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A B S T R A C T  
 

 

The nonlinear solvers in numerical solution of water flow in variably saturated soils are prone to 
convergence difficulties. Many aspects can give rise to such difficulties, like very dry initial 
conditions, which causes a steep pressure gradient and great variation of hydraulic conductivity occurs 
across the wetting front during the infiltration of water.  So, the averaging method applied to compute 
hydraulic conductivity between two adjacent nodes of the computational grid is one of the most 
important issues influencing the accuracy of the numerical solution of one-dimensional unsaturated 
flow equation i.e., Richards’ equation. A number of averaging schemes such as arithmetic, geometric, 
harmonic and arithmetic mean saturation have been proposed in the literature for homogeneous soil. 
The resulting numerical schemes are evaluated in terms of accuracy and computational time. It can be 
seen that the averaging scheme in the framework of arithmetic approaches favorably to other methods 
for a range of test cases. 
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1. INTRODUCTION1 

 
Water flow in partially saturated porous medium is 
commonly described with a nonlinear partial differential 
equation, known as the Richards’ equation and closed 
by constitutive relations to describe the relationship 
among fluid pressures, saturations, and relative 
permeabilities [1, 2]. Its one-dimensional form is often 
used in hydrological and agricultural engineering to 
predict changes of water content and fluxes in the soil 
profile, which in turn can be used as input in larger scale 
hydrological models or contaminant transport models. 
The same equation can be also used to simulate 
moisture transport in building materials or other 
industrial porous materials. Richards’ equation is 
derived by combining Darcy’s law with mass 
conservation equation in porous media. For the case of 
one-dimensional flow in an arbitrary spatial direction it 
can be written into one of the following forms:  
Mixed, or coupled form of Richards’ equation:  
                                                        
1*Corresponding Author’s Email: sislam_25@yahoo.com (M. Sayful 
Islam) 

    =      (ψ)  ψ  + 1    (1) 

where ψ is the pressure head [L], θ(ψ) is the volumetric 
soil moisture content [L3 L-3], K(ψ) is the nonnegative 
hydraulic conductivity [LT-1], t is the time [T], and z is 
the vertical coordinate assumed positive upward [L]. 
Pressure-based, ψ-form of Richards’ equation is:   (ψ)  ψ  =      (ψ)  ψ  + 1    (2) 

where  (ψ) =    ψ
 is the moisture capacity [L-1].  

Moisture-based, θ-form of Richards’ equation is:     =      (θ)  ψ   +       (3) 

where  =   (ψ) =   ψ   is the soil water unsaturated 

diffusivity [L2 T-1]. The ψ-based formulation is 
considered to be more useful for practical problems 
involving flow in layered or spatially homogeneous 
soils, as well as for variably saturated flow problems. 
Unfortunately, simulation of infiltration in dry and/or 
high nonlinear soils using ψ-based formulation often 
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faces difficulties in conserving mass. Water-content-
based schemes may be written in a mass-conservative 
form and hence should in most cases conserve mass 
within the computation domain regardless of time step 
and grid spacing [3]. A limitation of the θ-based 
formulation is that this form cannot be used to describe 
flow in the saturated zone, and flow in layered soils, and 
also is not easy to simulate. Furthermore, θ-based 
algorithms may suffer from mass balance errors at the 
boundaries even when this formulation accurately 
conserves mass in the interior of the flow systems. 
Whereas in the mixed form the mass is perfectly 
conserved, improving the accuracy of the results 
without requiring any additional computational effort. 
However, conservation of mass is shown to be 
insufficient to guarantee good numerical solutions.  

The numerical simulators have been paid the most 
attention to overcoming the nonlinearity of flow and 
mass transport problems and reducing numerical 
dispersion and artificial oscillations in modeling flow in 
variably saturated porous media. In comparison, little 
efforts have been directed to elimination or reduction of 
mass balance error. Mass balance is defined as the ratio 
of the total masses of fluid added to the domain to the 
total net flux into the domain [4]. An accurate numerical 
simulator should conserve mass over entire 
spatiotemporal domain. A standard approach to reduce 
mass balance error in a highly nonlinear equation or a 
set of coupled nonlinear equations is using small time 
steps and iterative procedures, which in turn makes the 
solution very time consuming. Global mass balance 
errors may not be totally eliminated for severe nonlinear 
problems even when very small time step sizes are used 
[5]. To obtain the numerical solution of variably 
saturated one-dimensional flow problems, finite-
difference approximations have been widely used in 
several studies [6- 10]. Fewer researchers have used 
finite differences to solve variable saturated flow 
problems in higher dimensions [11- 13].  

Most of the existing two-dimensional finite-
difference solutions to variably saturated flow problems 
are not robust because they incur numerical instabilities 
and convergence difficulties [11, 14, 15]. These 
problems arise primarily from inefficiencies of the line 
successive over-relaxation and alternating directional 
implicit schemes used in solving the two-dimensional, 
nonlinear equations. The most successful and efficient 
example of a finite-difference solution to two-
dimensional, variably saturated flow problems has been 
established [12]. A competitive numerical procedure to 
solve infiltration problems in dry soils is developed 
which is not account for the effects of specific storage, 
and consequently it cannot be used to model accurately 
a wide variety of variably saturated flow problems, 
including many transient drainage and seepage face 
phenomena in large domains [12].  

Low order finite difference method (FDM) or finite 
element method (FEM) [4, 16- 19], mixed-hybrid FEM 
[20] and discontinuous Galerkin FEM [21] schemes are 
usually performed to spatial discretization of Equation 
(1). To avoid oscillations FEM discretization mass-
lumping must be applied [4]; standard low-order FEM 
leads to essentially the same discrete equations as FDM.  
In order to compute the corresponding water flux, it is 
necessary to estimate the average value of the hydraulic 
conductivity between adjacent nodes for each case. The 
most popular averaging schemes include arithmetic, 
geometric, upstream and integrated means. This is 
shown by numerous studies [20, 22-29] the accuracy of 
the numerical solution is sensitive to the choice of the 
averaging method, especially on coarser grids. Using 
adaptive grid refinement [21, 30, 31] or by using a 
transformed variable instead of the water potential head 
in Equation (1) [32, 33], however such approaches 
imply additional algorithmic complexity; the error can 
thus be significantly reduced. Hence, there is still some 
interest in developing improved averaging schemes that 
can be used in the framework of standard fixed-grid 
numerical algorithms. 

A significant improvement in accuracy is obtained 
by using Darcian means approach [34]. The average 
conductivity is chosen in such a manner that the 
resulting flux is equal to the flux obtained from the 
solution of steady state flow equation between the two 
nodes according to this method. As a result the 
internodal conductivity depends on the distance between 
the nodes, except for the case of horizontal flow. 
Predominantly K(ψ) that functions the computation of 
”true” Darcian means requires numerical solution of 
steady state problem. This makes the method unsuitable 
for practical application. Although it can be used, only 
as a starting point for the development of approximate 
averaging formulas, which can be more readily 
implemented in practice [22, 23, 28, 35, 36]. The effect 
of variable coefficient of permeability for a confined 
seepage problem under non-homogeneous and 
anisotropic conditions is successfully examined using 
least square finite element formulation [37]. 

The objective of this work is to develop and present 
a computationally simple and efficient finite-difference 
algorithm that can solve one-dimensional variably 
saturated flow problems using standard solution 
approaches and to evaluate the accuracy, efficiency and 
robustness of four selected averaging schemes for a 
range of porous media conditions.  
 
 
2. SPATIAL DISCRETIZATION 
 
In order to separate between numerical errors associated 
with the water content or capillary pressure head 
distributions and the evaluation of the flux at the soil 
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surface, we consider the problem of solving Equation 
(1) given the following initial and boundary conditions:  ( ,  = 0) =   ( ),  ( = 0,  > 0) =   ,      ( =  ,  > 0) =     

(4) 

where    is the initial condition and    and    are the 
given prescribed values of   and Z is the vertical extent 
of the flow domain.  

A finite-difference approximation of Equation (1) on 
uniform grid spacing is assumed which transforms this 
partial nonlinear differential equation into the following 
set of nonlinear algebraic equation [38]:  [ (  ) +     (  )]     =                −       +          +            +           −          (5) 

where   is a subscript denoting the grid point or cell (0 ≤  ≤  ),        is the  interblock conductivity for 
calculating the capillary component of the water flux 
between cells  + 1 and   depending on the unknown 
potentials     ,    and     . 
 
 
 
3.CONSTITUTIVE RELATIONSHIP 
 
In order to solve Richards’ equation, we have to specify 
the constitutive relations between the dependent 
variable pressure head and the nonlinear terms such as 
moisture content, moisture capacity and conductivity. 
The constitutive relations used in the work reported here 
is the van Genuchten [2] pressure-saturation 
relationship, which is given by:   ( ) =  ( )          (6) 

where    is the residual water content,    is the water 
content at saturation,    is the effective saturation,   
and   are the parameter depending on the pore size 
distribution and  = 1 −   . The specific moisture 
capacity  ( ) is defined as:  ( ) = (  −   )   ( )  (7) 

where    ( ) is evaluated with the analytic 
differentiation  of Equation (6). 

The saturation-permeability relation is described 
using Mualem’s [39] model for the relative permeability 
of the aqueous phase,  

 (  ) =        1−  1−           (8) 

where    is the water-saturated hydraulic permeability 
and   =   ( ).  

4. CONDUCTIVITY AVERAGING SCHEMES FOR 
HOMOGENEOUS SOILS 
 
An imperative phase of this work is the approach used 
to estimate conductivities that vary in space as a 
function of   within the spatial discretization scheme. 
For soils with highly nonlinear properties, the accurate 
estimation of the interblock hydraulic conductivity is 
crucial. Various methods of estimation have been 
proposed in the finite-difference framework for 
calculating       which differ considerably in their 
prediction of the flux and the water content distribution. 
In particular, these differences are most prominent near 
the wetting front where infiltration into dry soil is 
concerned [24, 32]. The most common approach for 
estimating the interblock conductivity       , when 
calculating the capillary component of the flux between 
numerical cells, is based on the arithmetic mean (AM)  
[24, 29, 34], i.e.       = 0.5(    +   )  (9) 

This is simple and inexpensive to compute. 
Another expression for estimating the interblock 

conductivity is that the geometric mean (GM) [24], i.e.,        =          (10) 

The harmonic mean (HM) technique [24], for 
computing the interblock quantities can be expressed as:         =                 (11) 

The final approach considered for estimating        is 
termed the arithmetic mean saturation (KMS) [29] and 
this method is easy to compute:        =   0.5      +        (12) 

where    is the effective saturation. Some numerical 
studies published in the literature show that the methods 
listed above are not really universal, because their 
performance depends on the shape of the conductivity 
function, initial boundary conditions of the problem 
under consideration and grid size ∆z [20, 22- 25, 28, 
29]. A more accurate averaging technique is based on 
the assumption that the average conductivity should 
reproduce the steady-state flow rate between the two 
considered nodes, with the water potential values    and      taken as the boundary conditions.  
 
 
5. RESULT AND DISCUSSION 
 
Numerical experiments is performed to test the 
computer program and to investigate the behavior of 
different conductivity estimating techniques. Two tests 
are presented here involving the infiltration of water in 
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homogeneous soil. An implicit ODE or DAE integrator, 
with a stiff solver MATLAB ‘ode15s’ which is based 
upon forms of the backward differentiation formulas is 
used. In order to assess the computational differences 
among the conductivity averaging schemes, first the 
model must be validated. This was achieved by 
independently testing the approaches against several 
benchmark problems. The benchmark results for the 
finite-difference have been previously discussed [38, 
40]. For the matter of robustness and efficiency of the 
approaches, we study different features of ODE solver, 
such as, the number of successful steps, failed attempts, 
function evaluations, partial derivatives, LU 
decompositions, and solutions of linear systems. All of 
the numerical codes have been written by MATLAB 
7.6.0 (2008a) software and executed on a Dell 
INSPIRON, 2.56 GHz system. Each test case was run 
with Relative Tolerance       = 1.0 × 10   and 
Absolute Tolerance       = 1.0 × 10   .  
 
5. 1. Test Case 1       The first test case consists of 
infiltration into an unsaturated soil column for the van 
Genuchten model with the soil properties of  = 2,  = 3.35/ ,   = 0.102,   = 0.368,   =7.97  /   . The initial conditions of a 0.3m high 1D 
soil column are initially dry with a pressure head   ( , 0) = −10  . The boundary conditions are 
applied inhomogeneous Dirichlet with the top of the soil 
column   (0.3, 0) = −0.75  , and the bottom of the 
soil column   (0,  ) = −10  . The initial conditions 
are not consistent with boundary conditions, and as such 
a steep gradient in the pressure head is setup. The 
spatial grid is uniform and as a spacing of 0.002 m, the 
automatic time stepping is considered.  

Van Genuchten hydraulic conductivity profile for 
different averaging techniques are presented in Figure 1. 
A comparison of the results exposed in this figure of 
snap shot (see Figure 2) shows the arithmetic mean 
conductivity averaging very little smears the steep 
wetting front more than other schemes.  

Richards’ equation has no analytic solution, which 
makes rigorous testing of the code more involved. The 
literature [38, 40] is a well documented example which 
provides qualitative agreement. Figures 3 and 4 are a 
comparison of solution profiles for uniform grids for 
pressure head and moisture content at different times for 
the arithmetic mean technique, respectively. Comparing 
the results obtained with this approaches shows 
excellent agreement [38, 40]; however, as the data is not 
provided it is impossible to evaluate quantitative 
agreement between the solutions.  

In Figures 5 and 6 a comparison of the behavior of 
various conductivity averaging schemes of pressure 
head and moisture content profiles at the end of the 
simulation is shown.  Graphical results indicate that the 
AM, GM, and KMS permeability estimation techniques 
are more robust than HM.  

 
Figure 1. Hydraulic conductivity profiles for four averaging 
schemes. 
 

 
Figure 2. Snap shot of hydraulic conductivity profiles for four 
averaging schemes. 
 

 
Figure 3. Pressure head profiles of AM averaging technique. 
 

 
Figure 4. Water content profiles of AM averaging technique. 
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It is noted that numerical error is produced at the 
bottom of the soil column based on the harmonic mean 
averaging. Several points can be highlighted from the 
simulation such as the number of successful steps, the 
number of function evaluations, the number of Jacobian 
evaluations, the number of LU decomposition, and the 
total CPU time for each permeability estimation 
technique shown in Table 1. It can be seen that the 
computational performances produced by the various 
intermodal conductivity techniques are much closed 
except for harmonic mean technique.  

 
 

 
Figure 5. Pressure head profiles of AM, GM, KMS and HM  
techniques at t=0.25 days 
 

 
Figure 6. Water content profiles of AM, GM, KMS and HM 
techniques at t=0.25 days. 
 

 
Figure 7. Time step variations of various schemes throughout 
the simulation. 

TABLE 1. Comparison of computational statistics for various 
estimation techniques 
 AM GM KMS HM 

No. of successful steps 4896 4773 5034 18788 
No. of failed attempts 117 61 122 1131 
No. of function evaluations 12039 12164 12599 41418 
No. of partial derivatives 19 20 19 66 
No. LU decompositions 501 356 509 2686 
No. of Solutions of linear 
systems 

9188 9163 9748 31517 

CPU (s) 19.43 23.00 20.51 154.85 
 
 

The evolution of time step (see Figure 7) variation of 
AM, GM and KMS shows a smooth increase of the step 
size. The step size evolution produced by the automatic 
adaptive scheme is quite intuitive. Throughout the 
simulation, the profiles are characterized by very rapid 
and highly nonlinear moisture flows due to abrupt 
forcing.  Except for the case of HM, a dramatic rise in 
step size takes place as the infiltration front reaches the 
end of the soil column. Therefore the most robust 
combination of interblock permeability estimation are 
the AM, GM and KMS for this test case.  
 
5. 2. Test Case 2           In order to evaluate the 
influence of the different conductivity averaging 
approaches, a vertical infiltration problem in a 60cm soil 
will be solved. This soil column is parameterized using 
the van Genuchten relationships with   =0.00922   / ,  = 0.0035/  ,   = 0.102,    =0.368, and  = 2. A vertical discretization of 0.6 cm is 
used. The Dirichlet boundary conditions are  (0,  ) =−75    and  (60,  ) = −1000   . The initial 
pressure profile is specified as: 

  ( ,  ) =  −1000,          ≥ 06−75 −     .  ,     0 ≤  < 0.6   
These forcing conditions lead to the development of a 
sharp infiltration front and induce large gradients in the 
solution. This type of problem provides a rigorous test 
case for time integrators and is well suited for the 
analysis of numerical convergence and efficiency. We 
used analytical differentiation of the soil characteristic 
curves. The soil moisture characteristic curves of 
hydraulic conductivity profiles for the various 
interblock estimation techniques by the van Genuchten 
model is shown in Figure 8. The propagation of pressure 
head and moisture content at the time 20000s, 40000s, 
60000s, 80000s and 100000s through the problem 
domain with arithmetic estimation technique obtained 
by automatic adaptive time stepping is presented in 
Figures 9 and 10, respectively, which are in good 
agreement with the published studies [4, 41-43].  
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Figure 8. Hydraulic conductivity profiles for four averaging 
schemes 
 

 
Figure 9. Pressure head profiles of AM averaging technique 
 

Figure 10. Water content profiles of AM averaging technique. 
 

 
Figure 11. Pressure head profiles of AM, GM, KMS and HM 
techniques at t=100000s. 

 
Figure 12. Water content profiles AM, GM, KMS and HM 
techniques at t=100000s. 
 

 
Figure 13. Time step variations of various schemes 
throughout the simulation.  
 
 
TABLE 2. Comparison of computational statistics for various 
estimation techniques 
 AM GM KMS HM 

No. of successful steps  4435 3727 4144 Div 
No. of failed attempts 127 38 143 Div 
No. of function evaluations 9849 8318 8773 Div 
No. of partial derivatives 14 11 11 Div 
No. LU decompositions 526 243 525 Div 
No. of Solutions of linear 
systems  

8847 7217 7672 Div 

CPU (s) 13.26 12.13 10.47 Div 
*Div=Divergent 

 
 

Figures 11 and 12 show the pressure head and 
moisture content profiles for various interblock 
estimation techniques at the end of the simulation for 
this problem. In these two figures, we see that 
simulation is noticeably less accurate within the 
framework of GM and KMS techniques. Weighting 
scheme HM completely diverges for this test problem. 
The similar behavior is shown by the GM and KMS 
averaging approaches. Based on the results of this 
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simulation, it is concluded that the best selection for this 
test case is arithmetic weighting scheme. 

Simulation statistics for various runs are 
summarized in Table 2. The algorithm efficiency can be 
assessed also on the basis of actual accuracy for a given 
computational cost. The total number of iterations can 
be used as the measure of computational effort since the 
CPU time is governed by the total number of matrix 
inversions, rather than the number of time steps. Least 
amount of computational efforts (the CPU time and the 
total number of iterations) using the proposed criterion 
(AM, GM, KMS) is required. 

It is of practical interest to examine the pattern of 
step size variation, shown in Figure 13. The number of 
time step is important since the time size may be 
strongly influenced by the convergence of the nonlinear 
solver. It is seen that, cost of the automatic time step 
selection is very small at the beginning of the simulation 
for all the runs but rapidly increases at the end of the 
simulation along with arithmetic approximation. 
Behavior of HM is not included here as the cause of 
divergence.  
 
 
6. CONCLUSIONS 
 
The study presents various estimating methods of 
interblock permeability for the numerical solution of the 
mixed form of Richards’ equation, which produces 
consistently superior results. Numerical trails 
demonstrate that the hydraulic conductivity plays an 
important role to solve Richards’ equation accurately. 
For example, numerical results presented for the first 
test case shows that the conductivity averaging schemes 
based on AM, GM, and KMS perform generally better 
than HM. In contrast, schemes based on GM and KMS 
averaging are shown to be sufficiently less accurate in 
test case 2. Hence, it can be concluded that the 
averaging techniques are not universal, it is highly 
problem dependent, i.e., averaging technique is highly 
dependent on the shape of the conductivity function, 
initial and boundary conditions of the problem and the 
discretization of the problem domain. In this study, we 
deal only with the application of the one-dimensional 
vertical Richards’ equation to unsaturated flow 
problems in initially dry and homogeneous soils. In 
principle, however, these weighting averaging 
approximations can also be used to analyze flow in 
more complex and realistic situations such as 
multidimensional flow in heterogeneous soils.  
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  چکیده
  

. روشهاي حل غیر خطی براي حل عددي جریان آب در خاکهاي اشباع شده احتمالا با مشکلات متعددي همراه است
عوامل مختلفی می توانند باعث افزایش این مشکلات شوند که از جمله آنها شرایط اولیه بسیار خشک است که موجب 

بنابراین، . قسمت مرطوب در طی نفوذ آب می شودگرادیان فشار با شیب زیاد و تغییرات شدید هدایت هیدرولیکی در 
روش متوسط گیري که براي محاسبه هدایت هیدرولیکی بین دو نقطه مجاور در آرایه محاسباتی استفاده می شود یکی از 

. بعدي مانند معادله ریچارد تاثیر می گذارد-مسائل مهمی است که روي دقت حل عددي معادلات جریان غیر اشباع تک
متوسط گیري مختلفی از جمله آریتمیک، ژئومتریک، هارمونیک و اشباع متوسط آریتمیک در متون براي خاکهاي  الگوهاي

ملاحظه . الگوهاي عددي به دست آمده از لحاظ دقت و زمان محاسبه مورد بررسی قرار می گیرند. همگن ارائه شده است
عدادي از موارد بررسی شده به طور مطلوبی به می شود که الگوي متوسط گیري در چارچوب روش اریتمیک براي ت

  .        روشهاي دیگر نزدیک است
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