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A B S T R A C T  

   

A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from 
exponential distributions. The Bayes estimators are derived for change point, the rate of exponential 
distribution before shift and the rate of exponential distribution after shift. Likelihood, Prior, Posterior and 
Marginal distribution of the change point is derived. Also, maximum likelihood estimation (MLE) method 
is used for determining change point. The sensitivity analysis of Bayes estimators are performed by 
simulation. Also, we suggest a new approach to achieve more precise results by determining correct 
choice for parameters of prior distribution and compared the approach with existing methods. The result of 
simulation shows good performance of proposed approach in comparison with existing methods.  Also, a 
sensitivity analysis on the location of the shift is performed.  
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1. INTRODUCTION1 
 
In this paper, we propose a new approach for estimating 
change point which occurs in any sequence of 
independent observations of exponential distribution. 
Exponential distribution plays an important role in 
practical applications like time to failure for special 
item. In some manufacturing systems, the products are 
subject to abrupt shifts in the failure rate function, 
which are observed because of maintenance actions. In 
such cases, determining the time of shift in failure rate 
of items is important and the observed point is known as 
shift point. When the data set of individual observations 
is available, a control chart can be used to detect a shift 
in the parameters. Also, the estimation of change points 
plays an important role in the analysis of markets since 
the rates of occurring irregular incomes are considered 
in the evaluation of financial risk [1]. 

The problem under study is about determining the 
time of change in data. This is called change point 
inference problem. Bayesian ideas may play an 
important role in the study of such change point 
problem and has been often proposed as a valid 
alternative to classical estimation procedure [2] 
                                                        
1  * Corresponding Author Email: Fallahnezhad@yazd.ac.ir (MS. 
Fallahnezhad) 

There are many studies on shift point problem in a 
sequence of random variables. Hinkley [3] studied the 
shift point problem in a sequence of independent 
continuous random variables. 

Lee [4] proposed a Bayesian analysis to detect a 
change point in a sequence of independent random 
variables from exponential family distributions. 
Perreault et al. [5] presented a Bayesian approach to 
characterize when and by how much a single shift has 
occurred in a sequence of hydrometeorological random 
variables. In one of other studies, Bayesian multiple 
change-point models are proposed for multivariate 
means. The models require that the data be from a 
multivariate normal distribution with a truncated 
Poisson prior for the number of change points and 
conjugate priors for the distributional parameters [6]. 
Hinkley and Hinkley [7] studied the shift point problem 
in a sequence of binomial variables. Worsley [8] 
investigated the shift point in sequences of exponential 
data. The problem of detecting change in Bayesian 
context has been studied by many authors such as 
Perreault, et. al. [5], Ghorbanzade and Rachid [9], 
Johnson [10], Angelo, et al. [11]. 

Kadilar and Karasoy [12] proposed an efficient 
estimate for the change point in the hazard function that 
is based on a Bayesian estimator. It is found through a 
simulation study that the proposed estimator is more 

  

 

mailto:Fallahnezhad@yazd.ac.ir


MS. Fallahnezhad  et al. / IJE TRANSACTIONS C: Aspects  Vol. 27, No. 6, (June 2014)  921-932                                      922 
   

efficient than the traditional estimators in many cases. 
Loschi et. al. [1] considered the change-point 
identification problem both in means and variances of 
normal data sequences. Srivastava [13] estimated shift 
point which occurs in any sequence of independent 
observations of Poisson model under Asymmetric Loss 
Functions in statistical process control using Bayesian 
inference. Prakash [14] has investigated the effects of 
Bayes estimations in the inverse Rayleigh model. 
Tourneret et al. [15] considered Bayesian off-line 
detection of multiple change-points. In this paper, we 
propose a new approach for estimating change point 
which occurs in any sequence of independent 
observations of exponential distribution. Recently, 
Keramatpour et al. [16] proposed a method for  
monitoring and change point estimation of AR(1) 
autocorrelated polynomial profiles. Also, Khedmati and 
Niaki [17] proposed a method to detect the change time 
of multivariate binomial processes for step changes. 
Ghazanfari et al. [18] proposed a novel clustering 
approach for estimating the time of step changes in 
Shewhart control charts. The proposed approach is 
based on Bayesian Inference that has been successfully 
applied in many quality control problems [19, 20]. In 
this research, we show that the parameters of prior 
distribution affect the performance of the Bayesian 
change point estimator and a new method is developed 
for change point estimation by selecting appropriate 
parameters for prior distributions. 

 In section 2, we obtain Likelihood, Prior, Posterior 
and Marginal distribution. Maximum likelihood 
estimation for change point comes in section 3. We 
present a simulation study in section 4. Bayesian and 
maximum likelihood estimation of two change point 
comes in section 5. Finally, we conclude the paper in 
section 6. 

 
 

2. LIKELIHOOD, PRIOR, POSTERIOR AND 
MARGINAL 
 
Let  

1 2 ,, , nX X X…… be a sequence of observations that 
come from exponential distribution with probability 
density function as follows: 

( ) λxp x λ e   ; x 0 ,  λ  0.−= > >  (1) 

Let  m  be the change point in the hazard rate of 
exponential distribution that leads to the event that two 
sequences 

1, , mX X…… and 1 2, , .,m m nX X X+ + …  have 
different hazard rates. The probability density functions 
of the sequence 

1, , mX X…… is defined as follows: 

( ) 1 x
1 1 1 p x e   ;  x 0 ,   0.λλ λ−= > >  (2) 

And the probability density functions of the sequence 
1 2, , .,m m nX X X+ + … is: 

( ) 2 x
2 2 2  p x e   ;  x 0 ,   0.λλ λ−= > >  (3) 

The likelihood functions of probability density function 
of the sequences are as follows: 

( )
m

1 i
i 1

λ x
m  

1 1L λ | x  α    λ .e =

−

− ∑  

( )
n

2 i
i m 1

λ x
n m  

2 2L λ |  α    λx .e = +

−

−
−

∑  

(4) 

And the joint Likelihood function is given by: 

( )
m n

1 i 2 i
i 1 i m 1

λ x λ x
m n m 

1 2 1 2L λ λ |  α    λ   λ .x e e= = +

− −
−

−

∑ ∑  (5) 

Suppose the marginal prior distributions of λ1, λ2 are 
Gamma priors as follows: 

( )
1

1 1 1

a
a 1 b λ1

1 1 1 1 1
1

bg λ   α   λ  e   ;a ,  b 0.
Γ( )a

− − >  

( )
2

2 2 2

a
a 1 b λ2

2 2 2 2 2
2

b
g λ   α   λ  e   ;a ,  b 0.

Γ( )a
− − >  

(6) 

As Srivastava [13] proposed, we take the marginal prior 
distribution of  m  discrete uniform over the set 

( ) 1, , 1m n= …… − then the joint prior distribution of 

2 1, ,m λ λ  is 

( )
1 2

1 2 1 1 2 2

a a
a 1 a 1 b λ b λ1 2

1 2 1 2
1 2

b bg λ ,λ  ,m   α   λ λ  e  e  ,
Γa Γa

− − − −  

( )1 2λ ,  λ 0  &   1, , 1m n> = …… −  

(7) 

The Joint posterior density of 2 1, ,m λ λ  say 

( )1, 2λ λ ;m|xπ
−

 is determined as follows: 

( ) ( ) ( )
1 2

m n

1 1 i 2 2 i
1 2 i 1 i m 1

a a
1 2

1 2
1 2

λ (b x )     λ (b x )     
 m a 1 n m a 1
1 2

b bπ ,  ;m|   
Γ a Γ a  

λ  λ  e   e .

xλ λ

= = +

−

− + − +
+ − − + −

=

∑ ∑

 (8) 

Therefore, the marginal posterior distribution of change 
point  m is: 

( )
( ) ( )

( )
1 2

1 2
m nm a n m a

1 i 2 ii 1 i m 1

1 2 1 2

π  | x

Γ m a Γ n m a
 

( b x )     ( b x )     
.

ψ a , a , b , b , m , n

m
−

+ − +

= = +

=

+ − +

+ +∑ ∑

 
(9) 
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Also, the marginal posterior distribution of 1 λ is 
obtained as follows: 

( )
( )

( )

m
1 1 i1 i 1

2

1 

λ (b x )    a 1 2
1 n1 n m a

2 ii m 1

1 2 1 2

π |  

Γ n m a
 λ   e

(b x )    
.

ψ a ,a ,b ,b ,m,n

n m
m

xλ

=

−

− ++ −

= − +

= +

=

 − +∑ 
 + 

∑
∑

 
(10) 

And the marginal posterior distribution of 2 λ is 
determined as follows: 

( )
( )

( )

n
2 2 i2 i m 1

1

2 

λ (b x )    a 1 1
2 m1 m a

1 ii 1

1 2 1 2

π |

Γ m a
 λ   e

(b x )    
 .

ψ a ,a ,b , b ,m,n

n n m
m

xλ

= +

−

− +− + −

= +

=

=

 +∑ 
 + 

∑
∑

 
(11) 

where, 

( )

( ) ( )

n-1 
ψ a , a , b , b , m, n  ( , , m)1 2 1 2 1 2 1 20 0m 1
n-1 Γ m a Γ n m a1 2

n nm a n m a1 2m 1 (b x )    (b x )    1 2i ii m 1 i m 1

.

g d dλ λ λ λ
∞ ∞

= =∫ ∫∑
=

+ − +
∑ + − +
= + +∑ ∑= + = +

 (12) 

Using the marginal distribution of 
2 1,λ λ  and  m , 

following results are concluded,  

( ) ( )

( )

1 2

1

n 1 2
m nm 1 m 1 a n m a

1 i 2 ii 1 i m 1

1 2 1 2

( )

Γ m 1 a Γ n m a
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(13) 
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n 1 2
m nm 1 m a n m 1 a

1 i 2 ii 1 i m 1

1 2 1 2
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( ) ( )
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1 i 2 ii 1 i m 1

m 1 1 2 1 2

( )
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    (b x )       (b x )    

.
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+ − +
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=

=

+ − +

+ +∑ ∑∑  
(15) 

 
 
3. MAXIMUM LIKELIHOOD ESTIMATION (MLE) OF 
CHANGE POINT IN EXPONENTIAL DISTRIBUTION  
 
We consider the problem of detecting the change point 
 m along with 2 1,λ λ  using maximum likelihood 
estimation in this section. In this approach, first we 

obtain likelihood functions for variables 2 1,λ λ  along 
with Likelihood estimations. Let 1 2 ,, , nX X X…… be a 
sequence of observations. Let  m  be the change point 
in the observation which breaks the distribution in two 
sequences as 

1, , mX X…… and 1 2, , .,m m nX X X+ + … . 
The probability mass functions of the above sequences 
are: 

( ) 1 x
1 1 1 p x e   ;  x 0 ,   0.λλ λ−= > >  (16) 

( ) 2 x
2 2 2  p x e   ;  x 0 ,   0.λλ λ−= > >  (17) 

The likelihood functions of p.m.f.’s of the sequences are: 

( )
m

1 i
i 1

λ x
m 

1 1L λ | x  α   λ .e =

−

−

∑
 (18) 

( )
n

2 i
i m 1

λ x
n m 

2 2L λ | x  α   . λ e = +

−
−

−

∑
 (19) 

The maximum likelihood estimation of 2 1,λ λ are given 
as:  

1 m
ii 1

mλ ,
x

=

=
∑

 

2 n
ii m 1

n m
λ .

x
= +

−
=

∑
 

(20) 

And Likelihood function is obtained as follows: 

( ) ( )n
n

i ii 1 i 1

nL k e
x

.  e
x

kk
k

k

k k − −−

= = +

−
=

∑ ∑
 

(21) 

Now, we determine the value of  m that maximizes the 
likelihood function. The maximum Likelihood Estimation 
(MLE) of change point is: 

( ) ( ){ }{ }
*

: L  Max  L  ; 1, 2, , n .

m

m m k k

=

= = …
 (22) 

The value of  m that is obtained by MLE approach is 
the estimated change point. 
 
 
4. SIMULATION STUDY 
 
In the simulation study, we generate 20 random 
observations from an exponential distribution. Let the 
shift in sequence happen at the 10th observation. Also, 
the hazard rates of sequences 1, , mX X……  and 

1 2, , .,m m nX X X+ + …  are 2 13, 2λ λ= = respectively. If the 
target values of 2 1, ,m λ λ  are unknown, their estimation 
are given by using posterior distributions of each 
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parameter in Bayes estimation method. The Bayes 
estimators of 

2 1,λ λ and change point  m are calculated 
by excel. We have repeated these steps for 100 times to 
calculate the respective 2 1, ,m λ λ  andMSE of various 
Bayes estimators. As can be seen in the following 
tables, the MSE of estimations are relatively small, and 
since the standard error of estimations is obtained by 
equation 100 10MSE MSE= , therefore, it is 
concluded that the standard error of estimations is 
sufficiently small. Another reason for obtaining the 
results in 100 iterations is the long time of runs and 
huge simulation studies.  
 
4. 1. Sensitivity Analysis of Bayes Estimates     We 
have considered the sensitivity of the Bayes estimates 
with respect to shifts in the parameters of prior 
distribution 1 1( , )a b and 

2 2( , )a b . The means and variances 
of the prior distribution are used as prior information in 
computing these parameters. Then, we have computed 
the Bayes estimates of 1 2,λ λ and m using different set of 
values of 1 1( , )a b and 2 2( , )a b . We assume different values 
of 

1 1( , )a b and 2 2( , )a b  based on the research in this 
context done by Srivastava [13] The numbers in 
parentheses in Table 1 shows the MSE of Bayesian 
estimators. It is observed that the estimates of  m and  

1λ  
are close to their exact values but the estimate of 2λ  has 
a large deviation from its exact value by using the priors 
1, 2, 3 and 4 that are proposed by Srivastava [13]. Also, 
when we use a Gamma prior distribution with 
parameters 1 1( 0.001, 0.001)a b= =  that is a non-
informative prior [21], then the estimations of 1 2,λ λ  
are close to their exact values; but, the estimation of 
change point has a large deviation from its actual value. 
To solve this problem, we proposed using a two stages 
Bayesian approach. If we adjust the parameters of prior 
distributions for 1 2,λ λ such that their means would be 
close to their exact values, it is seen that the 
performance of proposed approach significantly 
improves as has been done in cases 6 and 7 of Table 1. 
In case 6, we have assumed that partial information 
existed about parameters 1 2,λ λ and the parameters of 
prior distribution is adjusted so that their means would 
be close to their exact values and it is seen that the 
performance of proposed method improves. In case 7, 
we have assumed that the exact values of parameters 

1 2,λ λ are known and the parameters of prior 
distribution for 1 2,λ λ  are adjusted so that their means 
would be equal to their exact values and we see the 
performance of proposed approach significantly 
improves. Therefore, following two stages Bayesian 
approach is suggested. In the first stage of the proposed 

approach, we use a suitable prior in the Bayesian 
updating procedure and after estimating the approximate 
value of the shift point, m, in the second stage, we use 
Gamma priors with parameters, 11 1( 1, )a b X= =   and 

22 2( 1, )a b X= =  for 
1 2,λ λ  where 1X  is the average of 

observations 
1, , mX X……  and 2X  is the average of 

observations 
1 2, , .,m m nX X X+ + …  respectively. Suitable 

prior should be selected by using historical data and 
experience of decision maker. For example, in this 
simulation study, we obtain the value of m that is 
close to its exact value of change point by using the 
first prior mentioned in Table 1. Thus, first we use a 
suitable prior for change point estimation in the first 
stage of Bayesian approach. Then, after determining 
the approximate value of shift point, we use proposed 
priors for parameter of exponential distributions in the 
second stage of Bayesian approach and the Bayesian 
technique will be repeated again. Table 2 shows the 
results of estimation by applying this approach. 
 
 
TABLE 1. Bayes Estimates of 1 2, ,m λ λ and their respective MSE  

No. 1 1( , )a b  
2 2( , )a b  µm  µ

1λ  µ
2λ  

1 (1.5, 1.75) (1.8, 2.0) 
10.566 
(2.89) 

1.813 
(0.20) 

1.869 
(1.38) 

2 (1.75, 2.0) (2.0, 2.25) 
10.598 
(4.40) 

1.762 
(0.25) 

1.842 
(1.40) 

3 (2.0, 2.25) (2.20, 2.5) 
10.772 
(4.30) 

1.791 
(0.20) 

1.778 
(1.56) 

4 (2.25,2.50) (2.40,2.75) 
10.646 
(3.50) 

1.675 
(0.24) 

1.719 
(1.70) 

5 (0.001,0.001) (0.001,0.001) 
18.842 
(9.67) 

2.9 
(3.085) 

3.01 
(7.36) 

6 (1,0.59) (1,0.54) 
13.682 
(2.394) 

2.364 
(0.284) 

1.249 
(1.719) 

7 (1,0.5) (1,0.33) 
9.8438 
(0.024) 

2.049 
(0.219) 

3.086 
(1.066) 

 
 
TABLE 2. Bayes Estimates of 1 2, ,m λ λ and their respective 

MSE  

1 2( , )λ λ  
1 1( , )a b  

2 2( , )a b  µm  µ
1λ  µ

2λ  

(2,3) 1(1, )X  2(1, )X  10.21 
(1.84) 

2.45 
(0.25) 

3.65 
(1.28) 

(2,4) 1(1, )X  2(1, )X  10.31 
(2.1) 

2.7 
(0.35) 

4.45 
(1.67) 

(2,5) 1(1, )X  2(1, )X  10.72 
(2.3) 

2.9 
(0.65) 

5.7 
(2.17) 

(2,2.5) 1(1, )X  2(1, )X  10.12 
(1.2) 

2.1 
(0.12) 

2.54 
(1.16) 
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By comparing the results of Tables 1 and 2, we come to 
this point that applying two stages Bayesian approach 
will significantly improve the performance of Bayesian 
estimation technique. We see that estimation of change 
point and parameter of exponential distribution is close 
to their exact values. Also, it is seen that MSE of 
estimations has decreased significantly. It is necessary 
to mention that selection of optimal parameter prior to 
exponential distribution depends on application of 
optimal parameter. In general, the effect of optimal 
parameter would be meaningless; when there is no 
selection of parameters prior to distribution affected on 
the final results. Therefore, selecting appropriate 
parameter prior to distribution is important; especially, 
in the cases when small number gathered by 
observations. Moreover, comparing the statistical 
performances of the Bayes estimators of a quantity of 
interest under different prior distributions has no sense. 
Indeed, the prior distribution should not be chosen on 
the basis of its statistical performances and the prior 
distribution should be selected depending on the prior 
information available to the analyst, and not on the basis 
of its statistical performances. 
 
4. 2. Simulation Study for Maximum Likelihood 
Estimation (MLE)       We estimated the values of m, 

2 1,λ λ by MLE approach mentioned in Section 3 where 
the results are shown in Table 3. The maximum 
likelihood estimation 2 1,λ λ and change point m are 
calculated by 'Matlab' software. MSE of estimations are 
given for estimated values of 

2 1, ,m λ λ  where they are 
obtained based on 100 runs of the program.   

In general, it is concluded that although the 
maximum likelihood estimation (shown in Table 3) and 
the Bayes estimation of parameters (shown in Table 1) 
were not very accurate in determining the change point 
and parameter of exponential distribution, but the results 
of two stages Bayesian process in our solution is more 
precise (Table 2) and MSE of estimations has 
decreased. Therefore, we concluded that Bayes 
estimation of parameters is more accurate in the 
proposed approach. Also, we obtained the confidence 
interval for estimation of change point in the Bayesian 
approach. The results are shown in Table 3. 
 
 
TABLE 3. The results of MLE approach for estimation of 

2 1, ,m λ λ  and their respective MSE  

1 2( , )λ λ  µm  µ
1λ  µ

2λ  

(2,3) 11.64(2.68) 1.73(0.07) 2.04(0.91) 

(2,4) 10.75(2.7) 1.7(0.12) 2.23(1.2) 

(2,5) 12.23(3.2) 1.6(1.3) 3.7(4.1) 

(2,2.5) 9.6(1.8) 1.8(0.06) 1.85(0.5) 

TABLE 4. Confidence interval for estimation of change point 

L  
Bayesian approach  

( )p m m L− ≤)  
two stages approach 

( )p m m L− ≤)
 

1 0.06 0.11 

2 0.15 0.21 

3 0.31 0.5 

4 0.42 0.6 

5 0.73 0.8 

 
 
TABLE 5. Sensitivity Analysis on the location of shift points 

Location 
 

1 2( , )λ λ  
7 10 13 16 

(2,3) 
6.65 

(1.65) 
8.87 

(3.50) 
11.97 
(3.62) 

17.71 
(1.68) 

(2,4) 
8.35 

(2. 82) 
9.86 

(3.59) 
14.27 
(3.05) 

18.16 
(5.65) 

(2,5) 
9.45 

(6.18) 
12.87 
(5.94) 

10.19 
(7.21) 

18.69 
(8.69) 

(2,2.5) 
7.23 

(0.38) 
9.75 

(0.95) 
13.87 
(1.32) 

14.98 
(2.56) 

 
 

As can be seen in Table 4, Bayesian approach does 
not perform very well in point estimations. For example, 
the deviation between the results of Bayesian approach 
and the exact value of shift point in 6 percent of runs 
has been less than one. As shown in Table 4, the 
proposed two stages approach can improve the results of 
point estimations. Since in the literature of statistical 
process control, the location of shift also affects the 
performance of change point estimator, thus we evaluate 
the performance of the Bayesian estimator in the 
locations 7, 10, 13, and 16. The results are shown in 
Table 5. It is seen from Table 5 that even though the 
location of shift effects on the performance of proposed 
methodology and also the MSE of estimations in 
different locations are substantially differs with each 
other, but the estimations are generally acceptable. Also, 
it is seen that when the location of shift is a very small 
or a very large number in sequence of data, then the 
MSE  of Bayes estimator increases. Since increasing 
the number of observations before and after shift affects 
the performance of estimators, hence, this result was 
expected. 

Also we compared the Bayesian change point 
estimator with MLE under different magnitudes of 
shifts in the parameter of exponential distribution. 
Assume that location of shift is at the tenth observation. 
The results of one stage Bayesian inference is shown in 
Table 5, that of the MLE method in Table 3 and the 
result of two stages Bayesian inference in Table 2. By 
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comparing the results, it is concluded that the result of 
one stage Bayesian inference is slightly better than MLE 
approach, but two stages Bayesian inference totally 
outperforms other methods. 
 
 
5. BAYESIAN AND MAXIMUM LIKELIHOOD 
ESTIMATION OF TWO CHANGE POINTS IN 
EXPONENTIAL DATA 
 
In this section, we try to estimate two change points m' 
and m which occur in any sequence of independent 
observations 

1 m m 1 m' m' 1 nX , ,X X ؛ , ,X X  ؛  , ,X+ +…… …… …… of 
exponential data. Sometimes we encounter a sudden 
variation in real applications for a short period of time 
and then the system returns to its initial setting. Finding 
the time of sudden variation and the time of omitting 
this sudden variation is investigated in this paper. In this 
article, we have developed a Bayesian method for 
estimating two change points in the exponential data.  
 It is assumed that a sudden variation has occurred in the 
hazard rate of data at  thm  observation that changes the 
value of hazard rate form 1λ  to 2λ  and then the process 
comes back to its initial state at  'thm  observation. It 

means that the value of hazard rate changes from 2λ  to

1λ .  The Bayes estimator are derived for two change 
points  ',m m and 2 1,λ λ . Also we presented a new 
method for decreasing MSE of estimators for two 
change points  ',m m .  
 
5. 1. Likelihood, Prior, Posterior and Marginal   
Let ( )1 2,  , ....,   3nX X X n ≥  

be a sequence of 
observations. Let observations 1 2,  ,...., nX X X  follow 
exponential distribution with probability density 
function as follows: 

( ) λxp x λ e   ; x 0 ,  λ  0.−= > >  (23) 

Let m and m' be two change points in the observation 
which divides the sequence into three parts as follows:  
Part 1: 

1 m X , ,X……   
Part 2: m 1 m'  X , ,X  + ……  
Part 3: m' 1 n X , ,X+ ……  
The probability distribution functions of the part 1 and 
part 3 are as follows: 

( ) 1 x
1 1 1  p x e   ;  x 0 ,   0.λλ λ−= > >  (24) 

And the probability distribution functions of the part 2 
is: 

( ) 2 x
2 2 2  p x e   ;  x 0 ,   0.λλ λ−= > >  (25) 

The likelihood functions of the sequences are: 

( )
nm

1 i1 i
'i 1 i m 1

λ xλ x
m n m' 

1 1L λ | x  α   λ  .e e= = +

−−
+ −

−

∑∑
 

( )
m'

2 i
i m 1

λ x
m' m 

2 2L λ | x  α  . λ e = +

−
−

−

∑
 

(26) 

And the joint Likelihood function is given by: 

( )
m n m'

1 i i 2 i
'i 1 i m 1 i m 1

1 2

λ ( x x ) λ x
m n m'  m' m 

1 2

L λ , λ | x  α  

  λ   λ .e e= = + = +

−

− + −
+ − −

∑ ∑ ∑
 (27) 

Suppose the marginal prior distributions of 2 1,λ λ are 
natural conjugate Gamma prior distribution as follows: 

( ) ( )
1

1 1 1

a
a 1 b λ1

1 1 1 1 1
1

bg λ   α   λ  e       ;a ,  b 0.
Γ a

− − >  

( ) ( )
2

2 2 2

a
a 1 b λ2

2 2 2 2 2
2

bg λ   α   λ  e       ;a ,  b 0.
Γ a

− − >  
(28) 

To perform the mathematical computations easily, the 
prior distribution is preferred to be a conjugate prior. 
Since a posterior distribution of a conjugate prior 
distribution is a member of the same conjugate family, 
thus the successive applications of Bayes’ theorem can 
be easily performed. Since posterior distribution 
function of the parameter of exponential distribution is a 
Gamma distribution, therefore Gamma prior for 
parameter of exponential distribution is a conjugate 
prior. Also, Gamma prior can be used as a non-
informative prior distribution. The Gamma prior can 
represent a wide variety of states of prior information, 
including the non-informative prior, by changing the 
values of parameters a and b. When b tends to zero, then 
the prior variance of parameter of exponential 
distribution tends to infinity, which adequately denotes 
the inspector’s vague knowledge about this parameter 
[21]. Similar to work by Srivastava [13], we take the 
marginal prior distribution of m discrete uniform over 
the set ( ){ }1, 2,3, 1n…… −  and the marginal prior 

distribution of 'm  discrete uniform over the set 
{ }1,2,3,m n+ …… . 

It is obvious that if ' 1m m= +

then it means that no shift is occurred in the hazard rate 
of process. Therefore, the joint prior distribution of 

2 1,λ λ and change points ',m m are as follows: 

( )

( ) ( )
1 2

1 2 1 1 2 2

1  2

a a
a 1 a 1 b λ b λ1 2
1 2

1 2

g λ , λ  , m , m '   α   

b b λ λ  e  e
Γ a Γ

,
a

− − − −

 
(29) 

where 1 2λ ,  λ 0  ,  1,..., 1, ' 1,..., .m n m m n> = − = +  The 
Joint posterior density of  2 1,λ λ   and ',m m say 
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( )1, 2λ λ ; m , m'| xπ
−

 is obtained as Equation (30). The 

marginal posterior distribution of change points ',m m   
is obtained as Equation (31). Also following is obtained 
Equation (32). Also, The marginal posterior distribution 
of 1λ  is as Equation (33). And the marginal posterior 

distribution of 2λ  is as Equation (34) where, (see 

Equation (35)) using the above posterior distribution 
functions, the estimation of 1λ  is obtained as, Equation 
(36). Other estimators are obtained by similar 
mathematical calculations as Equations (37), (38) and 
(39).  

 

( ) ( ) ( )

m n m '

1 i i1 2 2 2 i
'i 11 2 i m 1 i m 1

λ ( x x )a a λ ( b x )     
 m n m' a 1 m' m a 11 2

1 2 1 2
1 2

b bπ  ,  ;m, m '|     λ  λ   e .
Γ a Γ a  

x eλ λ = = + = +

− + − +
+ − + − − + −

−

∑ ∑ ∑
=  (30) 

( )
( ) ( )

( )

'' ' '1 2
'

' '
n 1 2

m 1 n m 1m m 1 n m m a m m a
1 i i 2 ii 1 i m i m

'
1 2 1 2

Γ n m m a Γ m m a
 
(b x  x )     (b x )     

π  | .
ψ a , a , b , b , m , m , n

m x
− −= + + − + − +

= = =

−

+ − + − +

+ + +
=

∑
∑ ∑ ∑  (31) 

( )
( ) ( )

( )

'

'
1 2

m 1 1 2
m 1 n m 1m 1 n m m' a m ' m a

1 i i 2 ii 1 i m' i m

1 2 1 2

Γ n m m ' a Γ m ' m a
 
(b x  x )     (b x )     

π  m '| .
ψ a , a , b , b , m , m ', n

x

−

− −= + − + − +
= = =

−

+ − + − +

+ + +
=

∑
∑ ∑ ∑

 

(32) 

( )
( )

( )

m 1 n
1 1 i i1 i 1 i m'

''
2

λ ( b x x )     ' a 2
1 m 11 1 m' m a

2 ii m
1 

1 2 1 2

Γ m' m a
 λ   e

(b x )    
π |  .

ψ a , a , b , b , m, m', n

n n n m m
m m m

xλ

−

= =
− + ++ − +

−= = + − +

=

−

 − +∑ ∑ 
 + =

∑ ∑
∑

 

(33) 

( )
( )

( )

'm 1
2 2 i2 i m

'
1

n n λ ( b x )     m' m a 1 1
2 m 1 nm 1 m m 1 n m m' a

1 i ii 1 i m'
2 

1 2 1 2

Γ n m m' a
λ   e  

(b x x )    
Π |  .

ψ a , a , b , b , m, m', n
xλ

−

=
− +− + −

−= = + + − +

= =

−

 + − +∑ 
 + + =

∑ ∑
∑ ∑

 

(34) 

( ) ( )

n  
ψ a ,a ,b ,b ,m ,n  ( , ,m )1 2 1 2 1 2 1 2m ' 2 m 1 0 0

n  n Γ n m m ' a Γ m ' m a1 2 n m m ' a ' m ' m am 1 n m 11m 1 ' 2( b x x )     ( b x )     m m 1 1 i i 2 ii 1 i m i

'

' m

1

.

g d
m

dλ λ λ λ
 
 
 

∞ ∞
∑ ∑= =∫ ∫= =

+ − + − +
∑ ∑ + − + − +− −= + + +∑ ∑= + ∑= = =

−

 
(35) 

( )

( ) ( )

m -1 n
1 11 i 1 i m '

' '
2

''
2

1 1 1
0

n n (b  x x )2 '
1 1 1m 1 m m 1 m 1 m ' m a

02 ii m

n n 2 1
nm 1m 1 m m 1 m ' m a

1 i2 i i m 'i

1

m

( ) d

Γ m ' m a
 { e d }

  ( b x )     

 

Γ m ' m a Γ n m m ' 1 a
  

  ( b x  ( b x )    

( )

 

i in m m a

E x

λ

λ λ π λ λ

λ λ λ= =

∞

∞
− ++ − +

= = + − − +

=

−= = + − +
==

= =

− + ∑ + ∑ =
+

− + + − + +

+ ++

∫

∑ ∑ ∫
∑

∑ ∑
∑∑

( )

1
m 1 n m m ' 1 a

ii 1

1 2 1 2

 
x )     

.
ψ a , a , b , b , m , m ', n

− + − + +

=

 
 
 
 ∑

 
(36) 
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( ) ( )

( )

'' '
1 2

n n 1 2
n m 1 m 1m 1 m m 1 n m m' a m m 1 a

1 i i 2 ii m' i 1 i m

1 2 1 2
2

0
2 2 2

Γ n m m' a Γ m' m 1 a
 

  (b x x )      (b x )    
.

ψ a ,a , b , b , m, m',
( ) ( )

n
xE dλ λ π λ λ

− −= = + + − + − + +∞
= = =

 + − + − + + 
 + + + = =

∑ ∑
∑ ∑ ∑

∫
(37) 

(38) 

 

(39) 

 
 
5. 2. Maximum Likelihood Estimation (MLE) of 
Two Change Points in Exponential Distribution   
The likelihood functions of p.m.f.’s of the sequences are  

( )
m n

1 i i
' 'i 1 i m 1

λ ( x x )
n m m  

1 1L λ | x  α    λ ,e = = +

− +
− +

−

∑ ∑

( )
'm

2 i'
i m 1

λ x
m m  

2 2L λ | x  α   . λ e = +

−
−

−

∑
 

(40) 

the values of ,thus  2 1,λ λ are given by 

'

'

1 m n
i ii 1 i m 1

n m mλ ,
x x

= = +

− +
=

+∑ ∑
 

2 m'
ii m 1

m' mλ .
x

= +

−
=

∑
 

(41) 

And Likelihood function is obtained as: 

( ) '
'

(n m m )
m n

i ii 1 i m' 1

(m' m)
m'

ii m 1

n m mL m,m'  e
x x

m' 
x

.m  e

− + −

= = +

− −

= +

+ −
=

+

−
∑ ∑

∑

 

(42) 

Maximum Likelihood Estimation (MLE) is given by: 

( ) ( ) ( )
( ){ }

* *

'

, ' , ' : , '

 , '  ; 1,2, , -1  &  1, ,

m m m m L m m

Max L k k k n k k n

= =

= … = + …
 (43) 

Now in the next section, numerical examples along with 
solution algorithms are provided in order to show the 
application of proposed methodology. 
 
5. 3. Sensitivity Analysis of Bayes Estimators    In 
this section, the means of the posterior distribution of 

variables 2 1', , ,m m λ λ  are evaluated in order to analyze 
the performance of Bayesian inference in change point 
estimation. The value of hazard rates is assumed to be 

2 13, 2.λ λ= =  We have generated sample of 20 
observations from exponential data where two change 
points exist between 1 and 20. Assume the first change 
point is 6 and second change point is 14. The Bayes 
estimators of 2 1,λ λ  and change points ',m m are 
calculated by excel software. The respective 

2 1', , ,m m λ λ  and MSE  are determined based on the 
100 runs of program. Because of small value of standard 
errors that are obtained by equation 

100 10MSE MSE=  and long time of simulation 
study, it is concluded that 100 runs of program is 
sufficient for estimation of parameters. We have 
performed the sensitivity analysis of the Bayes 
estimates with respect to shifts in the parameters of 
prior distribution 1 1( , )a b  and 2 2( , )a b . The means and 
variances of the prior distribution are used as prior 
information in computing these parameters. Then, with 
these parameter values, we have computed the Bayes 
estimates of  2 1', , ,m m λ λ using different set of values 
of 1 1( , )a b  and 2 2( , )a b . The numbers in parentheses 

show the MSE  of Bayesian estimators in Table 6. As 
can be seen from Table 6, the MSE of Bayes estimators 
are very large, that means the proposed Bayes estimator 
cannot estimate the value of change points precisely. 
The reason behind this variation is the existence of large 
difference between parameters of prior distribution for

2 1,λ λ and the actual values of hazard rates. In 
Srivastava's study [13], Bayes estimates of the 
parameters become robust with correct choice of prior 
parameters and sample size. But, in this paper we 

( ) ( )

( )

''
1 2

n 1 2
m 1 n m 1m m 1 n m m' a m' m an 1 1 i i 2 ii 1 i m' i m

m 1 1 2 1 2

Γ n m m' a Γ m' m a
      m    

    (b x x )       (b x )    
.

ψ a ,a ,b ,b ,m,

)

m',n

(E m

− −= + + − + − +−
= = =

=

=

+ − + − +

+ + +
∑

∑ ∑ ∑∑

( ) ( )

( )

'

'
1 2

'

m 1 1 2
m 1 n m 1m 1 n m m' a m' m an 1 i i 2 ii 1 i m' i m

m m 1 1 2 1 2

Γ n m m' a Γ m' m a
      m'     

    (b x x )       (b x )    
.

ψ a , a , b , b

( ')

, m, m', n

mE
−

− −= + − + − +
= = =

= +

=

+ − + − +

+ + +
∑

∑ ∑ ∑∑
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suggest another way to get more precise estimators; we 
applied a two stages Bayesian approach. In the first 
stage of proposed approach, we use a suitable priors in 
the Bayesian updating procedure and after evaluating 
the approximate value of ',m m , second stages will be 
applied. Suitable prior should be selected by historical 
data and experience of decision maker. In the second 
stage, we use Gamma priors with parameters  
( )1 1 1 31,a b X X= = + for 1λ  and Gamma prior with 

parameters ( )2 2 21,a b X= =  for 
2 λ  where 3 2 1, ,X X X  are 

average of observations 1 m X , ,X…… , 
1 m' X , ,Xm+ ……  and 

' 1 nX , ,Xm + …… respectively.  
 
 
 
TABLE 6. Bayes Estimates of 2 1', , ,m m λ λ  and their 
respective MSE  

1 1( , )a b  
2 2( , )a b  µm  ¶'m  µ

1λ  µ
2λ  

(1.5, 1.75) (1.8, 2.0) 
7.66 

(2.79) 
14.166 
(1.277) 

1.87 
(0.563) 

1.59 
(2.108) 

(1.75, 2.0) (2.0, 2.25) 
7.76 

(4.498) 
14.18 

(1.271) 
1.81 

(0.532) 
1.45 

(2.438) 

(2.0, 2.25) (2.20, 2.5) 
7.85 

(4.784) 
14.40 

(1.830) 
1.67 

(0.684) 
1.31 

(2.915) 

(2.25,2.50) (2.40,2.75) 
7.74 

(3.903) 
14.65 

(1.579) 
1.45 

(0.758) 
1.29 

(3.256) 

(0.001,0.001) (0.001,0.001) 
7.68 

(4.495) 
13.41 

(2.932) 
4.63 

(0.819) 
6.43 

(3.301) 

(1,0.58) (1,0.53) 
7.546 

(1.352) 
14.439 
(1.967) 

1.673 
(0.587) 

1.839 
(2.037) 

(1,0.5) (1,0.33) 
7.294 

(0.987) 
13.908 

(0.0397) 
1.826 

(0.658) 
2.375 

(1.962) 

 
 
 
TABLE 7. Bayes Estimates 

2 1', , ,m m λ λ  
and their respective 

MSE  in two stages Bayesian approach 

1 1( , )a b  
2 2( , )a b  µm  ¶'m  µ

1λ  µ
2λ  

1 31,( )X X+  2(1, )X  
7.708 

(0.80) 

14.276 

(0.68) 

2.438 

(0.64) 

3.292 

(1.97) 

 
 
 
TABLE 8. Results of MLE approach for estimation 

2 1', , ,m m λ λ  and their respective MSE  

 µm  ¶'m  µ
1λ  µ

2λ  

Estimates 9.2(10.24) 11.7(5.29) 2.55(0.305) 1.49(2.27) 

In the first prior of Table 6, the values of ',m m
have least deviation from their exact values, thus we 
used first priors to estimate the parameters ',m m in 
the first stage of change points estimation. Then, we use 
Gamma priors for parameter of exponential distributions 
in the second stage of Bayesian approach and estimation 
technique will be repeated again. Table 7 shows the 
results of estimation with these prior distributions. It is 
concluded from the results in Table 7 that the MSE of 
Bayes estimators have decreased in proposed approach 
which makes the estimations more precise. Therefore, 
the results of two stages Bayesian process in our 
solution are better than the results of single stage 
Bayesian estimation method (Table 6).  

Also, the result of likelihood estimation technique is 
denoted in Table 8. The maximum likelihood estimation  

2 1,λ λ  and change points ',m m are calculated by 
'Matlab' software.  

The values of ',m m  and 2 1,λ λ  and their MSE  we 
have obtained based on 100 runs of program. We 
compared the Bayesian change point estimator with 
MLE. Assume that location of shift is at tenth 
observation. The results of one stage Bayesian inference 
comes in Table 6, that of MLE method in Table 8 and 
the result of two stages Bayesian inference in Table 7. 
By comparing the results, it is concluded that the result 
of one stage Bayesian inference is a little better than 
MLE approach, but two stages Bayesian inference 
totally outperforms other methods. In general, it is 
concluded that although the results of maximum 
likelihood estimation (shown in Table 8) and the Bayes 
estimates of parameters (shown in Table 6) were not 
very accurate in determining two change points and 
parameter of exponential distribution, but the results of 
two stages Bayesian process in our solution is more 
precise (Table 7) and MSE of estimations have 
decreased. Therefore, we concluded that the method of 
Bayes estimation of parameters in two stages is more 
accurate in the proposed approach.  
 
 
TABLE 9. Confidence interval for estimation of two change 
points 

L  
Bayesian 
approach 
( )p m m L− ≤)  

Two stages 
approach 

( )p m m L− ≤
)

 

Bayesian 
approach 
( ' ' )p m m L− ≤

)
 

Two stages 
approach 

( ' ' )p m m L− ≤)
 

1 0.11 0.20 0.27 0.35 

2 0.29 0.41 0.36 0.45 

3 0.41 0.66 0.59 0.75 

4 0.62 0.89 0.74 0.90 

5 0.84 0.92 0.93 0.96 
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TABLE 10. Sensitivity analysis on the location of two shift 
points 

location 
µm  ¶'m  µm  ¶'m  

5 16 9 18 

(2,3) 
4.234 
(1.92) 

17.657 
(2.00) 

11.198 
(5.62) 

17.357 
(1.97) 

(2,4) 
5.657 
(1. 89) 

15.824 
(0.85) 

8.295 
(1.83) 

18.197 
(0.85) 

(2,5) 
6.457 
(4.65) 

12.876 
(6.14) 

11.194 
(3.81) 

19.498 
(4.69) 

(2,2.5) 
5.294 
(1.36) 

16.752 
(2.05) 

9.893 
(2.76) 

15.983 
(6.02) 

 
 
 

Also, we obtained the confidence interval for 
estimation of change point in the Bayesian approach. 
The results are shown in Table 9. As can be seen in 
Table 9, Bayesian approach does not perform very well 
in point estimations. For example, the deviation 
between the results of Bayesian approach and the exact 
value of first shift point in 11 percent of runs has been 
less than one. As shown in Table 9, the proposed two 
stages approach can improve the results of point 
estimations. Since in the literature of statistical process 
control, the location of shift also affects the 
performance of change point estimator, thus we evaluate 
the performance of the Bayesian estimator in the 
locations 5, 16m m= =  and 9, 18m m= = . The results 
are shown in Table 10. It is seen from Table 10 that 
even though the location of shift affects on the 
performance of proposed methodology, and also the
MSE of estimations in different locations are 
substantially different with each other, but the 
estimations are generally acceptable.  Also, it is 
concluded that the values of 2 1,λ λ  affect the 
performance of Bayes estimators and the values of 
MSE substantially differs with variation of these 
parameters. 

 
 

6. CONCLUSION 
 
The paper considers determining the change point in 
any sequence of independent observations of 
exponential distribution. The Bayes estimator of change 
point is derived based on posterior probability 
distribution of change point. The sensitivity analysis on 
the location of shift and parameters of prior distribution 
is performed in a simulation study. Also, we suggested a 
two stage Bayesian process to improve the estimation of 
change point. We have developed a Bayesian method 
for estimating two change points in the exponential data 

as well. As a future research, we suggest to consider 
cost of over-estimating or under-estimating the quantity 
of interest along with applying different loss functions. 
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  چکیده
  

 
. استاي از متغیرهاي تصادفی با توزیع نمایی استفاده شدهتحلیل بیزي براي تخمین نقطه تغییر در دنباله در این تحقیق،

نمایی، پیشین،  توابع درست. ایمدست آوردهه برآوردگرهاي بیز را براي نقطه تغییر پارامتر توزیع نمایی قبل و بعد از تغییر ب
نمایی براي تعیین نقطه تغییر ارائه  روش تخمین درست ،همچنین. استقطه تغییر نیز ارائه شدهاي نپسین و توزیع حاشیه

در این مقاله یک روش جدید براي یافتن . ایمسازي انجام داده تحلیل حساسیت برآوردگرهاي بیز را نیز با شبیه. استشده
هاي موجود ایم و این روش جدید را با سایر روشائه کردهتر با تعیین انتخاب صحیح پارامترهاي توزیع پیشین ارنتایج دقیق
یک  ،همچنین. کندها تایید میسازي عملکرد خوب روش پیشنهادي را در مقایسه با سایر روشنتایج شبیه. کنیممقایسه می

  .تحلیل حساسیت بر روي نقطه مکان تغییر هم انجام شده است
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