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One of the most important problems in target tracking is Line of Sight (LOS) rate estimation for using
from PN (proportional navigation) guidance law. This paper deals with estimation of position and LOS
rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements.
Due to importance of exact estimation on tracking problems most target position and LOS rates have
been estimated with least error rather than actual values. In this paper, extended Kalman filter (EKF)
and unscented Kalman filter (UKF) algorithms are used for estimation of target position in three-
dimensional (3-D) and LOS rates in elevation and azimuth for seekers and trackers. For comparison of
algorithms, model of the system was simulated using MATLAB and many tests were carried out.
Simulation experiments showed that the efficiency of EKF due to least RMSE had better performance.
However, the performance of EKF algorithm dramatically decreased when initializations (initial state
assumption) were not near to real values, which in this condition UKF method provided a more
accurate approximation. Numerical results from simulations show that the UKF is robust against
uncertainties and has better state estimation accuracy. Therefore, UKF algorithm is appropriate, and it

can run on target tracking systems.

doi: 10.5829 /idosi.ije.2015.28.02b.02

1. INTRODUCTION

Tracking problems can be used in, radar, sonar and IR-
based tracking systems. Civil applications include
sonar-based robotic navigation and TV camera-based
people and object tracking [1, 2]. Line of Sight (LOS)
rate estimation is one of the most important problems
that used in modern homing missiles with PN
(proportional navigation) guidance law. RF seeker is
generally used in the pursuer as sensor to measure
relative range, range rate, LOS angles and rates between
pursuer and target as shown in Figurel. The equipment
is typically mounted on a movable platform (such as
aircraft, missile's seeker, and airborne tracking systems)
[3]. When the sensor is controlled to point toward the
target, more or less direct approaches can be used to
estimate the LOS rates [4]. These measured signals are
contaminated by high degree of noise due to eclipsing,
glint, radar cross section (RCS) fluctuation and thermal
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noise [5]. In 1960, R.E. Kalman designed the filter for
prediction, estimation problems that now arepopularly
known as the Kalman filter[6]. A Kalman filter can be
defined as an optimal recursive data processing
algorithm. Kalman filter is characterized by accurate
estimation of state variables under noisy condition,
which makes it suitable for drives, robotic manipulators
and other industrial applications. The algorithm is
formulated in two steps, which involve; prediction and
updating. Most tracking problems of nonlinear models
that used extended Kalman filter (EKF) [7]and
unscented Kalman filter (UKF) [8] can be solved in two
dimensions[9]. Nonlinear estimators includingEKF and
UKF algorithms have beenused for only 2D tracking
problems[10]. Early research on the bearing-only
filtering problem in 2D, used the easy-to-implement
discrete-time EKF with relative Cartesian coordinates.
In some work [11], the EKF was implemented using a
discretized linear approximation for both the predicted
state estimate and covariance. All the approaches
mentioned use of a two dimension state estimation.
Inanother study [12], tracking problems in three
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dimensions were solved using extended Kalman filter
(EKF), unscented Kalman filter (UKF), and particle
filter (PF). In some study [5], pursuer target relative
position and velocity components along with target
acceleration in the inertial frame have been estimated
using EKF from available seeker measurements. In
another work [13], comparison of estimation states for
seeker system of a missile using Sliding Mode Observer
and extended Kalman filter approaches was presented.
Interacting multiple model (IMM) based AEKF seeker
filter has been designed to operate in the close loop
homing guidance to track highly manoeuvring Air
Breating Targets[14]. In the literature [15], the problems
of state estimation, tracking control and shape control in
a micro-cantilever beam with nonlinear electrostatic
actuation were investigated using extended Kalman
filter algorithm. An interacting multiple model
unscented Gauss-Helmert filter (IMM-UGHF) is
presented in the literature [16]. Also, Gaussian-sum
cubature Kalman filter and original algorithm of CKF
have been compared for the bearings only tracking
problems[17].

The remainder of the paper is organized as follows.
First, the system model for the three-dimensional
tracking problem, which is of interest in this paper, is
described. Then, existing and improved algorithms
including extended Kalman filter (EKF), unscented
Kalman filter (UKF) proposed for estimating position
and LOS rates are outlined. Section 4 discusses the
performance metrics used when comparing the different
algorithms. In this section, system is simulated using
MATLAB, and tested for many scenarios. The details of
the simulations done and the comparisons of the
performances of the algorithms are given in Section 4.
Finally, concluding remarks are highlighted.

O >

Figure 1. Schematic diagram of pursuer and target
engagement

Target

Ownship

X,

Figure 2.Definition of tracker coordinate frame bearing and
elevation angle[12]

2. MATHEMATICAL MODEL

For modeling of tracking problem,the dynamics of the
target is modeled as a state space model. There is a one
moving target in the scene and two angular sensors for
tracking it [18]. The Cartesian states of the target and
ownship (tracker) are defined [12].

Xt — [xtyt Zt)'ct}']tz't]l (1)
and
X0 = [xoyo ZOJ'CO}'IOZ'O]' (2)

The relative state vector is defined by[18]:

X=Xt—Xx° A3)
Thus, the state vector can be expressed as[18]:

Xp =[x y z xyz] 4
The dynamics of the target is modeled as a linear,
discretized Wiener velocity model [19]:

Xt =Fo_ X, + Wy (5)

whereF),_; and wy_;are the state transition matrix and
integrated process noise, respectively, for the time
interval [t,_,, t]:

At=tk_1—tk (6)
[1 00 At 0 0
[01 0 0 At 0]
oo 1 0 o0 Aat

Fer=10 0 0 1 0 ol ™
lo 00 0 1 0
000 0 0 1

wherew,,_,~ N(0, Q,_;) is Gaussian process noise with
zero mean and covarianceQ,_; that must be discretized
with power spectral density Qc[18]:

Qc = diag(0,0,0,q1,42, q3) ®)

The process noise meaning that the dynamic system
cannot be modeled entirely deterministically.
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3. MEASUREMENT MODELS

Outputs or measurement model for the range(ry ), range
rate(f), LOS angles in elevation and azimuth(¢y,7v,,)
and LOS rates (d)k,}"k)using the relative Cartesian state
vector X, is [12]:

z = h(Xy) + 1y ©)
where:
[1<]
[T |
| dr |
h(Xy) =1; 10
(Xi) Lo, | (10)
i
Yk
Ne = VX +yi? + 22
o= XX+ Yyt ZiZi
k R L
¢k = tan_l Yk
Xk
d) — Ke¥Vi—YiXe) (11)
k i +yi?)
Vi =tan™l——£
VX2 +YR?

_ ZieCiHyi?) 2Kkt Yiy i)

Vi X2+ 2 +2k ) (VX2 +yi?)

wherer;, is a zero mean white Gaussian measurement
noise with covariance R[18]. This noise means that
there is a certain degree of uncertainty in them.

i ~ N(O,R) (12)

R = diag (cf,c?,ci,ci,cf,,ci) (13)

4. NONLINEAR FILTERING ALGORITHMS

4. 1. Extended Kalman Filter In estimation
theory, the EKF is the nonlinear version of the Kalman
filter which linearizes about an estimate of the current
mean and covariance.Due to the linearization step, the
EKF is sub-optimal [20]. The steps for the first-order
EKF algorithm computationis as follows [10]:

Prediction and update steps for EKF algorithms have
listed in table above,where m; andPy are the predicted
mean and covariance of the state, respectively, on the
time step k Dbefore seeing the measurement.

my and P, are the estimated mean and covariance of
the state, respectively, on time step k after seeing the
measurement. v, is the innovation or the measurement
residual on time step k. S, is the measurement prediction
covariance on the time step k Kjis the filter gain,
which tells how much the predictions should be
corrected on time step k The matrices Fy (m,k— 1)
and H, (m,k) are the Jacobians of f and h, with
elements [18]:
= w |x=m (14)

j

[Fx(mk — 1)]]',]"

ah; (x,k)
[Hx (m, k)]j,j' = ]Bx.r lx=m (15)
]

4. 2. Unscented Kalman Filter Unscented
Kalman filter (UKF) is nonlinear Kalman filter which
shows promise as an improvement over the EKF [21].
In the UKF, the probability density is approximated by a
deterministic sampling of points, which represent the
underlying distribution as a Gaussian. UKF uses the
unscented transformation (UT) to approximate the
moments [8]. In UT, deterministically we choose a fixed
number of sigma points, which capture the
desiredmoments (at least mean and covariance) of the
original distribution of x exactly.After that wepropagate
the sigma points through the non-linear functionand
estimate the moments of the transformed variable from
them.The steps for the UKF algorithm computationis as
follows [10]:

The steps for the UKF algorithm [18]

The steps for the first order EKF algorithm[18]

Prediction:

my = f(my_;,k—1)

B = Fy(me g, k=1 PR F{ + Qg
Update:

v = Yk — h(mg,K)

Sk = Hx (ml:vk)Pk_H;E(ml:'k) + Rk
Ky = B HY(mic, K)Si*

m, = my + Kg vg

B =P — Ky S Ki

Prediction:

Xioq = [myey .o mk—1]+\/E[0 M_M]
’)Zk—l =f(X-1, k= 1)

my = Xy Wiy

B = K WK™ + Qs

Update:
X = [mi ...mg]++c[0 /B —/P]
Y = h(X, K

by = Y Wiy

Sk = Ye WY 1™ + Ry

Cx = X W[Y(]"

Ky = Ci St

my =my + Ky [yx — ]
P = Po — Ky S Kf

Prediction and update steps for UKF algorithms have
been listed in table above,where and C, are predicted
mean of the measurement, and cross-covariance of the
state and measurement, respectively, on the time step k
[18].
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5. SIMULATION AND RESULTS

For wusing Kalman filter algorithms, firstly,the
continuous-time dynamic equation must be written in
discrete form.The states of the target at time step (f)
consist of the position in three-dimensional Cartesian
coordinates x,y and z and the velocity toward those
coordinatesaxes Vi,V and V,. Thus, the dynamics of
the target is modeled as the state space model (5).In
Table 1 the value of parameters for simulationare
listed. Table 2 summarizes three tested scenarios in
desired initialize for EKF and UKF algorithms
(Scenario 1) and in undesired initialize (Scenario 2) and
(Scenario 3) over 500 Monte Carlo runs.

Figure 3 shows the real trajectory of target and
estimation of position with EKF and UKF algorithms.
The averages of position RMSE per run are summarized
in Table 3. The RMSE computation was performed by
the two algorithms. It can be seen that the UKF
significantly outperforms the other algorithm in 2 and 3
test scenarios due to least RMSE. Root mean square
error (RMSE) for each running simulationis given by
[23]:

02
RMSE(t) = \/Nizj-”rf e — €7, (16)
MC
whereN,, = 500 is Monte Carlo runs number, xf( Dis

estimation for j Monte Carlo runs on (f) time and x"*¢

is the true value.

In Table 3 the root mean square errors are listed.
RMSE (mean of position errors) of three tested methods
in desired initialize for EKF and UKF (Scenario 1) and
in undesired initialize (Scenario 2) and (Scenario 3)
over 500 Monte Carlo runs.

TABLE 1. Value of parameters

Parameters Value

X(0)=[000100]"

X, =(-2,-2,-2)

R = diag (0.052,0.052,0.052,
0.052,0.052,0.052)

Start point of target

Position of sensor

Power spectral density

Covariance of measurement Py =

noise diag(0.75,0.75,0.75,10,10,10)
Covariance of the stateon the dt = 0.01

initial time

Time interval Ny = 500

Monte Carlo runs number

TABLE 2. Tests scenarios

Trajectory

Real trajectory
EKF estimate
UKF estimate
O Positions of sensor

257 T

(a) Scenario 1

Trajectory

Real trajectory
EKF estimate
UKF estimate
O Positions of sensor

37

(b) Scenario 2

Trajectory

Real trajectory
EKF estimate
UKF estimate
O Positions of sensor

(c) Scenario 3
Figure 3. Comparison of EKF and UKF algorithms for
position estimation

TABLE 3. RMSEs of estimating the position in kilometers

Parameter Scenarios Value

Mean of the S1 My=1[222110]"

stateon the S2 M, =[3.21.2211.22.20.1]7
initial time

S3 M, =[-0.5-0.52.12.52.50.1]"
(MO) 0 [ ]

Algorithm RMSE RMSE RMSE
scenario 1 scenario 2 scenario 3

EKF 0.1066 0.1912 0.7993

UKF 0.1687 0.1076 0.5644
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Figure 5. Comparison of EKF and UKF algorithms for
azimuth angular rate (Y, ) estimation

TABLE 4. RMSE:s of estimatingmeasurements

Scenario 1 Scenario 2 Scenario 3

Measurement
EKF UKF EKF UKF EKF UKF

$r(rad/s)  0.0540 0.0599 0.1169 0.0585 1.5730 0.0631

Yk(rad/s)  0.0576 0.0721 0.1130 0.0607 0.2516 0.0636

Figures 4 and 5 shows the comparison of EKF and
UKEF algorithms for estimation of LOS ratesin elevation
and azimuth(dy, V), respectively.

In Table 4 the root mean square errors have been
listed. RMSE of measurements estimate, LOS rates in
elevation and azimuth (d)k,}"k), respectively. In three
tested scenarios (desired initialize for EKF and UKF
(Scenario 1) and in undesired initialize (Scenario 2) and
(Scenario 3)) over 500 Monte Carlo runs were
conducted. Therefore, based on these observations,
Figures 4 and 5 show that the efficiency of EKF due to
least RMSE has better performance (Scenario 1) for
estimation of LOS rates in elevation and azimuth
(¢leR)'

However, the performance of EKF algorithm
dramatically decreased when initialization (initial state
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assumption) is not good(Scenario 2 and 3), which in this
condition UKF method provides a more accurate
approximation.The results (Table 4) show that the
efficiency of UKF against uncertainties due to least
RMSE has better performance. In this respect, the UKF
has the same appeal as linearization for the EKF, but
unlike linearization the UKF provides sufficient
accuracy to be applied in many highly nonlinear
filtering and control applications.Thus UKF algorithm
has significant accuracy improvement over EKF
algorithm.

6. CONCLUSION

In this paper, EKF and UKF algorithms were compared
for state estimation in target tracking problems. Firstly,
mathematical modelsof system were obtained. Then,
LOS rates in elevation and azimuth were estimated
using both EKF and UKFtechniques. The state
estimation for tracking system created in MATLAB has
been tested using both EKF and UKF techniques. The
results obtained showed that the efficiency of EKF due
to least RMSE has better performance. However, the
performance of EKF algorithm dramatically decreased
when initializationsarenotnear real values.Numerical
results from simulations show that the UKF is robust
against uncertainties and has better state estimation
accuracy. Thus, UKF method is interested for using in
target tracking systems.In the future, it can extend the
UKF to multi-sensor tracking problems.
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