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A B S T R A C T  
 

 

A parametric study was carried out in order to investigate the buckling capacity of the vertically 

stiffened cylindrical shells. To this end, ANSYS software was used. Cylindrical steel shells with 

different yield stresses, diameter-to-thickness ratios (D/t) and number of stiffeners were modeled and 
their buckling capacities calculated by displacement control nonlinear static analysis.  Radial basis 

function (RBF) neural networks were used to predict the buckling capacity of shells. Herein, 70 
percent of the results of numerical analyses were used to train the neural network and the remainders to 

test and validate the results. Results of this study showed that RBF neural networks are useful tools to 

predict the buckling capacity of vertically stiffened cylindrical shells. It was also shown that buckling 
capacities of stiffened shells exponentially vary by distance of adjacent stiffeners (unstiffened length).  

doi: 10.5829/idosi.ije.2015.28.08b.07 

 
 

 
1. INTRODUCTION1 
 

Buckling is one of the major failure modes of the thin 

walled cylindrical shells. Hence, there is a worldwide 

interest in investigating the buckling capacity of these 

types of structures. Cylindrical shells are one of the 

most common thin walled structures. The buckling 

capacity of cylindrical shells was investigated by 

Timoshenko in early 1900s. Since then the buckling of 

cylindrical shells has been investigated by several 

researchers [1]. Buckling of cylindrical shells depends 

on several parameters such as geometric specifications, 

boundary conditions, inelastic behavior and 

imperfections [1, 2]. Such parameters may cause shell 

buckling to occur in stresses below the classical 

buckling stress presented by Timoshenko [2]. Rotter 

and Teng [3] investigated the effects of weld 

depressions on buckling capacity of cylindrical shells. 

Arbocz and Bobcock [4] studied the effects of 

imperfections on buckling of cylindrical shells. 

                                                           

1 1*Corresponding Author’s Email: razzaghi.m@gmail.com (M. S. 
Razzaghi) 

Furthermore, several valuable studies on buckling of 

cylindrical shells are available [5-8].  

Several techniques are used to increase the buckling 

capacity of cylindrical shells. The effects of vertical 

stiffeners (stringers) on buckling of cylindrical shells 

have been investigated by researchers all around the 

word [9-14]. Razzaghi and Karimi [10] showed that 

although the stringers increase the axial buckling 

capacity of cylindrical shells, they may decrease the 

buckling capacity of shells due to global shear.  

During the recent decades, numerical analysis has 

been carried out to investigate the buckling and post 

buckling behavior of shells [15-17]. Numerical analysis 

is a fast and easy method for parametric study of 

buckling of shells, especially in inelastic problems. The 

most important shortcoming of numerical analysis of 

shells is convergence difficulties associated with 

nonlinear problems. Soft computing techniques such as 

artificial neural networks are useful tools to decrease the 

number of analyses in parametric studies [18].  

Regarding to the remarkable capability of artificial 

neural networks, several researchers have implemented 

artificial neural networks in many engineering problems 

such as concrete technology [19], structural engineering 
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[20], earthquake engineering [21] and offshore 

structures [22]. In this study inelastic buckling capacity 

of cylindrical steel shells with stringers was 

investigated. Because of high degrees of material and 

geometric nonlinearity, noticeable convergence 

difficulties may happen during numerical analysis. 

Hence, a parametric study on buckling capacity of such 

a structure is time consuming, and sometimes 

impossible. On the other hand, calculating the inelastic 

buckling capacity of stiffened shells via solving 

nonlinear partial differential equations for various shells 

is dramatically difficult. Thus, there is a remarkable 

need to investigate the buckling capacity of such 

structures using a reliable simpler method. Artificial 

neural networks maybe a suitable approach for 

approximate solution of complex problems. It should be 

noted that although neural predicting techniques are 

usually simple for implementation, a deep attention is 

required to obtain reliable results. To this end, in this 

study nonlinear numerical analysis was used. Moreover, 

radial basis function (RBF) neural networks were used 

in order to predict the buckling capacity of vertically 

stiffened shells.  

 

 

2. NUMERICAL ANALYSIS 
 
In order to calculate the inelastic buckling capacity of 

cylindrical steel shells with stringers, numerical analysis 

was used. To this end, ANSYS finite element software 

was used [23]. More than 160 cylindrical shells of 

various geometrical specifications and material 

properties were modeled (see Table 1). It should be 

noted that the cross section of all of the stringers were 

rectangular and their width was10 cm. Furthermore, the 

heights of all of the models were 15m. It is worth 

mentioning that all of the degrees of freedom were 

restrained at bottom and were released at top of all of 

the shells.  Four node SHELL 181 elements having six 

degrees of freedom at each node were used to model 

cylindrical shells and stringers. The elements are 

capable of considering material nonlinearity and large 

deformation effects.  Material nonlinearity of steel was 

accounted for based on Von Mises yield criterion. 

Kinematic hardening rule was used to define the 

material property in these elements. Bilinear stress-

strain model were considered for cylindrical shell and 

stringers. The elastic modulus of shell and stiffeners 

was 2.1x10
5
 MPa and the tangent modulus was assumed 

to be 4200 MPa. Figure 1 indicates a finite element 

model of one of the stiffened shells. In order to calculate 

the buckling capacity of shells, pure axial displacements 

were incrementally applied to the top of the shells. In 

order to calculate the buckling capacity of shells 

variations of axial load versus axial shortening of shells 

were plotted. The bifurcation point of the axial load-

shortening graph of shell was considered as buckling 

load of a particular shell. It should be noted that the 

element tests and validation of models were carefully 

conducted according to techniques provided by Cook 

[24]. Several buckling modes may occur in stiffened 

shells (e.g. local buckling of shell, in-panel buckling of 

shell, global buckling and stringer buckling). In this 

study both in panel and global buckling mode of the 

shell were considered. In other words, local buckling 

modes of shell and/or stiffeners were not taken into 

account.  
Results of numerical analyses revealed that the 

buckling capacity of a particular shell increases by 

decreasing the unstiffened length of the shell. The 

unstiffened length of the shell is defined as distance 

between the adjacent stiffeners and can be calculated as 

follows:         (1), where d is an unstiffened length 

of the shell, D diameter the cylindrical shell and n the 

number of stringers. In unstiffened shells d is the 

perimeter of the cross section of the shell.  

Variation of buckling capacity of shells with d is 

indicated in Figures 2-7. As indicated in Figures 2-7, the 

relation of dimensionless buckling capacities of shells 

(Pcr/Pcr0) and d can be expressed by a power function. 

Dimensionless buckling capacity of shell is defined as 

the ratio of the buckling capacity of a stiffened shell to 

that of the same unstiffened one. The above mentioned 

figures also show that the yield stress has low influence 

on buckling capacity of shells with large unstiffened 

lengths. This happens because the stiffened shells, 

especially those with large number of stiffeners, 

experience noticeable nonlinear behavior prior to 

buckling. The unstiffened length of the cylinders plays a 

role in buckling mode of the shells. In most of the shells 

with large numbers of stiffeners in-panel mode of 

buckling or combination of in-panel and stringer 

buckling took place; but, in other shells global buckling 

was the major failure mode. 

 

 
TABLE 1. Specifications of the models 

Item Diameter (m) Stringer thickness (mm) Shell thickness (mm) Yield stress (MPa) Number of stringers 

1 10 1, 1.2, 2 1, 1.2, 2 250, 300, 370 0-4-8-16-32-64 

2 15 1, 1.2, 2 1, 1.2, 2 250, 300, 370 0-4-8-16-32-64 

3 20 1, 1.2, 2 1, 1.2, 2 250, 300, 370 0-4-8-16-32-64 
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Figure 1. FEM model of a stringer stiffened shell 

 

 

 
Figure 2. Variation of dimensionless buckling capacity of 

shells with their unstiffened length (D/t = 750) 
 

 

 
Figure 3. Variation of dimensionless buckling capacity of 

shells with their unstiffened length (D/t = 830) 

 
Figure 4. Variation of dimensionless buckling capacity of 

shells with their unstiffened length (D/t = 1000) 
 

 

 
Figure 5. Variation of dimensionless buckling capacity of 

shells with their unstiffened length (D/t = 1250) 
 

 

 
Figure 6. Variation of dimensionless buckling capacity of 

shells with their unstiffened length (D/t =1500) 
 

 

 
Figure 7. Variation of dimensionless buckling capacity of 

shells with their unstiffened length (D/t = 1670) 

 

Stringers 
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Figure 8. The effects of D/t on buckling capacity of stiffened 

shells 

 

 

 
Variation of dimensionless buckling capacity of 

shells with unstiffened length for various D/t ratios and 

constant fy is shown in Figure 8. As indicated in Figure 

8, there is not a meaningful relationship among the 

results of the buckling capacities stiffened shells and D/t 

(especially in shorter unstiffened lengths).  

 

 

 

3. ARTIFICIAL NEURAL NETWORKS (ANN) 
 
3. 1. Theoretical Background            Artificial neural 

networks are simple computer model of the human 

brain. They are capable of mapping a relation between 

information in input and output layer. Several types of 

ANNs (e.g. Multi-layer perceptron, RBF, etc.) are 

available. Multi-layer perceptron (MLP) and Radial 

basis function (RBF) neural network are two of the most 

common neural networks which use to solve 

engineering problems. The MLP neural networks 

include a single input layer, one or more hidden layer(s) 

and an output layer. As indicated in Figure 2, each layer 

includes one or more artificial neuron(s). All neurons 

are fully connected to the neurons of the neighboring 

layer; but neurons within a same layer are not connected 

together. The RBF neural networks have simple 

structures with three distinct layers [25-28]. The 

information is collected by the first layer (input layer) 

and formulated the input vector. The second layer is a 

hidden layer which performs a non-linear 

transformation to the input vector. Finally, the third 

layer applies a linear transformation from hidden layer 

to the output space [25-28]. The j
th 

output of a RBF 

neural network, yj(p), can be mathematically defined as 

follows: 

  ( )  ∑   
 
   ( )     (1) 

where Ri(p) is the activity of node i which is the 

Euclidean norm of the difference between the input 

vector and the node center: 

  ( )  ‖   ̂ ‖  (2) 

where   ̂  is the node center. Several radial basis 

functions are available; but the Gaussian function is 

usually preferred [28]. Hence, Equation (3) can be 

rewritten as follows: 

  ( )   
 
‖   ̂ ‖

 

  
 

  
(3) 

where σi  is a scalar width of the  i
th

  RBF unit. 

 

3. 2. Network Architecture             Radial Basis 

Function (RBF) networks have simple structure that 

includes a hidden layer with radial nonlinear functions 

and an output layer with linear transfer functions. They 

need to have more neurons compared to back 

propagation networks, but they have simpler training 

method than MLP networks [29]. Hence these networks 

usually have more efficiency when much training 

vectors are available. 

In this study, RBF neural networks were used in 

order to predict the buckling capacity of stiffened 

cylindrical shells. To this end, 70% of the results of 

numerical analyses were selected to train the artificial 

neural networks. Various architectures were selected 

and examined. Generally, there is not a unique method 

to select the optimum architecture for neural networks 

[30]. In this study, the squared correlation coefficient 

(R
2
) and mean squared error (MSE) are the criteria for 

selecting the appropriate network.  In other words, the 

neural network which had the least mean square error 

(MSE) and the maximum correlation factor (R
2
) were 

selected as the most suitable neural network. Thickness 

of shell and stiffeners, number of stiffeners, yield stress 

and the diameter of the shells were considered as input 

vectors and the dimensionless buckling capacity was 

considered as an output of the network.  

Figure 9 indicates the performance curve of the 

selected RBF network. It is shown that the selected 

network reaches the performance of 2.56x10
-6

 in 99 

epochs which is a reasonable performance. Comparison 

of the prediction of the neural network with results of 

numerical analysis is shown in Figure 10. As shown in 

Figure 10, the RBF network has an acceptable potential 

to predict the buckling capacity of stiffened shells. In 

order to estimate the accuracy of the ANN predictions, 

the ratio of results of ANN to those estimated by 

numerical analysis were calculated for 108 samples (See 

Figure 11).  

To this end, 108 new geometric-material 

specifications were simulated by the selected neural 

network and simultaneously analyzed by FEM. Figure 

11 indicates that the maximum error in ANN prediction 

is less than 20%. Furthermore in most of the cases 

(more than of 80% of the samples) the error is less than 

10%.  
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Figure 9.  Performance curve of the selected RBF network 

 

 

 
Figure 10. Neural predictions vs. results of FEM analyses 
 

 

 
Figure 11. The accuracy of neural predictions in simulated 

shells 
 

 

4. CONCLUDING REMARKS 
 
A combination of nonlinear numerical analysis and 

artificial neural networks were implemented in order to 

estimate the buckling capacity of cylindrical stiffened 

shells. To this end, ANSYS software was used for 

nonlinear FEM analysis and RBF neural networks for 

neural prediction. Different structures of RBF networks 

were used and the best network was selected based on 

the minimized MSE and maximized R
2
.  

Results of this study revealed that the relation of 

nonlinear buckling capacities of axially loaded 

cylindrical stiffened shells and their unstiffened length 

is approximately a power function. Results of the 

numerical analyses also revealed that yield stress has 

low influence in buckling capacity of shells with large 

unstiffened lengths.  It was also shown that RBF neural 

networks have a noticeable potential in accurate 

estimation of buckling capacity of stiffened shells. The 

maximum error in ANN prediction is less than 20%. 
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هچكيد
 

 

های قائم، مطالعات پارامتریک به انجام رسید. برای این کنندهای با سختهای استوانهبه منظور بررسی ظرفیت کمانش پوسته

ای فولادی با تنش جاری شدن، نسبت ارتفاع به قطر و تعداد ای استوانههاستفاده شد. پوسته ANSYSمنظور از نرم افزار 

سازی شدند و ظرفیت کمانش آنها با استفاده از تحلیل استاتیکی غیرخطی با کنترل تغییر  گوناگون مدلهای کنندهسخت

هفتاد استفاده شد. برای این منظور  RBFبینی ظرفیت محوری کمانش از شبکه عصبی مکان محاسبه شد. به منظور پیش

سنجی نتایج کنار های عددی برای آموزش شبکه استفاده شدند و مابقی برای تست و صحتدرصد از نتایج خروجی تحلیل

بینی ظرفیت کمانش ابزاری مناسب برای پیش RBFهای عصبی شبکه که دهدگذاشته شدند. نتایج این پژوهش نشان می

ها با فاصله نشان داده شد که تغییرات ظرفیت کمانش پوسته ،علاوه بر اینکننده قائم هستند. ای با سختهای استوانهپوسته

 کند.مجاور )طول مهار نشده( به صورت نمایی تغییر میهای کنندهسخت
doi: 10.5829/idosi.ije.2015.28.08b.07 

 


