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A B S T R A C T  
 

 

A simple method is proposed to model the open cracked beam structures. In this method, crack is 
modeled as a beam element. Hence cracked beam can be assumed to be a beam with stepped cross 
sections, and problem of determining natural frequency and mode shape of cracked beam, can be 
solved as determining these characteristics for a beam with different lengths and cross sections. With 
this work, it is not necessary to model crack as lumped flexibility model in according to fracture 
mechanics and related sciences to obtain crack stiffness, and this spring model of crack can be used  
for further analysis. 
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1. INTRODUCTION1 
 
The presence of a crack in structural members decreases 
their stiffness and natural frequencies. We can group 
different models of cracked structure in three basic 
categories [1]: equivalent reduction in local stiffness 
(smeared crack models), lumped flexibility models, and 
continuous cracked bar and beam models. A smeared 
crack model usually consists of a finite element model 
of the structure in which the damage is represented by 
an equivalent reduction in the stiffness of a particular 
element or group of the elements. Better representations 
of the effect of a crack over a region may be achieved 
by developing special finite elements, as reported by 
Haisty and Springer [2] and Gounaris and Dimaroginas 
[3]. Ibrahim [4] proposes an elasto-plastic finite element 
capable of accounting for the plastic deformation at the 
crack tip. Lumped flexibility models are based on sub-
structuring concept. The undamaged portions of the 
structure are modeled using standard techniques such as 
FEM, component mode synthesis, or partial differential 
equations, and the crack is represented by lumped 
springs or by a compliance matrix, usually derived from 
the expression for the strain energy release rate or stress 
                                                        
1*Corresponding Author’s Email:dardel@nit.ac.ir (M. Dardel) 

intensity factor. The first investigations are attributed to 
Kirmser [5]. They represented the effect of a notch by 
equivalent forces and moments at the location of the 
geometrical discontinuity. Dimarogonas [6] proposed 
the derivation of compliance constants from fracture 
mechanics and used it for vibration analysis. Christides 
and Barr initially developed models for transverse 
vibrations of a symmetric, double-edge cracked Euler-
Bernoulli beam [7] and for the torsional vibrations of a 
cracked bar [8]. Both models rely on the 
characterization of the stress concentration due to the 
crack by means of a decay function. The mixed 
variational theorem used is an extension of the Hu-
Washizu stationary principle[9], and it is now referred 
in the literature as the Hu-Washizu-Barr [10] principle. 
Christides and Barr’s model was improved and 
extended in following years by Shen ad Pierre [11-13], 
first by introducing an alternative estimation of the 
decay parameter from 2D finite element models and 
later by applying the same ideas to develop a model for 
beams with a single edge breathing crack. Chondors and 
Dimarogonas [14-17] used a similar variational 
approach, but they derived the so-called crack functions 
from energy considerations and fracture mechanics 
concepts. 

  

 

mailto:dardel@nit.ac.ir


A. Nakhaei et al. / IJE TRANSACTIONS B: Applications  Vol. 28, No. 2, (February 2015)  321-329                                   322 
  

Studies on nonlinear behavior of cracked beam using 
perturbation models have been proposed, e.g., by 
Gudmundson [18], Tsyfanskii [19], Plakhtienko and 
Yasinskii [20] and Ballo [21]. A review on the vibration 
analysis for a damage occurrence of a cantilever beam is 
given by Jassim et al. [22]. AL-Shudeifat used finite 
element modeling approach to study asymmetric 
cracked rotor [23]. Dynamic behavior of single-cracked 
beams considering the effects of axial stiffness, and 
shear deformations is carried out by Gomes and 
Almeida [24]. The damage is modeled using a rotational 
spring that simulates the crack based on fracture 
mechanics theory. Caddemi and Morassi investigate 
mathematical modeling and exact solutions of multi-
cracked Euler–Bernoulli beams [25]. Dixit and Hodges, 
gave a general formulation termed the “Unified 
Framework”, which yielded nth-order expressions 
governing mode shapes and natural frequencies for 
damaged elastic structures such as rods, beams, plates 
and shells of any shape [26]. Rakideh et al. presented 
identification of crack location in beams with different 
boundary conditions based on neural network method 
[27]. 

The most used method for modeling vibration 
characteristics of cracked beam is the lumped flexibility 
model. In this model, the cracked section is considered 
as a torsional (rotational) spring. The stiffness of this 
spring is obtained from fracture mechanics, in which 
boundary conditions, location, opening (or length) of 
the crack is not important. Here a method is presented 
for modeling of crack, in which all of these parameters 
are considered in modeling of crack. In the proposed 
method, crack is modeled as a beam element. Hence a 
cracked beam can be assumed to be a beam with 
stepped cross sections, and problem of determining 
natural frequency and mode shape of cracked beam, can 
be solved as determining these characteristics for a 
beam with different cross sections. With this work, it is 
not necessary to model crack in according to fracture 
mechanics. With this modeling method, position, width 
and height of cracks are directly included in modeling. 
With putting aside fracture mechanics from analysis, 
modeling of crack will be simple, and analytical 
solution of crack problem will be possible. 
 
 
2. MODELING OF CRACKED BEAM 
 
Figure 1 (a) shows a beam of length L  and thickness 
h , containing an edge crack of depth ch  located at a 
distances 1x  and 2x  from the left end, and the middle 
point of the crack is 1 2( ) / 2x x+  which is assigned as 
eL ,  Young's modulus of elasticity E  and mass density 
ρ  are assumed to be constant. 

3. LUMPED MODELING OF CRACK 
 
The lumped flexibility form for modeling cracked beam 
is simply shown in Figure 1 (b). In this simple model, 
the crack is modeled by massless spring with rotational 
(torsional) stiffness of CK . The effects of 
discontinuities in axial and transverse displacements are 
considered to be negligible compared with those of 
discontinuity in bending slope. The cracked beam is 
divided into two sub-beams connected by the rotational 
spring with stiffness of CK  at the cracked section whose 
bending stiffness can be given as: 

1
CK

G
=  (1) 

where, G  is the flexibility due to the crack and can be 
derived as[28]: 

( )
( )

2 2 211

2

K M dG
E a da

ν−
=  (2) 

M , is the bending moment at the cracked section; 
1

K  is 
the stress intensity factor (SIF) under mode I bending 
load; and E  is Young’s modulus at the crack tip. The 
magnitude of SIF can be obtained from the data given in 
the literature [29] through Lagrange interpolation 
technique as: 

( )1 2
6

,     ( 0.7)
M h aK F

hbh

π η
η η η= = ≤  (3) 

where, 0.7η ≤  implies that crack depth ratio changes 
from 0.0 to 0.7, and: 

( ) 2 3 4

5 6 7 8

0.6384 1.035 3.7201

5.1773 7.553 7.332 2.4909

F η η η η

η η η η

= − +

− + − +
 (4) 

 
 

 
 

 
Figure 1. (a) Beam with single crack and (b) lumped 
flexibility modeling of cracked beam. 
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The expression of ( )F η  for other values of Young’s 
modulus ratios can also be obtained by using Lagrange 
interpolation formula. Substituting Equation (4) into 
Equation (3) and then into Equation (2) and integrating 
the results give: 

( ) ( )

( )

2 2

2
0

72 1 F
G d

E h h

η π ν η η
η

η

−
= ∫  (5) 

From Eqsuations (5) and (1), the bending stiffness of the 
cracked section required for lumped flexibility modeling 
can be determined. 
 
 
4. CRACKED EULER-BERNOULLI BEAM WITH 
LUMPED FLEXIBILITY MODELS 
 
Consider an elastic cracked Euler-Bernoulli beam of 
length L , uniform cross-section area A  and moment of 
inertia I , with a crack at middle position of eL as 
shown in Figure 1. Differential equations of motion and 
boundary conditions on two segments of the beam are 
as follows: 

( ) 0,   0 ,EIw Aw x eL eL x Lρ′′′′ + = < < < <&&  (6) 

(0, ) (0, )0,  0L LEIw w EIw wδ δ′′ ′ ′′′= =  (7) 

where, ( , )w x t  is the beam transverse deflection and 
ρ mass density per unit length, A  cross section area of 
beam, E  Young’s module of elasticity and I  is area 
moment of inertial. Also, at crack location: 

( ) , 0eL
eL eL eLw w w eL EIw

+

+ − −′′= = =  

0,eL eL eL
ceL eL eLEIw EIw K w

+ + +

− − −′′′ ′′ ′= =  
(8) 

Following dimensionless parameter are defined: 

4,  ,  ,   ( 1,2)i
i

wx EI t i
L LAL

ξ τ η
ρ

= = = =  (9) 

By substituting dimensionless parameter from Equation 
(9), in Equations (6) and (7), assuming harmonic 
solution as ( , ) i i

i Ae eλ ξ ωτη τ ξ = , the related characteristic 
equation will be obtained with eigenvalues of 

2 2
1,2 ,   ( 1,2 )iλ ω β= ± = ± = . Then mode shape of beam has 

following form [30]: 
1,2 1,5 2,6

3,7 4,8

Χ ( ) cosh sinh
cos sin

C C
C C

ξ βξ βξ

βξ βξ

= +

+ +
 (10) 

Values of iβ  and the ratios of coefficients of mode 
shapes of 1/iC C , can be obtained from applying 
boundary and compatibility conditions at crack location. 

5. CRACKED TIMOSHENKO BEAM WITH LUMPED 
FLEXIBILITY MODELS 
 
Differential equations of motion and boundary 
conditions for transverse deflection w  and slope of ψ  
for beam in according to Timoshenko beam theory is as 
follows [30]: 
For 0 x eL≤ <  and  eL x L< ≤ : 

( )
( )

0, 

 0

Aw kAG w

I EI kAG w

ρ ψ

ρ ψ ψ ψ

′′ ′− − =

′′ ′− − − =

&&

&&
 (11) 

and boundary conditions are: 

( )0, 0,
0, 0L L

EI kAG w wψ δψ ψ δ′ ′= − =  (12) 

and at crack location: 

( ) ( ), , ,  
eL eLc
eL eL

Kw t eL w t eL w
EI

ψ
+ +

− −
+ − ′ ′= =

( ) ( )eL eL
kAG w kAG wψ ψ

+ −

′ ′− = −  
(13) 

where, ( ),w x t  is transverse deflection, and ( ),x tψ  is 
the slope of the deflection curve, G  indicates shear 
modulus of elasticity. k  represents the shear correction 
factor, which is assumed to be 5 / 6 . Following 
dimensionless quantities are introduced: 

2

4,  ,  ,  ,

 i
i

x kG AL EIr s r t
L E I AL
w
L

ξ ϑ ϑ τ
ρ

η

= = = = =

=

 (14) 

With assuming a harmonic solution in following form 
( ) i, Χ ( ) i

i e ωτη τ ξ ξ=  and ( ) i, Ψ ( ) i
i e ωτψ τ ξ ξ=  and obtaining 

iΨ ( )ξ  in terms of iΧ ( )ξ , we have [30]: 

4 2 2
2 2i i

i4 2
Χ Χ1 1 ωω ω 1 Χ 0

s
d d

r s rd dξ ξ

    + + + − =      
 (15) 

in the form of iΧ iAeλξ= , the characteristic equation 
for determining of mode shape eigenvalue of λ  and 
mode shape will be obtained as: 

22 2
1,2

ω 1 1 ω 1 1ω 1 
4 r s 2 r s

λ    = − + +   
   

∓  (16) 

( )1,2 1,5 1 2,6 1

3,7 2 4,8 2

Χ cosh sinh

cos sin ,

C C
C C

ξ λ ξ λ ξ

λ ξ λ ξ

= +

+ +
 

( ) ( )

( )

2
1,2 1 1,5 1 2,6 1

1

2
2 3,7 2 4,8 2

2

ωΨ ξ sinh cosh

ω sin cos

C C
s

C C
s

λ λ ξ λ ξ
λ

λ λ ξ λ ξ
λ

 
 = + +
 
 

 
 + − −
 
 

 
(17) 

Accordingly the boundary conditions are: 
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( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 2 1 1

2 1

2 1 2 1

1Χ Χ ,  Χ Χ Ψ 0

Ψ ( ) Ψ ( ) 0, 

Χ ( ) Χ Ψ Ψ ( ) 0

cb
e e e e e

K
e e
e e e e

′ ′ ′= − − =

′ ′− =

′ ′− − + =

 (18) 

where, cbK  is given by following equation: 

cbK
6 ( )

L
h Fπ η

=  (19) 

 
 
6. CRACKED EULER-BERNOULLI BEAM WITH 
CRACKS AS STEPPED CHANGE IN BEAM’S CROSS 
SECTION 
 
As pointed out in the introduction section, here crack is 
modeled as a beam element with different cross sections 
other than intact section of beam. Hence a cracked beam 
as shown in Figure 1 can be modeled as three 
interconnecting beams, with different areas, moment of 
inertias, heights and lengths. Then intact and cracked 
segments of beam has area moment of inertia of 

31/12i iI bh=  and ( )31/12c cI b h h= − , respectively, where 
h  is the thickness of the beam and ch  is the depth of 
the crack. The length of cracked beam segment is equal 
to its opening, i.e. 2 1x x− . The equation of motion for 
Euler-Bernoulli cracked beam is similar to Eqsuations 
(6) and (7), and related mode shape solution is similar to 
Equation (10). Then for a beam according to Figure 1 
and with one crack, we have (from left end of beam): 

4
4i

4

4
3 4 2

Χ Χ 0, , 

1 ,  
12

i i i i

i
i i i

i

d m bh
d

m L
I bh

EI

θ ρ
ξ

θ ω

− = =

= =

 

( ) 1, 2,

3, 4, 1

cosh sinh

cos sin , 
i i i i i

i i i i i i

W C C
C C x x x

ξ θ ξ θ ξ

θ ξ θ ξ −

= +

+ + ≤ ≤
 

(20) 

For cracked section i ch h h= − . Since the value of 
ω (natural frequency) is high, for simplicity in 
numerical calculation it is better to select iθ  as 
unknown. The ratio of 1/iθ θ  can be written as: 

32 1 2

1 2 2 3
,h h

h h
θθ

θ θ
= =  (21) 

and boundary and compatibility conditions at two ends 
of beam and location of cracks are: 

1 1 3 3 1 1 3 30 01 1Χ Χ 0,  Χ Χ  Χ Χ 0, Χ 0, Χδ δ δ δ′′ ′ ′′ ′ ′′′ ′′′= = =

( ) ( ) ( ) ( )1 1 2 1 1 1 2 1Χ Χ ,   Χ Χξ ξ ξ ξ′ ′= =

( ) ( ) ( ) ( )1 1 1 2 2 1 1 1 1 2 2 1Χ Χ , Χ ΧEI EI EI EIξ ξ ξ ξ′′ ′′ ′′′ ′′′= =

( ) ( ) ( ) ( )2 2 3 2 2 2 3 2Χ Χ ,   Χ Χξ ξ ξ ξ′ ′= =

(22) 

( ) ( ) ( ) ( )2 2 2 3 2 2 2 2 3 3 2Χ Χ , Χ ΧI I I Iξ ξ ξ ξ′′ ′′ ′′′ ′′′= =  

 
 
7. CRACKED TIMOSHENKO BEAM WITH CRACKS 
AS STEPPED CHANGE IN BEAM’S CROSS SECTION 
 
Following the same procedure as described for Euler-
Bernoulli beam, and with considering the crack as a 
beam with length equal to its opening and thickness 
equal to the thickness of the intact section minus depth 
of beam, following modeling of cracked beam in 
according to Timoshenko beam theory is given. The 
equation of motion for Timoshenko beam is given by 
Eqsuations (11) and (12), and related mode shape 
solution is also given by Equation (17). Then for a beam 
in according to Figure 1 and with one crack, we have: 
( )1 1 2 21, 2,3, 0 , , 1i ξ ξ ξ ξ ξ ξ ξ= ≤ < < < < ≤ : 

( )i ,1 ,1 ,2 ,1

,3 ,2 ,4 ,2

Χ cosh sinh

cos sin
i i i i

i i i i

C C

C C

ξ λ ξ λ ξ

λ ξ λ ξ

= +

+ +
 

2
i ,1 ,1 ,1 ,2 ,1

1 ,1

2
,2 ,3 ,2 ,4 ,2

1 ,2

ωΨ ( ) sinh  cosh

ω sin cos

i i i i i
i

i i i i i
i

C C
s

C C
s

ξ λ λ ξ λ ξ
λ

λ λ ξ λ ξ
λ

 
  = + +  

 
 

  + − −  
 

 

(23) 

Boundary and compatibility conditions for Timoshenko-
beam are: 

( ) ( )
( ) ( ) ( ) ( )

1 1 30 1

1 1 1 3 3 30 1

1 1 2 1 1 2 1

3

1

Ψ Ψ 0, Ψ Ψ 0

 Χ Ψ Χ 0, Χ Ψ Χ 0

,  Ψ Ψ

EI EI

kAG kAG

X X

δ δ

δ δ

ξ ξ ξ ξ

′ ′= =

′ ′− = − =

= =

( ) ( )
1 1

1 1

1 1 2 2

1 1 1 2 2 2

Ψ Ψ ,

 Ψ Ψ

EI EI

kAG X kA G X

ξ ξ

ξ ξ

′ ′=

′ ′− = −

( ) ( ) ( ) ( )

( ) ( )
2 2

2 2

2 2 3 2 2 2 3 2

2 2 3

2 3

3

2 2 3 3

,  Ψ Ψ

Ψ Ψ , 

Ψ Ψ

X X

EI EI

kA G X kA G X

ξ ξ

ξ ξ

ξ ξ ξ ξ= =

′ ′=

′ ′− = −

 

(
2
4
) 

It should be noted that formulation of the intact beam is 
similar to cracked beam, with putting aside the 
compatibility boundary conditions of cracked beam 
[30]. 
 
 
8. RESULTS AND DISCUSSIONS 
 
Now after presenting the proposed crack modeling 
method and describing lumped flexibility modeling of 
crack, the results obtained from these two methods and 
comparison between them are given for Euler-Bernoulli 
and Timoshenko beam theories. Steel-high strength 
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4340 by the width, 312.5 10 mb −= ×  has been utilized 
for comparing the results. The mechanical and 
geometrical parameters of cracked beam 
are: 1 mL = , / 0.25h L = , 37860 kg / mρ = ,

210 GPaE = . For the presented results acronyms of 
EB, TB, IB, PM and LM for Euler Bernoulli, 
Timoshenko beam, intact beam (without crack), present 
method and lumped method are selected, to simply 
referring the considered cases. 

Table 1 shows predicted natural frequencies for 
cracked clamped-clamped (CC) beam for Euler-
Bernoulli and Timoshenko theories, in according to the 
stepped beam and lumped flexibility methods for crack 
opening of / 0.004cd L = . Natural frequencies of intact 
beam are shown in this table. 

As seen from this table, there are very good 
conformity between these two results. From the results 
given in Table 1, it can be seen that natural frequency 
prediction in accordance to the lumped flexibility model 
presented in the literature [31] are lower than the results 
obtained from stepped change in cross section modeling 
of the beam, i.e. the amount of predicted stiffness 
reduction in according to lumped flexibility model is 
greater than stepped modeling of crack, although the 
difference between these two methods are very 
negligible. The accuracy of the presented modeling 
approach will be more clear in the following. 

In Tables 2 and 3, three first natural frequencies of 
Euler-Bernoulli of clamped-free (CF) and clamped-
simple (pined) (CS), are calculated for different values 
of crack’ depth. The crack location is assumed to be 

0.5η =  and the opening of crack is / 0.002cd L = . Natural 
frequencies of intact beam (IB) are shown for 
comparison. Again as seen from these results, there are 
very good conformity between these two different 
modeling of cracks, and this show the effectiveness of 
the proposed modeling method of crack. 

 
 
TABLE 1. Three first natural frequencies for clamped-
clamped beam, different crack depths and 0.5η = , 

/ 0.004cd L = . 

ch
h

 
Intact beam 

[30] 

Cracked beam 

Lumped method 
[31] 

Presented 
method 

EB TB EB TB EB TB 

0.1 

22.3 22.27 22.32 22.23 22.3 22.2 

61.6 61.06 61.67 61.06 61.6 61.06 

120.9 118.8 120.5 118.5 120.7 118.6 

0.2 

22.37 22.27 22.20 22.11 22.33 22.23 

61.6 61.06 61.67 61.06 61.6 61.06 

120 118 119 117 120 118.4 

As expected with increasing depth of crack, natural 
frequencies of cracked beam are reduced, and with 
increasing or decreasing the rigidity of boundary 
conditions, natural frequencies are changed accordingly. 
 
 
TABLE 2. Three first natural frequencies for CF beam, for 
crack location 0.5η = , crack opening / 0.002cd L =  and 
various crack depths.  

ch
h

 

CF 

Intact beam [30] 
Cracked beam 

Presented 
method 

Lumped 
modeling [31] 

EB TB EB TB EB TB 

0.1 

3.516 3.51 3.51 3.51 3.51 3.51 

22.03 21.95 22.0 21.9 21.97 21.8 

61.69 61.19 61.69 61.19 61.69 61.19 

0.2 

3.51 3.51 3.51 3.51 3.50 3.50 

22.03 21.95 22.00 21.92 21.80 21.73 

61.69 61.19 61.6 61.1 61.6 61.1 

0.3 

3.51 3.51 3.51 3.51 3.49 3.49 

22.03 21.95 21.9 21.8 21.5 21.4 

61.69 61.19 61.6 61.1 61.6 61.1 

0.4 

3.516 3.514 3.51 3.50 3.47 3.47 

22.03 21.95 21.8 21.8 21.0 21.0 

61.69 61.19 61.6 61.1 61.6 61.1 

 
 
TABLE 3. Three first natural frequencies for CS beam, for 

crack location 0.5η = , crack opening / 0.002cd L =  and 
various crack depth 

ch
h

 

CS 

Intact beam [30] 
Cracked beam 

Presented 
method 

Lumped 
modeling [31] 

EB TB EB TB EB TB 

0.1 

15.4 15.3 15.4 15.3 15.3 15.3 

49.9 49.6 49.9 49.6 49.9 49.6 

104.2 102.8 104.1 102.8 104.0 102.6 

0.2 

15.4 15.3 15.4 15.3 15.3 15.2 

49.9 49.6 49.9 49.6 49.8 49.5 

104.2 102.8 104.1 102.7 103.3 102.0 

0.3 

15.4 15.3 15.3 15.3 15.1 15.1 

49.9 49.6 49.9 49.6 49.8 49.4 

104.2 102.8 103.9 102.6 102.2 100.9 

0.4 

15.4 15.3 15.3 15.3 14.9 14.9 

49.9 49.6 49.9 49.5 49.6 49.3 

104.2 102.8 103.6 102.3 100.6 99.3 
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In Table 4, the effect of varying crack opening on 
three first natural frequencies of CC beam for crack 
location of 0.5η =  and depth of 0.1ch h =  is shown. From 
this table, it can be seen that for lower frequencies, 
natural frequencies predicted in according to lumped 
flexibility model of Euler-Bernoulli beam is greater than 
stepped modeling. While in higher models, lumped 
flexibility model gives higher prediction of natural 
frequency in comparison to present modeling of crack. 

The effect of crack opening on natural frequency of 
Euler-Bernoulli's beam in according to these two 
mentioned methods of crack modeling will be more 
clear, with Tables 5. and 6. In these figures, three first 
natural frequencies of beams with different boundary 
conditions with one crack at location of 0.5η = , depth of 

0.5ch h =  and different amounts of crack openings are 
shown. As expected, in all cases with increasing the 
crack opening, the amounts of natural frequencies are 
reduced. Now the effects of varying crack location on 
natural frequencies of beam are investigated. Table 7 
shows the effect of crack location on natural frequency 
of beam. As seen from these tables, the differences 
between these two presented methods with varying the 
location of crack is more apparent in this case, i.e. 
change in location of crack. The amounts of differences 
are dependent to boundary conditions, and the amount 
of proximity of crack to the nodal point of related intact 
mode shape. In Figure 2, mode shapes and their slopes 
for three first natural frequencies of cracked CC beam 
obtained from stepped modeling of crack are shown. As 
seen from this figure, mode shapes and their slops are 
continuous in cracked section of beam, while there are 
qualitative change in the shape of slope of mode shapes 
in cracked section of beam, i.e. 2 2/w x∂ ∂  and 3 3/w x∂ ∂  are 
discontinuous in the cracked domain. 
 
 
TABLE 4. Three first natural frequencies for clamped-
clamped beam (CC) for different crack openings, 0.5η =  and 

0.1ch h = . 

3
 Intact beam 

[30] 

Cracked beam 
Lumped modeling 

[31] 
Presented 
method 

EB TB EB TB EB TB 

0.001 

22.3 22.2 22.3 22.2 22.3 22.2 
61.6 61.0 61.6 61.0 61.6 61.0 
120.9 118.8 120.5 118.5 120.8 118.7 
61.6 61.0 61.6 61.0 61.6 61.0 
120.9 118.8 120.5 118.5 120.7 118.69 

0.005 
22.3 22.2 22.3 22.2 22.3 22.2 
61.6 61 61.6 61 61.6 61 
120 118 120 118 120 118 

0.01 
22.3 22.2 22.3 22.2 22.3 22.2 
61.6 61.0 61.6 61.0 61.6 61.0 
120 118 120 118 120 118 

TABLE 5. Three first natural frequencies for CF beam with 
different crack openings, 0.5η = and 0.5ch h = . 

cd
L

 
Intact beam 

[30] 

Cracked beam 
Presented 

method 
Lumped method 

[31] 
EB TB EB TB EB TB 

0.001 
3.51 3.51 3.5 3.5 3.45 3.45 
22.0 21.9 21.8 21.8 20.4 20.3 
61.6 61.1 61.6 61.1 61.6 61.1 

0.002 
3.51 3.51 3.50 3.50 3.45 3.45 
22.03 21.9 21.7 21.6 20.4 20.3 
61.6 61.1 61.6 61.1 61.6 61.1 

0003 
3.51 3.51 3.5 3.4 3.45 3.45 
22.0 21.9 21.6 21.5 20.4 20.3 
61.6 61.1 61.6 61.1 61.6 61.1 

 
 

TABLE 6. Three first natural frequencies for CS beam with 
different crack openings, 0.5η = and 0.5ch h = . 

cd
L

 
Intact beam 

[30] 

Cracked Beam 
Presented 
method 

Lumped Method 
[31] 

EB TB EB TB EB TB 

0.001 
15.4 15.3 15.3 15.3 14.6 14.6 
49.9 49.6 49.9 49.5 49.5 49.1 
104.2 102.8 103.6 102.3 98.5 97.2 

0.002 
15.4 15.3 15.2 15.2 14.6 14.6 
49.9 49.6 49.8 49.5 49.5 49.1 
104 102 103 101 98.5 97.2 

0.003 
15.4 15.3 15.2 15.1 14.6 14.6 
49.9 49.6 49.8 49.5 49.5 49.1 
104 102 102 101 98.5 97.2 

 
 

Finally some results are presented to show the 
validity of the presented method with experimental or 
other available results given in literature. For this 
purpose a model with geometric and mechanical 
properties of 207E Gpa= , 37860kg mρ = , 0.3υ = , 

12.7b mm= , 12.7h mm= , 400L mm= , 0.3η = , and 0 5d L =  
are selected [32]. Experimental results for these 
parameters are given elsewhere [32]. The obtained 
results are shown in Table 8. As seen from this table, a 
good agreement between the results of the proposed 
method and the experimental model exists, and this 
shows the validity of the presented modeling of crack. 
The proposed modeling approach can be used to 
investigate the beam with different crack shapes, such 
as circular, elliptical and V shape cracks. Figure 3 
shows a beam with V shape crack; there is no analytical 
solution for these problems, so to obtain the natural 
frequencies the Galerkin method should be used. Table 
9 shows three first natural frequencies of Euler-
Bernoulli cantilever cracked beam with V shape crack 
shown in Figure 3. For modeling crack, stepped beam 
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modeling presented is used and beam is modeled in 
according to Euler-Bernoulli theory. Galerkin method is 
used for obtaining natural frequencies. 
 
 
TABLE 7. Three first natural frequencies for CC, with 
different locations of crack, crack opening 0.002cd L =  and 
depth of 0.5ch h = . 

Crack 
location 

Intact beam 
[30] 

Cracked beam 
Presented 

method 
Lumped 

modeling [31] 
EB TB EB TB EB TB 

0.1 
22.3 22.2 22.2 22.1 21.5 21.4 
61.6 61.0 61.5 60.9 61.2 60.6 
120 118 120 118 120 118 

0.2 
22.37 22.2 22.3 22.2 22.3 22.2 
61.6 61.0 61.4 60.8 60.3 59.7 
120 118 119 117 114 112 

0.4 
22.3 22.2 22.2 22.1 21.5 21.4 
61.6 61.0 61.3 60.7 59.7 59.2 
120 118 120 118 119 117 

 
 
TABLE 8. Comparing results of the presented theory and 
experimental data of simply supported beam. 

Natural frequency 
(Hz) 

Proposed method Experimental 
model in [32] 

1st 176.752 - 
2nd 702.085 700 
3rd 1615.467 1616 
4th 2852.20 2864 

 
 

 
(a) 

  
(b) 

Figure 2. (a) Three first mode shapes and (b) slopes of 
cracked CC beam, for crack location 0.4η = . 

ch
h

L

cd

η

 
Figure 3. A cantilever cracked beam with V shape geometric. 
 
 
TABLE 9. Three first natural frequencies for CF, with 
different crack openings and depth and crack location 0.5η = . 

ch
h

 Intact beam 
Cracked beam 

Different crack openings 
0.0025 0.00125 

0.1 
3.5160 3.5158 3.5159 
22.0344 22.0294 22.0319 
61.6972 61.6972 61.6972 

0.2 
3.5160 3.5153 3.5156 
22.0344 22.0163 22.0254 
61.6972 61.6971 61.6972 

0.3 
3.5160 3.5147 3.5153 
22.0344 21.9980 22.0162 
61.6972 61.6971 61.6972 

0.4 
3.5160 3.5139 3.5150 
22.0344 21.9768 22.0057 
61.6972 61.6970 61.6971 

0.5 
3.5160 3.5130 3.5145 
22.0344 21.9551 21.9950 
61.6972 61.6969 61.6971 

 
 

As clear from obtained results, natural frequencies 
decrease with increasing crack depth and crack opening, 
and their values are less than intact beam. 

 
 

9. CONCLUSION 
 
There are different methods for modeling of cracks in 
the literature. In the current work a simple method is 
presented for modeling of crack. This method is based 
on modeling crack as a stepped change in cross section 
of beam. With this modeling approach, crack will be a 
beam element, with specific depth, area, area moment of 
inertia, and length, and similar to intact beam, its 
solution will be obtained analytically. Based on the 
proposed idea, beams with different number of cracks 
and boundary conditions are simulated and results are 
compared with well-known lumped flexibility modeling 
of crack, in which crack is modeled as massless 
rotational spring. The obtained results show good 
conformity of the stepped modeling of crack with 
results obtained from lumped flexibility model. The 
presented modeling approach is very simple, can simply 
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be extended to structures with different shapes of cracks 
such as V or circular crack shapes that do not have 
analytical solutions. 
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  چکید
  

  
در این روش ترك به صورت یک . سازي ترك باز در ساختارهاي به شکل تیر ارایه شده است روش ساده براي مدلیک 

شود، و مساله  اي در سطح مقطع در نظر گرفته می از این رو تیر به صورت یک تیر با تغییر پله. شود سازي می المان تیر مدل
ها براي یک تیر با طول و سطح مقطع متفاوت قابل حل  صهتعیین فرکانس طبیعی و شکل تیر به صورت حل این مشخ

پذیري متمرکز بر طبق تئوري شکست و یا علوم  سازي تیر به صورت تیر با انعطاف با این کار نیاز به مدل. خواهد بود
  .هاي بعدي مربوطه نخواهد بود مربوطه براي تعیین سفتی ترك و استفاده از این مدل فنر براي تحلیل
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