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A B S T R A C T  

 
  
This paper proposes a mixed integer programming model for single-item capacitated lot-sizing 
problem with setup times, safety stock, demand shortages, outsourcing and inventory capacity. Due to 
the complexity of problem, three meta-heuristics algorithms named simulated annealing (SA), 
vibration damping optimization (VDO) and harmony search (HS) have been used to solve this model. 
Additionally, Taguchi method is conducted to calibrate the parameters of the meta-heuristics and select 
the optimal levels of the algorithm’s performance influential factors. Computational results on a set of 
randomly generated instances show the efficiency of the HS against VDO and SA. 
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1. INTRODUCTION 
1 
Planning problem consists in deciding how to transform 
raw material into final goods as to satisfy demand at 
minimum cost. The lot-sizing problem (LSP) is a crucial 
step and well-known optimization problem in 
production planning in which involved time-varying 
demand for set of N items over T periods. It is a class of 
production planning problems in which the availability 
amounts of the production plan are always considered as 
decision variable. Two versions of the lot-sizing 
problems are capacitated and uncapacitated lot-sizing 
problem. The uncapacitated single-item version of the 
problem can be solved efficiently using dynamic 
programming [1]. Stadtler [2] changed the single-item 
uncapacited lot-sizing model considering the planning 
horizon theory. Aksen, et al [3] addressed a profit 
maximization version of the well-known Wagner–
Whitin model for the deterministic single-item 
uncapacitated lot-sizing problem with lost sales. They 
proposed an O(T2) forward dynamic programming 
algorithm to solve the problem. Akbalik and Rapine [4] 
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considered the uncapacitated lot sizing problem with 
batch delivery. Akbalik and Rapine [5] considered the 
single-item uncapacitated lot-sizing problem with batch 
delivery, focusing on the general case of time-dependent 
batch sizes. They showed that the problem is 
polynomially solvable in time O(T3), where T denotes 
the number of periods of the horizon.  

In industrial applications, several factors may 
sophisticate making best decisions. For instance, 
capacity can be led to impossibility to satisfy demand. 
For this reason, the capacitated lot-sizing problem and 
its variations have received a lot of attention from 
academic researchers. Montgomery, et al. [6] Presented 
several single-echelon, single-item, static demand 
inventory models for situations in which, during the 
stock out period, a fraction b of the demand is 
backordered and the remaining fraction 1 - b is lost 
forever. On the other hand, backlogging, safety stocks 
and limited outsourcing are three complicating 
constraints to reach desired solutions in lot-sizing 
problem.   

In addition, both deterministic and stochastic 
demands are considered. He considered only part of the 
fixed costs associated with decision making in 
improving programming in order to develop a model 
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which can cover periods beyond the planning horizon 
and can be applicable to a wide range of decision 
making models. He also proved that if the periods in the 
planning horizon are not fixed, dynamic optimum 
methods will not function non-optimally. Abad [7] 
considered the problem of determining the optimal price 
and lot-size for a reseller. He assumed that demand can 
be backlogged and that the selling price is constant 
within the inventory cycle. Karimi, et al. [8] considered 
single level lot-sizing problems, their variants and 
solution approaches. Berretta and Rodrigues [9] 
developed methods based on evolutionary 
metaheuristics to solve a complex problem in 
production planning, the multi-stage lot-sizing problem 
with capacity constraints.  Brahimi, et al. [10] presented 
four different mathematical programming formulations 
of the Single-item lot-sizing problems. Robinson et al. 
[11] updates a 1988 review of the coordinated lot-sizing 
problem and complements reviews on the single-item 
lot-sizing problem and the capacitated lot-sizing 
problem. Akbalik and Penz [12] studied a special case 
of the single-item capacitated lot-sizing problem, where 
alternative machines are used for the production of a 
single-item. They proposed an exact pseudo-polynomial 
dynamic programming algorithm which makes it NP-
hard in the ordinary sense. They also gave three mixed 
integer linear programming (MILP) formulations that 
we have found in the literature for the simplest case of 
the problem. Akbalik and Pochet [13] presented a new 
class of valid inequalities for the single-item capacitated 
lot-sizing problem with step-wise production costs. 
They proposed a cutting plane algorithm for different 
classes of valid inequalities introduced. Wang, et al. 
[14] addressed the single-item, dynamic lot-sizing 
problem for systems with remanufacturing and 
outsourcing. They proposed a dynamic programming 
approach to derive the optimal solution in the case of 
large quantities of returned product. Mikhail, et al. [15] 
proposed a straightforward ( )O nLogn  time algorithm 
for the single-item capacitated lot-sizing problem with 
linear costs and no backlogging.  

The capacitated lot-sizing problems encountered in 
real-life situations are generally intractable due to a 
number of practical constraints. The decision maker has 
to find a good feasible solution in a reasonable 
execution time rather than an optimal one. Tang [16] 
provides a brief presentation of simulated annealing 
techniques and their application in lot-sizing problems. 
Mokhtari and Kianfar [17] considered a production 
system in which the orders of several customers are 
produced in a single batch. The problem was to decide 
on batch size, due date of batch and lead time so that 
relevant costs are minimized. Production flow times are 
probabilistic which follow a probability distribution. 
The proposed model is solved using real-coded genetic 
algorithms. Jenabi et al. [18] considered the economic 

lot and delivery scheduling problem in a two-echelon 
supply chains, where a single supplier produces multiple 
components on a flexible flow line and delivers them 
directly to an assembly facility. They developed a new 
mixed zero-one nonlinear mathematical model for the 
problem. Two meta-heuristic algorithms (HGA and SA) 
were proposed. Piperagkas, et al. [19] investigated the 
dynamic lot-size problem under stochastic and non-
stationary demand over the planning horizon. They used 
three popular heuristic methods from the fields of 
evolutionary computation and swarm intelligence, 
namely particle swarm optimization, differential 
evolution and harmony search for solve the model. Chu, 
et al. [20] addressed a real-life production planning 
problem arising in a manufacturer of luxury goods. The 
problem modeled as a single-item dynamic lot-sizing 
model with backlogging, outsourcing and inventory 
capacity. They showed that this problem can be solved 
in O(T4logT) time where T is the number of periods in 
the planning horizon.  

The main contribution of this paper is twofold. First, 
we develop a single-item capacitated lot-sizing model 
with demand shortage, safety stock, limited outsourcing 
and several manners for produce. Then, we use 
simulated annealing, vibration damping optimization 
and harmony search algorithms to solve the problem 
and compared them together. 

The remaining of this paper is organized as follows: 
Section 2 describes a MIP formulation of the single-
item capacitated lot-sizing problem with backlogging, 
safety stocks and limited outsourcing. 

The solution approaches for solving the proposed 
model introduced in Section 3. The Taguchi method for 
tuning the parameters and computational experiments 
presented in Section 4. The conclusions and suggestions 
for future studies are included in Section 5. 

 
 

2. PROBLEM FORMULATION  
 

The single-item capacitated lot-sizing problem with 
backlogging, safety stocks and limited outsourcing is a 
production planning problem in which there is a time-
varying demand for an item over T periods. In this 
section, we present a MIP formulation of the problem. 
First, the problem assumptions, parameters, and 
decision variables have thoroughly been introduced and 
then the proposed model has been defined. 
 
2. 1. Assumptions          Before the formulation is 
presented, the following assumptions are made on the 
problem: 
 
• The demand is considered deterministic. 
• Shortage is backlogged. 
• Shortage and inventory costs must be taken into 

consideration at the end. 
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• Raw material resource with given capacities are 
considered. 

• The quantity of inventory and shortage at the 
beginning of the planning horizon is zero. 

• The quantity of inventory and shortage at the end of 
the planning horizon is zero. 

 
2. 2. Parameters 
T:  Number of periods in the planning horizon,   t=1, …, 

T. 
J: Number of production manner, j=1, …, J 

r t: The selling price of each unit in the period t. 
Cjt: The production cost of each unit in the period t 

through the manner j. 
Ajt: The setup cost of the production in the period t 

through the manner j. 

:th+  The unit holding cost in the period t. 

:th−
 Unitary safety stock deficit cost in period t. 

dt: The demand in the period t. 
Lt: The quantity of the safety stock of product in the 

period t. 

:t∂  Unitary shortage cost in period t. 

Bkt: The capacity of the K source at hand in the period t. 

:kα  The quantity of K source used by each unit of the 
product. 

fjk: The quantity of wasted K source produced through 
the manner j.  

:tγ  Unit out-sourcing cost at period t. 

:v  Space need for per unit. 

:tϕ  The total available space in period t. 

 
2. 3. Decision Variables 
Xjt: Production quantity in the period t through the manner 

j. 
yjt: Binary variable; 1 if the produced in the period t 

through the manner j, otherwise 
jty = 0. 

Ut: Out-sourcing level at period t. 

:tI
−  The quantity of shortage in the period t 

:tS+  The quantity of overstock deficit in the   period t. 

:tS−

 
The quantity of safety stock deficit in the period t 

 
2. 4. The Proposed Model 

1 1 1
( ) ( )

T J J

t jt t jt jt jt jt t t t t t t t t
t j j

MaxZ r X U C X A y I h S h S Uγ− + + − −

= = =

 
= + − − −∂ − − − 

 
∑ ∑ ∑

 
(1) 

Subject to:  

1 1 1 1
1

J

t t t t jt t t t t t t
j

S S I I X U S S d L L+ − − − + −
− − − −

=

− − + + + = − + + −∑   

∀    1, 2,....,t T=   
(2) 

0TS + =  (3) 

0TI − =  (4) 

( )
1

J

k jt jk jt kt
j

X f y Bα
=

+ ≤∑
 
∀  1, 2,.....,k K= , 

1, 2,....,t T=  
(5) 

jt t jtX M y≤ ∀     1, 2,....,j J= 1, 2,....,t T=  (6) 

t tI d− ≤  ∀  1, 2,...., 1t T= −  (7) 

t tS L− ≤ ∀  1, 2,....,t T=  (8) 

1 10 t t t t tU I S d L− −
− −≤ ≤ + + + ∀ 1, 2,....,t T=  (9) 

1

( )
J

jt t t
j

v X U ϕ
=

+ ≤∑ ∀  1, 2, ....,t T=  (10) 

{0,1}jty ∈ ∀   1, 2,....,j J=   ,  1, 2,....,t T=  (11) 

, , , 0jt t t tX I S S− − + ≥  ∀ 1, 2,....,j J=  , 1, 2, .....t T=  (12) 

The objective function (1) shows difference between 
selling price with the total cost. Constraints (2) are the 
inventory flow conservation equations through the 
planning horizon. Constraints 3 and 4 define 
respectively, the demand shortage and the safety stock 
deficit for item at end period is zero. Constraints 5 are 
the capacity constraints; the overall consumption must 
remain lower than or equal to the available capacity. If 
we produce an item at period t, then constraints 6 
impose that the quantity produced must not exceed a 
maximum production level Mt. Mt could beset to the 
minimum between the total demand requirement for 
item on section [t, T] of the horizon and the highest 
quantity of item that could be produced regarding the 
capacity constraints, then Mt  can be show as Equation 
(13). Constraints 7 and 8 define upper bounds on, 
respectively, the demand shortage and the safety stock 
deficit for item in period t. Constraints 9 ensure that 
outsourcing level Ut at period t is nonnegative and 
cannot exceed the sum of the demand, safety stock of 
period t and the quantity backlogged, safety stock 
deficit from previous periods. Constraints 10 are the 
maximum space available for storage of items in excess. 
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Constraints 11 and 12 characterize yjt is a binary 
variable and the variable's domains: , , ,jt t t tX I S S− − +

are non-negative for j ∈ J and t ∈ T. 

1

, (13)
T

kt jk
t t

tk

B f
M Min d

α =

− 
=  

 
∑  

(13) 

 
 

3. SOLUTION APPROACHES  
 

3. 1. Simulated Annealing Algorithm     Simulated 
annealing (SA) was initially presented by Kirkpatrick, et 
al. [21]. The SA methodology draws its analogy from 
the annealing process of solids. This analogy can be 
used in combinatorial optimization in which the state of 
solid corresponds to the feasible solution. The energy at 
each state also corresponds to the improvement in the 
objective function and the minimum energy state will be 
the optimal solution. In this paper, we used simple SA 
algorithm which its pseudo-code is shown in Figure 1. 

Two important issues that need to be defined when 
adopting this general algorithm to a specific problem are 
the procedures to generate both initial solution and 
neighboring solutions. 

  
3. 1. 1. Representation Schema               To design 
simulated annealing optimization algorithm for 
mentioned problem, a suitable representation scheme 
that shows the solution characteristics is needed. In this 
paper, the general structure of the solution 
representation performed for running the simulated 
annealing for four periods with two production manners 
is shown in Figure 2.  
  
 
 

 
Figure 1. Pseudo-code of the SA algorithm 

Y24 Y14 Y23 Y13 Y22 Y12 Y21 Y11 

1 0 0 1 0 1 1 0 

Figure 2. Solution representation. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Pseudo-code of the VDO algorithm 
 
 
3. 1. 2. Neighborhood Scheme    At each temperature 
level a search process is applied to explore the 
neighborhoods of the current solution. In this paper, we 
use mutation scheme. Figure 3 illustrates this operation 
on the four periods with two production manners. 
 
3. 2. Vibration Damping Optimization   Recently, a 
new heuristic optimization technique based on the 
concept of the vibration damping in mechanical 
vibration was introduced by Mehdizadeh and 
Tavakkoli-Moghaddam [22] named vibration damping 
optimization (VDO) algorithm. They utilized the 
algorithm to solve parallel machine scheduling problem. 
In this paper, we used simple VDO algorithm which its 
pseudo-code is illustrated in the Figure 4. 
 
3. 3. Harmony Search Algorithms       Harmony 
search (HS) is a new heuristic method that mimics the 
improvisation of music players. HS was proposed by 
Geem et al. [23]. Inspiration was drawn from musical 

1  0  0  1  0 1  1 0  
 
 

1 0  1  1  0 1  1  0  
Figure 3. An example of the neighborhood structure 

Select an initial solution, X0 
Xbest = X0, X = X0 
While (T0 > Tf) Do 
   S = 0 
     While (S < L) Do 
        Generate solution Xn in the neighborhood   of X, 

( ) ( )nC C X C X∆ = −   

   If  0C∆ ≤  then 
    Xbest = Xn 

   Else 
    Generate ( )0,1y U→ Randomly 

  If 01
C

Tr e
∆

−

< −  then 
    X = Xn 

            End if 
   S = S + 1 
       End While 
End While 
T0 = α × T0 
End While 

 

00,t A A= =   

Select an initial solution, X0 
Xbest = X0 
While (t < tmax) Do 
  N = 0 
    While (N < Lmax) Do 
      Select a move randomly and run over Xn as: 

          ( ) ( )new lastE E X E X∆ = −  

      If 0E∆ <  then  

       best newX X= And n newX X=  

     Else 
       Generate [0,1]r U→   

         If 
2 2( /2 )1 tAr e σ−< −  then 

          n newX X=  

        End if 
  N = N + 1 
    End While 

( /2)
0

t
tA A e γ−=

 
t = t + 1 
End While 
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performance processes that occur when a musician 
searches for a better state of harmony, improvising the 
instrument pitches towards a better aesthetic outcome. 
The HS algorithm imposes fewer mathematical 
requirements and does not require specific initial value 
settings of the decision variables [24]. The pseudo-code 
of applied HS algorithm for the problem is shown in 
Figure 5. 

 
 

4. COMPUTATIONAL RESULTS 
 

In this paper, all tests are conducted on a notbook with 
Intel Core i5 Processor 2.53 GHz and 4 GB of RAM. 
The proposed algorithms namely SA, VDO and HS are 
coded in Visual Basic 2000. 

 
4. 1. Parameter Calibration       Appropriate design 
of parameters has significant impact on efficiency of 
meta-heuristics. In this paper, the Taguchi method 
applied to calibrate the parameters of the proposed 
methods namely SA, VDO and HS algorithms. The 
Taguchi method was developed by Taguchi [25]. This 
method is based on maximizing performance measures 
called signal-to-noise ratios in order to find the 
optimized levels of the effective factors in the 
experiments. The S/N ratio refers to the mean-square 
deviation of the objective function that minimizes the 
mean and variance of quality characteristics to make 
them closer to the expected values. For the factors that 
have significant impact on S/N ratio, the highest S/N 
ratio provides the optimum level for that factor. As 
mentioned before, the purpose of Taguchi method is to 
maximize the S/N ratio. In this subsection, the 
parameters for experimental analysis are determined.  
Table 1 lists different levels of the factors for SA, VDO 
and HS. In this paper, according to the levels and the 
number of the factors, the Taguchi method L9 is used 
for the adjustment of the parameters. 

Figures 6, 7 and 8 show S/N ratios. According to 
these figures 1000, 40, 0.99, 20, 0.1, 1000, 0.1, 0.7 and 
150 are the optimal level of the factors T0, L, α, A0,γ , 
lmax, PAR, HMCR and STOP. 

 
 

 
Figure 6. The SN ratios for Simulated Annealing 

 
Figure 5. Pseudo-code of the HS algorithm 

 
 
 

 
Figure 7. The SN ratios for Vibration Damping 

 
 

 
Figure 8. The SN ratios for Harmony Search 
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TABLE 1. Factors and their levels 
Factor Algorithm Notation Level Value 
Initial temperature  

0T  3 1000,  
1200, 
1500 

Rate cooling SA α  3 0.9, 
0.95,  
0.99 

Number of iteration at 
each temperature 

 L 3 30, 
40, 
50 

Initial amplitude  A0 3 20,  
30,  
40 

Damping coefficient  γ  3 0.1,  
0.01,  
0.9 

Max of iteration at each 
amplitude 

VDO lmax 3 600,  
800,  
1000 

Pitch-adjusting rate  PAR 3 0.1,  
0.2,  
0.3 

Harmony memory 
considering rate 

HS HMCR 3 0.4,  
0.7,  
0.9 

Stopping criteria   STOP 3 100,  
150, 
 200 

 
 

 
Figure 9. Comparison between solution quality of the HS and 
SA 
 
 

 
Figure 10. Comparison between solution quality of the HS 
and VDO 

 
Figure 11. Comparison between solution quality of the SA 
and VDO 

 
 
 

4. 2. Computational Results        Computational 
experiments are conducted to validate and verify the 
behavior and the performance of the meta-heuristic 
algorithms employed to solve the considered single-item 
capacitated lot-sizing problem with backlogging, safety 
stocks and limited outsourcing. We try to test the 
performance of the SA, VDO and HS in finding good 
quality solutions in reasonable time for the problem. For 
this purpose, 30 problems with different sizes are 
generated. These test problems are classified into three 
classes: small size, medium size and large size. 

The number of manners and periods has the most 
impact on problem hardness. The proposed model coded 
with Lingo (ver.8) software using for solving the 
instances. The approaches are implemented to solve 
each instance in five times to obtain more reliable data. 
The best results are recorded as a measure for the 
related problem. Table 2 shows details of computational 
results obtained by solution methods for all test 
problems. The results of running SA, VDO and HS are 
compared with the optimal solution of the instances, 
obtained from Lingo software, in row 1 to 12 of Table 
2. 

The presented statistical analysis (the variance 
analysis outcome) were reported for problems with 
small, medium, and large dimensions, in Tables 3, 4 and 
5. According to the values of the survey (or P-Value), 
we can reach to the conclusion that the SA, VDO and 
HS can find good quality solutions for all test problems 
because deference between solutions are small. Thus, 
we cannot chose the better algorithm using ANOVA 
related. 

In addition, Figure 9 depicts comparison between 
solution quality of the SA and HS of the instances. 
Figure 10 depicts comparison between solution quality 
of the VDO and HS of the instances. Figure 11 depicts 
comparison between solution quality of the SA and 
VDO of the instances. A general review of the results in 
Table 2 and Figures 9, 10 and 11  is: 
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o The HS can find optimal solutions for small 
size problems. 

o The HS can find good quality solutions for all 
size problems. 

o  The objective values obtained by HS are 
equals to Lingo and also is better from SA and 
VDO results for all test problems.  

o The SA, VDO and HS algorithm can solve all 
the test problems. 

o The objective values obtained by SA and VDO 
are closes to each other.  

o For small size test problems, SA and VDO 
have relatively the same results with other 
methods. However, its results will be worse 
when the problem size increases. 

 
 
 

TABLE 2. Details of computational results for all test problems. 

No Class Manner Period 

Objective Value 

Lingo SA VDO HS 

1 Small size 2 3 649942 649942 649942 649942 

2 2 5 1102440 1102440 1102440 1102440 

3 3 5 1104431 1104431 1104431 1104431 

4 2 6 1377965 1377965 1377965 1377965 

5 3 6 1379956 1379956 1379956 1379956 

6 2 12 3694085 3572083 3625962 3694085 

7 3 12 3700067 3608101 3631946 3700067 

8 5 12 3712166 3578066 3644034 3712166 

9 6 12 3716193 3597074 3648073 3716193 

10 7 12 3719184 3600065 3651065 3719184 

11 8 12 3721084 3602117 3652965 3721084 

12 8 16 4859594 4712929 4741940 4859594 

13 Medium 8 19 ----- 5538202 5576241 5747873 

14 8 20 ----- 5911039 5961406 6120959 

15 8 21 ----- 6240550 6280122 6526471 

16 9 25 ----- 4253801 5059248 5259494 

17 10 27 ----- 4476100 4485080 4646819 

18 10 30 ----- 5055512 5147102 5311007 

19 Large 12 32 ----- 5172084 5238303 5507910 

20 14 34 ----- 5738800 5743676 6011928 

21 16 42 ----- 7113985 7171750 7480750 

22 18 42 ----- 7083820 7132975 7444332 

23 21 45 ----- 7705170a 7771251a 8127934 

24 21 50 ----- 8410540a 8467926a 8938980a 

25 21 60 ----- 10115393a 10285712a 10619919a 

26 21 90 ----- 16029522a 16102554a 16822141a 

27 21 100 ----- 17792497a 17909685a 18719969a 

28 50 100 ----- 17706936a 17879986a 18037264a 

29 60 100 ----- 17617248a 17377757a 17782668a 

30 60 120 ----- 21123581a 21227656a 21818226a 

— Means that a feasible solution has not been found after 3600 s of computing time. 
a Means that finding the optimum solution requires more than 3600 s and the objective value at this time has been recorded. 

[60 , 85]; [ 20000, 30000]; [1,10]; [ 45000 , 70000]; [1, 4 ];

[14 ,19 ]; [12,16]; [7 ,10]; [30000 , 45000]; 1; 20; 12
j t jt t t t

t t t t t ktV

C A d r L

h h Bϕγ− +

∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈ =∂ = =
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TABLE 3. Analysis of variance for test problems with small 
size 
Source DF SS MS F P 

Small-size 2 30801819025 15400909512 0.01 0.992 

Error 33 6.74642E+13 2.04437E+12   

Total 35 6.74950E+13    

 
 

TABLE 4. Analysis of variance for test problems with 
medium size 
Source DF SS MS F P 

Medium-size 2 3.80847E+11 1.90424E+11 0.38 0.691 

Error 15 7.52589E+12 5.01726E+11   

Total 17 7.90674E+12    

 
 

TABLE 5. Analysis of variance for test problems with large 
size 
Source DF SS MS F P 

Medium-size 2 1.61209E+12 8.06046E+11 0.02 0.976 

Error 33 1.10997E+15 3.36356E+13   

Total 35 1.11159E+15    

 
 
5. CONCLUSION 
 
In this paper, we propose a mathematical formulation of 
a new single-item capacitated lot-sizing problem with 
backlogging, safety stocks and limited outsourcing. This 
formulation takes into account several industrial 
constraints such as shortage costs, safety stock deficit 
costs and limited outsourcing. Due to the complexity of 
the problem, three meta-heuristic algorithms are used to 
solve problem instances. Additionally, an extensive 
parameter setting with performing the Taguchi method 
is conducted for selecting the optimal levels of the 
factors that effect on algorithm’s performance. 
Computational results on a set of randomly generated 
instances showed the efficiency of the HS against VDO 
and SA algorithms. 

One straightforward opportunity for future research 
is extending the assumption of the proposed model for 
including real conditions of production systems such as 
limited inventory, fuzzy demands and etc. In addition, a 
new heuristic or meta-heuristic to construct better 
feasible solutions can be developed. 
 
[1-25] 
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  چکیده
  

 
در این مقاله یک مدل عدد صحیح مختلط براي مسئله تعیین اندازه سفارش تک محصولی با در نظر گرفتن محدودیت 

با توجه به پیچیدگی مسئله . اندازي، موجودي اطمینان، کمبود، برونسپاري و فضاي انبار ارائه می شودهاي راهظرفیت، زمان
ابتکاري شبیه سازي تبرید، بهینه سازي میرایی ارتعاش و جستجوي هارمونی براي حل مدل ارائه شده به  ریتم فراسه الگو

ابتکاري و انتخاب سطوح بهینه  هاي فراهمچنین از روش تاگوچی به منظور تنظیم پارامترهاي الگوریتم. شوندکار گرفته می
دهند که می اند، نشانمثال هاي عددي که به صورت تصادفی تولید شده نتایج محاسباتی از حل. شودها استفاده میآن

 .سازي شده عملکرد بهتري داردالگوریتم جستجوي هارمونی در مقایسه با میرایی ارتعاش و تبرید شبیه

  
doi: 10.5829/idosi.ije.2014.27.08b.08  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


