thus, 

the difficulty degree of classification for each training 

sample can be defined by a fuzzy measure. For the sake 

of assigning a degree of difficulty to each training 

sample near the class boundary, it is necessary to have a 

suitable metric for measuring this difficulty for each 

pattern. One suitable way that is proposed in this 

research is to fuzzify the boundary region of 

classification via an optimal fuzzy clustering approach. 

Thus, to find difficult samples, clustering the training 

data is employed and the degrees of membership are 

computed for each sample. Then, the concept of entropy 

is utilized to find the classification difficulty degree of 

an example [14].  

To cluster the training data, an optimal fuzzy 

clustering method named FCM-FPSO is applied; 

parameter settings and terminating conditions are 

originally taken from the recommendations given in 

Izakian’s paper [10]. The output of the algorithm (X) 

indicates the membership degree of each instance to 

clusters (classes). 

}.,...,1  and  ,...,1 |{ cjniX ij    (3) 

µij represents the membership degree of ith sample (xi) 

with respect to class j. n and c are the number of 

samples and classes respectively. The fuzzy 

memberships of a training instance represent the degree 

which the instance belongs to different classes. If an 

instance can be easily labeled, its membership degree to 

a class is one and that to another class is zero. If it is 

difficult to classify, the instance may be close to the 

class boundaries. In this case, its membership degree to 

different classes has a non-zero value. After calculating 

fuzzy memberships, we employ the concept of entropy 

to characterize the difficulty of each training instance 

and to calculate its fuzzy information [14]: 

ij

c

j ijixInfo 
21

log)(  
  (4) 

If Info(xi) is a value close to zero, xi can be labeled 

easily. If Info(xi) > 0.9, xi is defined as a sample which 

is difficult to be labeled, the set of difficult samples for 

labeling is called Dif and is defined as follows: 

}.9.0)(|{  ii xInfoxDif  (5) 

The set of difficult minority instances is defined as 

follows:  

}.)( and  |{  jjjDif xclassDifxxPositive  (6) 

And finally, the costs of this set are calculated. So, a 

novel cost metric is utilized to change the 

misclassification cost of minority instances according to 

the following equation: 

Difii PositivexIRcccx        ,..)cost( 3
321  (7) 

wherec1, c2, c3 are the concept of entropy, Gini index 

and DKM criterion respectively. Gini index and DKM 

criterion are impurity-based criteria [15]. The fuzzy 

versions of these measures are calculated based on the 

membership grades obtained by FCM-FPSO algorithm 

as follows: 
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 


c

j ijijc
1 21 .log   (8) 

 


c

j ijc
1

2

2 .1   (9) 

.2
13  


c

j ijc   (10) 

 

3. 2. Step2: Fuzzy Rule Based Classifier 
Generation       In this work, fuzzy rule-based 

classification systems are used, because they are flexible 

and useful structures.  

A simple approach for generating fuzzy rules is to 

partition the domain interval of each input attribute 

using a pre-specified number of fuzzy sets. In this 

paper, 14 possible linguistic terms for each attribute are 

defined, as shown in Figure 4 [16].   

Furthermore, the fuzzy system also uses “don’t care” 

as an additional linguistic term which indicates that the 

variable matches any input value with maximum 

matching degree ( 1)(' xtcaredon ). The fuzzy rule base 

determines the relationship among the variables and 

establishes an association between the space of features 

and classes.  

Given a partitioning of pattern space, one approach 

(to construct a rule-base) is to consider all possible 

combinations of antecedent to generate the fuzzy rules. 

That is, for each attribute, one of the 14 fuzzy sets 

shown in Figure 4 and “don’t care” can be used when 

generating a fuzzy rule. The trick is to consider all 

antecedent combinations (which is 15
n
 for n-

dimensional problem). The number of rules generated 

with this scheme can be quite large. So, to construct a 

rule-base for each dataset used in this paper, first each 

attribute of the problem is normalized into a real 

number in the interval [0, 1] before extracting fuzzy 

rules. Then, fuzzy rule base of our FRBCS is generated 

by means of the following steps: 

First, N rules are generated (N is the number of 

instances). To generate a fuzzy rule for an instance 

:),,....,( 1 ppnpp Cxxx 
 

 

 

 
Figure 4. Four fuzzy partitions for each attribute membership 

function 

 Compute the matching degree µ(xpi) of the example 

to the different fuzzy regions. Then, calculate the 

following degree for each attribute: 

 


14

1
.14,...,1      ),()()(

j piBpiBK kxxBP
jk

  (11) 

Bk represents the kth membership function (see 

Figure 4). 

 Assign the xpi to the fuzzy region with the greatest 

P(Bk). Then, each antecedent fuzzy set of the 

generated fuzzy rule replaced with don’t care if 

P(Bk) < 0.23. 

 Generate a rule for the example, whose antecedent is 

determined by the selected fuzzy region and whose 

consequent is the label of class of the example. 

 In FRBCS, rule weighting has often been used as a 

simple mechanism to tune the classifier. Compute 

the rule weight [17] by: 

   )()(                     

     )()(

1

1













m

p ppACx ppA

m

p ppACx ppAj

CSxCSx

CSxCSxPCFCS

j
jp

j

j
jp

j





 (12) 

where CSp is the misclassification cost of xp. 

 A compact rule base can be constructed in the 

following manner. The generated rules are divided 

into two groups according to their consequent 

classes. The rules in each group are sorted in 

descending order of rule weighting criterion 

(Equation (12)). Finally, Q rules with the highest 

weight from each group are selected; they construct 

our fuzzy rule-based classifier. 

 

3. 3. Step3: Lateral Tuning       The aim of this step is 

to improve the performance of FRBCSs using a post-

processing genetic tuning step. The GA is considered to 

tune a compact set of fuzzy classification rules with 

high values of CS-PCF obtained in the previous stage. 

Then, the lateral displacement of labels, considering 

only one parameter, is performed based on reference 

[18]. In this way, membership functions (MFs) achieve 

a better covering degree while maintaining the original 

shapes; it results in accuracy improvement without a 

significant loss in interpretability of fuzzy labels. In 

other words, the fuzzy partition is adopted to solve this 

problem in an optimal way through an evolutionary 

tuning in which the lateral position of the linguistic 

labels is handled. 

A set of labels S represents a fuzzy partition and

)5.0,5.0[i . αi expresses the bounds of the domain of 

a label when it moves between its two lateral labels. 

Figure 5 shows the symbolic translation of a label 

represented by a pair (S2, -0.3) together with the lateral 

displacement of corresponding membership function 

[18, 19]. 
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Figure 5. Lateral displacement of a membership function 

 

 

The tuning of the membership function parameters 

can be considered a search problem to which GAs can 

be applied. In this algorithm, each gene represents 

modification of the membership function parameters. 

Length of a chromosome is equal to the number of 

labels and shows the lateral displacement of labels. To 

evaluate each chromosome, the modifications to the 

membership function parameters are first applied and 

the training data is then classified. After that, the 

following metric is utilized to calculate fitness function: 

 


np

j jAUCfit
1

.cost)1(  (13) 

where costj represents the misclassification cost of xj 

and np is the number of misclassified training data. The 

GA tries to minimize the misclassification cost. 

Therefore, a chromosome with the lowest fitness is 

selected. Ten independent runs are considered to 

produce the results. 

 

 

4. EXPERIMENTAL STUDY 
 

In this study, our aim is to show the improvement 

achieved in FRBCS by combining cost-sensitive and 

lateral tuning models. In the following sections, the 

datasets available in the literature are first introduced so 

as to carry out the experimental study. Then, we will 

conduct an analysis to determine the performance of 

different cost-sensitive approaches used for imbalanced 

classification. 

 

4. 1. Datasets and Parameters        In order to 

analyze the CS-FRBIC method against some cost-

sensitive learning algorithms, 37 datasets from KEEL 

dataset repository are employed. In this work, different 

datasets with different degree of IR are used: medium 

imbalance and highly imbalance. Table 1 summarizes 

the properties of the selected datasets. This table 

denotes, for each dataset, the number of examples (Ex), 

number of attributes (Att), class name, class distribution 

and Imbalanced Ratio (IR). 

The 5-fold cross validation model is employed to 

carry out different experiments, the combination of 4 of 

them as training and the remaining ones for testing. For 

each dataset, the average of test accuracies in the five 

partitions is considered. The datasets used in this study 

use the partitions provided by the keel repository in the 

imbalanced classification dataset section. Table 2 shows 

the parameters for the implementation of the algorithms 

employed in the proposed method. 

 

4. 2. Performance Analysis and Comparison     In 

this section, the set-up of experimental framework used 

is presented to develop the analysis of our proposal. 

First, the performance of CS-FRBIC method on medium 

imbalanced datasets is checked. Then, in order to 

analyze the quality of our approach against the 

algorithms used in comparison, the experiments on 

highly imbalanced datasets are performed. 

 

4. 2. 1. Analysis of Proposed Method on Medium 
Imbalanced Datasets       The following part of the 

study considers the performance of the proposed 

method (CS-FRBIC) in contrast with other cost-

sensitive learning proposals. Table 3 shows the average 

AUC results in training and test for the medium 

imbalanced data-sets considered.  

By rows, we can observe the results for the CS-C4.5 

[20], CS-SVM [21], CS-FH-GBML [17], CS-3NN [22], 

CS-MLPNN [23], CS-AdaC2 [9, 24], FRBIC (proposed 

method without performing cost modification 

(step2+step3)), CS-FRBICwl (proposed method without 

performing lateral tuning (step1+step2)) and the CS-

FRBIC method. The best average case in test is 

highlighted in bold. 

The results in these tables for CS-FH-GBML and 3-

NN methods are extracted from Lopez’s paper [4] and 

for CS-AdaC2 method is obtained from [24]. The 

results for CS-C4.5, CS-SVM and CS-MLPNN are 

extracted from KEEL Software. 

The results in Table 3 show that the proposed 

method achieves the highest average in most datasets. 

Our results clearly show that the use of the proposed 

cost method implies a higher performance for the 

FRBCS in imbalanced datasets. 

 

4. 2. 2. Analysis of Proposed Method on Highly 
Imbalanced Datasets     The following part of the 

study considers the performance of the CS-FRBIC 

method in contrast to other cost-sensitive learning and 

FRBCSs learning methods. Table 4 shows the results of 

performance (using the AUC metric) of the CS-FRBIC 

method and the algorithms employed for comparison; 

that is, the CS-C4.5, CS-SVM, CS-FH-GBML, CS-

3NN, CS-MLPNN, CS-AdaC2, GP-COACH9 (the basic 

GP-COACH method with 9 labels) [25], GP-COACH-H 

[26], GA-FS+GL [27], FRBIC and CS-FRBICwl; 

AUCTr (the AUC over the training data-set) and AUCTst 

(the AUC over the test data-set). 
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TABLE 2. Parameter specification for the algorithms 

employed in the proposed method. 
Algorithms  Parameters  

FCM-FPSO 

Initialization = randomly 

population size = 50 

K=10 

Vmin = -7 

Vmax = 7 

C1,C2 = 2 

Wmin = 0.1 

GA 

Wmax = 0.9 

number of iteration (FPSO) =100 

number of iteration (FCM) =3 

number of iteration (FCM-FPSO) =100 

population size = 70 

Mutation probability = 0.001 

Crossover probability = 0.75 

number of iteration = 100 

 

TABLE 3. Average results for our method and other cost-

sensitive methods for the medium imbalanced datasets 

AUCTst AUCTr Algorithms 

0.8564 0.9347 CS- C4.5 

0.7998 0.8106 CS-SVM 

0.8544 0.9159 CS-FHGBML 

0.8190 0.8191 CS-3NN 

0.8106 0.8211 CS-MLPNN 

0.8556 0.8567 CS-AdaC2 

0.8135 0.8348 FRBIC 

0.8724 0.8860 CS-FRBICwl 

0.8937 0.9004 CS-FRBIC 

 TABLE 1. Summary of imbalanced datasets 

IR %class (-,+) Class (-,+) Att Ex Dataset 

Datasets with medium imbalance (lower than 9 IR)  

1.82 (35.51,64.49) (build-win-non_float-proc; reminder) 9 214 Glass1 

1.86 (35.00, 65.00) (im; cp) 7 220 Ecoli0vs1 

1.86 (35.00, 65.00) (malignant; benign) 9 683 Wisconsin 

1.90 (34.84,66.16) (tested-positive; tested-negative) 8 768 Pima 

2.00 (33.33,66.67) (Iris-Setosa; reminder) 4 150 Iris0 

2.06 (32.71, 67.29) (build-win-float-proc; reminder) 9 214 Glass0 

2.52 (28.37, 71.63) (Opel; reminder) 18 846 Vehicle3 

2.68 (27.42, 73.58) (Die; survive) 3 306 Haberman 

3.19 (23.83, 76.17) (non-window glass; reminder) 9 214 Glass0123vs456 

3.36 (22.92, 77.08) (im; reminder) 7 336 Ecoli1 

4.92 (16.89, 83.11) (hypo; reminder) 5 215 New-thyroid2 

5.14 (16.28, 83.72) (hyper; reminder) 5 215 New-thyroid1 

5.46 (15.48, 84.52) (pp; reminder) 7 336 Ecoli2 

6.38 (13.55, 86.45) (headlamps; reminder) 9 214 Glass6 

8.19 (10.88,89.12) (imU; reminder) 7 336 Ecoli3 

Datasets with high imbalance (higher than 9 IR) 

9.09 (9.91,90.09) (cyt; me2) 8 514 Yeat2vs4 

9.35 (9.66,90.34) (me2;mit,me3,exc,vac,erl) 8 528 Yeast05679vs4 

10.10 (9.01,90.99) (hid;reminder) 13 988 Vowel0 

10.29 (8.89,91.11) (ve-win-float-proc;build-win-float-proc,build-win-non-float-proc,headlamps) 9 192 Glass016vs2 

10.39 (8.87,91.22) (ve-win-float-proc;reminder) 9 214 Glass2 

13.84 (6.74, 93.26) (om; reminder) 7 336 Ecoli4 

13.87 (6.72,93.28) (nuc,vac) 8 459 Yeast1vs7 

13.87 (6.72,93.28) (rad flow;bypass) 9 1829 Shuttle0vs4 

15.47 (6.07,93.93) (containers;reminder) 9 214 Glass4 

15.85 (5.93,94.07) (graphic;horiz.line,picture) 10 472 Page-blocks13vs2 

16.68 (5.65,94.25) (18;9) 8 731 Abalone9vs18 

19.44 (4,89,95.11) (tableware;build-win-float-proc,build-win-non-float-proc,headlamps) 9 184 Glass016vs5 

20.5 (4.65, 95.35) (Fpv Open; Bypass) 9 129 Shuttle2vs4 

22.10 (4.33, 95.67) (vac; nuc, me2, me3, pox) 8 693 Yeast1458vs7 

22.81 (4.20,95.80) (tableware; reminder) 9 214 Glass5 

23.10 (4.15,95.85) (pox; cyt) 8 482 Yeast2vs8 

28.41 (3.43,96.57) (me2; reminder) 8 1484 Yeast4 

30.56 (3.17,96.83) (vac;nuc,cyt,pox,erl) 8 974 Yeast1289vs7 

32.78 (2.96,97.04) (me1; reminder) 8 1484 Yeast5 

39.15 (2.49,97.51) (pp, imL; cp, im, imU, imS) 7 281 Ecoli0137vs26 

39.15 (2.49,97.51) (exc; reminder) 8 1484 Yeast6 

128.87 (0.77,99.23) (19; reminder) 8 4174 Abalone19 
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TABLE 4. Average results for our method and other cost-

sensitive methods for the highly imbalanced datasets 

AUCTst AUCTr Algorithms 

0.8029 0.9809 CS- C4.5 

0.7521 0.7703 CS-SVM 

0.8227 0.9300 CS-FHGBML 

0.8221 0.8129 CS-3NN 

0.6782 0.6875 CS-MLPNN 

0.7910 0.7983 CS-AdaC2 

0.7936 0.8910 GP-COACH-9 

0.8020 0.9050 GP-COACH-H 

0.8106 0.8412 GA-FS+GL 

0.7793 0.8631 FRBIC 

0.8428 0.8771 CS-FRBICwl 

0.8627 0.8928 CS-FRBIC 

 

 

In these tables, in these tables, the results for CS-

FH-GBML and 3-NN methods are extracted from 

Lopez’s papers [4] and for CS-AdaC2 are obtained from 

[24]. The results for GA-FS+GL are obtained from its 

original papers [27]. The results for CS-C4.5, CS-SVM 

and CS-MLPNN are extracted from KEEL Software. 

Observing the table of average results, it is obvious that 

our method has the best average results. It means that 

our method is the best performing FRBCS in highly 

imbalanced datasets. 

 

 

5. CONCLUSIONS 
 

In this paper, we discussed a challenging and critical 

problem in knowledge discovery and data engineering 

fields: the imbalanced learning problem. Our aim was to 

obtain an accurate and compact fuzzy rule based 

classifier with a low computational cost. 

A novel framework was presented to design cost-

sensitive FRBCS algorithms. The framework was based 

on the identification of difficult instances and cost 

modification of minority ones. An entropy-based 

concept was utilized to detect the difficult instances and 

to give the cost to them. This measure was calculated 

after performing an accurate fuzzy clustering using 

FPSO.  

In the following part, the contributions of this paper 

are listed so as to produce a novel cost-sensitive FRBCS 

algorithm: 

 Finding difficult minority samples and just changing 

their cost. The misclassification cost of the 

remaining samples is 1. But in previous works, if a 

minority sample was misclassified as a majority one, 

the associated misclassification was a constant 

number such as IR and this penalty was the same for 

all minority samples. 

 Applying fuzzy versions of Gini index and DKM 

criterion to calculate the final cost functions. 

 Defining novel cost function and matrix according to 

the geometric mean of entropy, Gini index and 

DKM criterion. 

 Utilizing a new fitness function in the lateral tuning 

phase by GA (i.e. Equation (13)).   

The results of this methodology represent more superior 

results over others in almost all datasets. Performance of 

this method was also compared to those of various 

previous cost-sensitive approaches. 
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هچكيد
 

ی جدیدی در این مقاله، روش ترکیبی جدیدی برای طراحی یک سیستم مبتنی برقانون حساس به هزینه و نیز معیار هزینه

موثر الگوها، از  یپیشنهاد شده است. به منظور محاسبه هزینه DKMو    Gini indexبراساس ترکیب سه مفهوم انتروپی، 

ی طبقه بندی های دشوار را شناسایی کرده و هزینهاستفاده شده است. این الگوریتم نمونه PSOو  FCMبندی ترکیب خوشه 

برای بهبود کارایی طبقه بندی از میزان سازی جانبی توابع  ،کند. همچنینها را با استفاده از معیار پیشنهادی محاسبه میاشتباه آن

شود و در نهایت کارایی روش پیشنهادی با چندین الگوریتم حساس به استفاده میکارگیری الگوریتم ژنتیک ه عضویت با ب

کار ه برای ارزیابی نتایج ب AUCاعمال و معیار  KEELمجموعه داده از  73هزینه دیگر مقایسه شده است. آزمایش بر روی 

قایسه از عملکرد بهتری برخوردار های مورد مدهد که روش پیشنهادی نسبت به دیگر روشگرفته شده است. نتایج نشان می

 است.
doi: 10.5829/idosi.ije.2015.28.08b.08 

 


