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A B S T R A C T  

   

In this paper, a numerical method for solving the constrained optimal control of time-varying singular 
systems with quadratic performance index is presented. Presented method is based on Bernstein 
polynomials. Operational matrices of integration, differentiation and product are introduced and 
utilized to reduce the solution of optimal control problems with time-varying singular systems to the 
solution of algebraic equations set. The strength of the method is shown by exhibiting a numerical 
implementation using operational matrices that solves the determined control problem by solving an 
equation set. The method converges rapidly to the exact solution and gives very accurate results even 
by low value of  . Illustrative examples are included to demonstrate the validity and efficiency of the 
technique and convergence of method to the exact solution especially for unstable singular systems. 
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1. INTRODUCTION1 
 
Problem of optimal control of singular systems is an 
immense interest; especially those researchers are 
investigating on the existing problems in the field of 
control theory and in numerical computation of the 
value of control vector which is controlling  the state 
vector. These types of systems are encountered in many 
areas, such as network theory, economics, demography, 
neural systems, composite systems, etc. Chen and Hsiao 
[1] and Chen and Shih [2] have used Walsh series to 
study the problem of optimal control of time-invariant 
and time-varying linear systems. A review of the 
literature suggests that Cobb [3] and Pandolfi [4] were 
the first authors to consider the optimal regulator 
problem of continuous-time singular systems. Both the 
used state feedback and the results were derived with 
the aid of Ricatti-type matrix equations. Walsh 
functions have been widely used to study problem of 
optimal control of linear systems with quadratic 
                                                        
* Corresponding Author Email: a.ranjbar@nit.ac.ir (A. Ranjbar N.) 

performance index [1, 2]. Analysis of linear singular 
systems using orthogonal functions has been presented, 
among others, by Trzaska [5] and Marszalek [6, 7]. 
References [5, 7] used block-pulse and reference [6] 
applied Walsh operational matrices of integration to 
calculate the integral involved in the analysis of singular 
systems. Palanisamy [8] analyzed optimal control of 
linear systems using a single-term Walsh series (STWS) 
method. Balachandran and Murugesan [9] have applied 
the STWS method to optimal control of linear singular 
systems. Razzaghi and Marzban [10] introduced a 
piecewise linear polynomial function method for 
optimal control of singular systems. Observability and 
controllability of linear time-varying singular systems 
have been studied in [11, 12]. Murugesan et al. [13] and 
Park et al. [14] used RK-Butcher algorithm to compute 
numerical solution of the industrial robot arm control 
problem and optimal control of time-invariant linear 
singular systems. Optimal control of singular system has 
also been studied using genetic programming approach 
in [15]. In view of this situation, numerous research 
articles have been dedicated to singular systems in the 
past three decades. Liu and Sreeram [16] and Chang and 
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Davison [17] constitute a representative collection of 
the other works. Recently, a numerical algorithm to 
obtain the consistent conditions satisfied by singular 
arcs for singular linear-quadratic(LQ) optimal control 
problems is presented in [18]. In [19] the existence of 
singular arcs for optimal control problems is studied by 
using a geometric recursive algorithm inspired in 
Dirac’s theory of constraints. For more information on 
the mathematical modeling and solution of this model 
and some other similar models, we refer the interested 
reader to the papers [20-30].  [19, 20]  [21-30]    

In this paper, Bernstein polynomial basis is used for 
solving an optimal control of time-varying singular 
system with a quadratic cost function. In the following, 
major difficulties and challenges which are to be met  in 
the paper are summarized. At first, state vector  ̇( ) and 
control vector  ( ) are expanded in terms of Bernstein 
polynomial. Operational matrices of Bernstein 
polynomial are applied to estimate  ( ) using  ̇( ). In 
section 6, when  ≤   by a technic the system dynamics 
and cost function (performance index) are 
approximated, then a new minimization problem is 
attained. Approximated solution of problem is 
calculated using the Lagrange multipliers method. 
These unknown coefficients are determined in such a 
way that the necessary conditions for extremization are 
met. The presented method shows that a more accurate 
solution of the time-varying optimal control of linear 
singular systems with a quadratic performance index 
can be obtained. Numerical evidence of the stability of 
the algorithm will be presented by discussing various 
relevant numerical experiments. 

This paper is structured as follows: in section 2, 
problem of time-varying singular system is described. 
Section 3 describes the basic formulation of Bernstein 
polynomials which is required for our subsequent 
development. Section 4 is devoted to the function 
approximation using Bernstein polynomial basis whilst 
the upper bound of approximation error is deduced. In 
section 5, we elaborate operational matrices of 
integration, differentiation, dual and product using 
Kronecker product [31]. In section 6, solution of time-
varying singular system problem is approximated by 
Bernstein polynomial basis and an algebraic equation 
set is presented using Lagrange multipliers method. In 
section 7, numerical findings are presented which 
demonstrate the validity, accuracy and applicability of 
our new method. Section 8 consists of the remark and 
brief summary. 

 

 
 

2. STATEMENT OF THE PROBLEM 
 
Consider following time-varying singular system:  ( ) ̇( ) =  ( ) ( ) +  ( ) ( ),       (  ) =   ,  (1) 

where the matrix  ( ) is singular,  ( ) ∈ R  is a 
generalized state vector,  ( ) ∈ R  is a control vector,  ( ) and  ( ) are known coefficient matrices 
associated with  ( ) and  ( ) with appropriate 
dimensions, respectively, and    is the given initial state 
vector. 

In order to minimize a cost function, considering 
both state and control signals of the feedback control 
system, a quadratic performance index is usually 
minimized:  =     (  )  (  ) +   ∫      [  ( ) ( ) ( )  +  ( ) ( ) ( )]  ,  (2) 

where    and    are prescribed times,  ∈ R ×  and  ( ) are weighting matrices for  ( ) and   is a 
symmetric and positive definite (or semi definite) 
matrix,  ( ) is a weighting matrix for  ( ),  ( ) and  ( ) are matrices with appropriate dimensions [32]. 
 
 
 
3. PROPERTIES OF BERNSTEIN POLYNOMIALS 
 
Bernstein polynomials of    degree are defined on [ , ] as [5, 6, 7, 23]:    , ( ) = (    ) (   ) (   )   (   ) ,    0 ≤  ≤   
where  (    ) =  ! !(   )!.  
These Bernstein polynomials form a basis on [a,b]. 
There are m + 1 number    degree polynomials. For 
convenience,   , ( ) = 0, if  < 0 or  > . A 
recursive definition can also be used to generate the 
Bernstein polynomials over [ , ] as:   , ( ) = (   )     ,   ( ) +           ,   ( ).  
It can be shown that each of the Bernstein polynomials 
are positive and linear independent and the sum of all 
the Bernstein polynomials is unity for all real  ∈ [ ,  ], 
i.e., ∑        , ( ) = 1. It is easy to show that any given 
polynomial of degree   can be expanded in terms of 
these basis functions. 
 
 
 
4. APPROXIMATION OF FUNCTIONS 
 
Suppose that  =   [  ,   ] where    ,   ∈ R , let {  , ,  , ,⋯ ,  , } ⊂   is the set of Bernstein 
polynomials of     degree and   =      {  , ,  , ,⋯ ,  , }  
and   is an arbitrary element in  . Since   is a finite 
dimensional vector space,   has a unique best 
approximation out of  , say   ∈  , that is:  ∃  ∈  ;   ∀ ∈    || −   || ≤ || −  || ,  
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where || || =  <  , > and <  , >= ∫       ( ) ( )    . 
In [39], it is shown that a unique coefficient vector   = [  ,   ,⋯ ,   ] exists such that:   ≈   = ∑          , =   ϕ,  (3) 

where ϕ = [  , ,  , ,⋯ ,  , ] and    can be 
obtained:   =  ∫       ( )ϕ( )       ,  (4) 

which   is said dual matrix of ϕ and introduced as:  =<    ,  >= ∫      ϕ( )ϕ( )   .  
 
Theorem 1.       Suppose that   be a Hilbert space and   be a closed subspace of   such that         < ∞ and {  ,  ,⋯ ,   } is any basis for  . Let   be an arbitrary 
element in   and    be the unique best approximation 
to   out of  . Then  || −   ||  =  ( ,  ,  ,⋯,  ) (  ,  ,⋯,  ) ,  
where  ( ,  ,  ,⋯ ,   ) = <  , >        <  ,  >       ⋯       <  ,   ><   , >       <   ,  >     ⋯      <   ,  >        ⋮                    ⋮                    ⋮                 ⋮<   , >        <   ,  >     ⋯     <   ,  > .  
 
Proof. [33]. 
Exact value of approximation error is presented by the 
Theorem 1. In the following lemma, an upper bound of 
approximation error is presented. 
 
Lemma 1. Suppose that function  : [  ,   ] →   be  + 1 times continuously differentiable,  ∈    [  ,   ], and  =     {  , ,  , ,⋯ ,  , }. If   ϕ be the best approximation   out of   then the mean 
error bound is presented as follows: || −   ϕ|| ≤  (  −   )     ( + 1)!√2 + 3  , 
where  = max ∈[  ,  ]| (   )( )|. 
 
Proof. [34]. 
Lemma 1 shows that the method of approximation 
converges to   when  → ∞. 
Now, let  ( ) = [  ( ),  ( ), . . . ,  ( )]  where   ( ) ∈   for  = 1, 2, . . . ,  . If we approximate   ( ) 
out of   by (3), we have:    ( ) ≈    ϕ 
where    = [  , ,   , , . . . ,   , ] can be calculated by (4) 
for  = 1,2, . . . ,  . Then 

 =       ⋮   ≈ ⎣⎢⎢
⎡   ϕ   ϕ  ⋮   ϕ⎦⎥⎥

⎤
  

=   ,    ,   ,   ⋮  ,  +   ,    ,   ,   ⋮  ,  + ⋯+   ,    ,   ,   ⋮  ,    =    ,   ,   ,   , … ,   ,    = ϕ    ,  
where    is the identity matrix of order   ,   = [  , ,  , , . . . ,   , ,  , ,  , , . . . ,   , ,. . . ,   , ,   , , . . . ,   , ]  
is a matrix 1 × [ ( + 1)] and 

ϕ  =    ,     ,       ⋮  ,    = ϕ⊗   ,  (5) 

where ⊗ denotes the Kronecker product [31], so   =   ϕ  .  (6) 

We can also approximate a matrix of functions using 
(6). Therefore, suppose that   × ( ) = [  , ( )] × =
   ( )  ( )   ⋮  ( )  where   , ( ) ∈   and   ( ) is     row of  ( ) 

for  = 1,2, . . . ,  . 
If we approximate   ( ) out of   by (6), we will get   ( ) ≈     ( )ϕ  ( ) for  = 1,2, . . . ,  , then  

 =       ⋮   ≈ ⎣⎢⎢
⎢⎡    ϕ      ϕ      ⋮    ϕ  ⎦⎥⎥

⎥⎤ = ⎣⎢⎢
⎢⎡          ⋮    ⎦⎥⎥

⎥⎤ϕ  =   ϕ    (7) 

where    ×[ (   )] = ⎣⎢⎢
⎢⎡          ⋮    ⎦⎥⎥

⎥⎤. 
 
 
5. OPERATIONAL MATRICES 
 
Operational matrices of the integration  , differentiation   dual   and product    of vector ϕ are respectively 
defined by:  ∫     ϕ( )  ≈  ϕ( ),          ≤  ≤     

  ( )  ≈  ϕ( ),  
 = ∫      ϕ( )ϕ ( )  ,  
  ϕ( )ϕ( ) ≈ ϕ( )   ,  
which the details of obtaining these matrices are given 
in [34]. 
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Analogously, we can define [ ( + 1)] × [ ( + 1)] 
operational matrices of ϕ   as:  ∫     ϕ  ( )  ≈ P  ϕ  ( ),          ≤  ≤     ,  
     ( )  ≈ D  ϕ  ( )  ,  
ϕ  = ∫      ϕ  ( )ϕ  ( )     ,  
 ϕ  ( )ϕ  ( ) ≈ ϕ  ( )      ,  
which   is an arbitrary  × [ ( + 1)] matrix. 
It can be easily shown that the operational matrices of 
the integration, differentiation and dual of ϕ   are as:    =  ⊗   ,     =  ⊗   ,     =  ⊗   .  (8) 

 
5. 1. Operational Matrix of Product of         It is 
aimed to derive an explicit formula for operational 
matrix of product of ϕ  . Suppose that  =[  ,  , . . . ,   ] is an arbitrary  × [ ( + 1)] matrix 
where    is  ×   matrix for  = 0,1,2, . . . ,  , then     is [ ( + 1)] × [ ( + 1)] operational matrix of product 
of ϕ   whenever  ϕ  ( )ϕ  ( ) ≈ ϕ  ( )    .  
Since  ϕ  ( ) = ∑          , ( ), we have  ϕ  ( )ϕ  ( ) =   ∑          , ( )  , ( ),∑          , ( )  , ( ), ⋯ ,∑          , ( )  , ( )].  
Now, we approximate all functions   , ( )  , ( ) in 
terms of {  , ( )}     for  , = 0,1,⋯ , , i.e, we must 
find vector   ,  = [   , ,    , ,    , , … ,    , ] by (4) such that    , ( )  , ( ) ≈   ,  ϕ( ),     , = 0,1,⋯ , . 
Therefore, for  = 0,1,⋯ ,  ∑          , ( )  , ( ) ≈ ∑         ∑         ,   , ( )   
= ∑        , ( ) ∑           ,  = ϕ  ( ) ⎣⎢⎢⎢

⎡∑           , ∑           ,          ⋮∑           , ⎦⎥⎥⎥
⎤
  

= ϕ  ( )    , ⊗   ,  , ⊗   ,   ⋯ ,   , ⊗           ⋮   =
ϕ  ( )       
where 

    =    , ⊗   ,   , ⊗   , ⋯ ,   , ⊗           ⋮   . 
If we define [ ( + 1)] × [ ( + 1)] matrix  =   ,   ,⋯ ,      , then  

 ϕ  ( )ϕ  ( )   =    ∑          , ( )  , ( ),∑          , ( )  , ( ), ⋯ ,∑          , ( )  , ( )]  ≈ ϕ  ( )    ,   , ⋯ ,      = ϕ  ( )  ,  
therefore    ϕ  ( )ϕ  ( ) ≈ ϕ  ( )  .  (9) 

so   is the operational matrix of product of ϕ  . 
 
 
6. SOLUTION OF PROBLEM USING BERNSTEIN 
POLYNOMIALS BASIS 
 
6. 1. Approximation of the System Dynamics   We 
approximate (1) as follows: 
Let  ≤   ( for  ≥   follows quite same) and  ̇( ) = [ ̇ ( ),  ̇ ( ), . . . ,  ̇ ( )] ,  (10)  ( ) = [  ( ),  ( ), . . . ,  ( )] .  (11) 

Using (3), each of  ̇ ( ) and each of   ( ),  =1, 2, . . . , ,  = 1, 2, . . . ,  , can be approximated in terms 
of basic functions as  ̇ ( ) =    ϕ( ) and   ( ) =    ϕ( ) where    = [  , ,   , , . . . ,   , ] and     =[  , ,  , , . . . ,   , ] which can be calculated by (4). 
Then we can write (10), (11) by (6) as:  ̇( ) = ϕ  ( )        (12)  ( ) = ϕ  ( )     (13) 

where   = [  , ,   , , . . . ,   , ,   , ,   , , . . . ,   , , . . .,  , ,   , , . . . ,   , ],  
and    = [  , ,  , , . . . ,   , ,  , ,  , , . . . ,   , ,. . . ,   , ,  , , . . . ,   , ].  (14) 

From (10) and (8) we have:  ( ) = ϕ      ( )  +  (  ) = ϕ  ( )     (15) 

where   =      +   and  (  ) = ϕ  ( )  . 
Now, we approximate matrices   and   by (7)  ≈   ϕ  ,  (16)  ≈   ϕ  ,  (17) 

since  ≤  ,   = [  ,  , . . . ,  ]       ⋮   = [  ,  , . . . ,  ]       ⋮   =  ∗ ∗,  
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where ∗ = [  ,  , . . . ,  ] ,  ∗ = [  ,  , . . . ,   ]  in 

which   =  00⋮0  and   = 0 for  =  + 1,  + 2, . . . , . 
If we approximate  ∗ and  ∗ by (7) and (6), 
respectively, we get:   ∗ ≈   ∗ϕ  ,   ∗ ≈ ϕ     ∗,  
where   ∗ = [  , ,  , , . . . ,   , ,  , ,  , , . . . ,   , ,. . . ,   , ,  , , . . . ,   , ] ,  
therefore   =  ∗ ∗ ≈   ∗ϕ  ϕ     ∗.  (18) 

Substituting (12), (15), (16), (17) and (18) in (1) we 
obtain: E ϕ  ϕ    =   ϕ  ϕ     +   ∗ϕ  ϕ     ∗,  (19) 

using (9) we have:   ϕ  ϕ   ≈ ϕ       ,  (20) 

  ∗ϕ  ϕ   ≈ ϕ      ∗  ,  (21) 

  ϕ  ϕ   ≈ ϕ      ,  (22) 

where    ,    ∗ and     are operational matrices of 
product, by replacing (20), (21) and (22) in (19) we get  ϕ       = ϕ      X +ϕ      ∗   ∗, 
so    X +    ∗  ∗ −     = 0.  (23) 

 
6. 2. The Performance Index Approximation    
Now, we approximate (2) as follows:  
At first, we approximate matrices   and   by (7), i.e.  ≈   ϕ  ,    (24)  ≈   ϕ  .  (25) 

Substituting (13), (15), (24) and (25) in (2) we obtain:  =     (  )  (  ) +   ∫          [  ( ) ( ) ( ) +  ( ) ( ) ( )]   ≈        ϕ  (  )     ϕ  (  )     +  ∫        [     ϕ  ( )  ( )ϕ  ( )ϕ  ( )      +     ϕ  ( )  ( )ϕ  ( )ϕ  ( )     ]  ,  (26) 

by using (9) we have:    ( )ϕ  ( )  ϕ  ( )   ≈ ϕ  ( )      ,  (27)   ( )ϕ  ( )  ϕ  ( )   ≈ ϕ  ( )      ,  (28) 

which     and     are operational matrices of product. By 
replacing (27) and (28) in (26), and using (8) we get:  ≈        ϕ          ϕ             +                 +               .  (29) 

 
6. 3. Solution of the Optimization Problem   From 
(23) and (29) in sections (6.1) and (6.2), respectively, 
the main problem is reduced to: 
             ϕ       ϕ         +   [            +             ]  
                :       +    ∗  −     = 0.  
Using the Lagrange multipliers method, Lagrangian 
equation for this problem is:  ∗ =        ϕ          ϕ          +                 +             ]+λ [     +    ∗  −     ], 
therefore, unknown coefficients cab be calculated by 
solving the following system of algebraic equations:    ∗  = 0,         ∗  = 0,        ∗   = 0.  
Unknown coefficients can be found by simultaneously 
solving the above system of algebraic equations (e.g. 
using    ℎ          ). 
 
 
7. ILLUSTRATIVE EXAMPLES 
 
In order to show the performance of the presented 
method in this paper we applied it to solve some 
examples. The following case studies are given to show 
the merit of the proposed method. This method differs 
from other methods presented in [9, 10, 23, 35] and thus 
could be used as a basis for comparison. 
 
Example 1.     Consider the optimal control of time-
varying singular system presented in [10]:       1       0−         0     ̇ ( ) ̇ ( ) =  −1            01 +      − 1  ( ) +  01  ( ),      0 ≤  ≤ 2,   (0) =  1   ,  
with the optimal control minimizing the performance 
index   =   ∫    (   +   )  ,  
whose exact solutions under the above-mentioned 
constraints is:    ( ) =    ,    ( ) =     ,   ( ) = −     .  
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Here, we solve the problem using Bernstein 
polynomials of degree  = 5, 10 and present the 
absolute error of   ( ),   ( ) and  ( ) on some points 
in Table 1 and Table 2, respectively. In Figures 1 and 2 
images of exact and estimated solutions of   ( ),   ( ) 
and  ( ) for  = 10 are ploted, respectively.  
The exact value of optimal control and estimated values 
of optimal control by  = 5, 10 are equal to       =0.36813163541672467   and     . = 0.3681316353957   
and     . = 0.368131635789, respectively. This example 
shows that absolute error decreases rapidly when degree 
of Bernstein polynomials are doubled. 
Note that, the given exact solutions in [10]    ( ) =    ,    ( ) =    + sin ,   ( ) = sin    
with initial points  (0) =  11  is failed to meet the 
optimality requirement because the value of optimum 
control is       = 2.14667246697579 by the 
presented exact solutions in [30] whereas there are some 
solutions which satisfy on given constraints with lower 
optimal control value, for example:    ( ) =    ,    ( ) =    +   ,   ( ) =     

provide the optimum control value     . = 1.4545059223673806. Likewise    ( ) =    ,    ( ) =    +     ,   ( ) =       
provide the optimum control value     . = 0.49704878872520114 or    ( ) =    ,    ( ) =    +        ,   ( ) =          

the optimum control value     . = 0.4913621261074325 
and etc. In fact, using Euler-Lagrange equation it can be 
demonstrated that this problem does not have an 
optimum solution with initial points  (0) =  11 , so we 

have to change the initial points to  (0) =  1    and then 

solve it analytically using Euler-Lagrange equation to 
obtain exact solutions. 

 
 

TABLE 1. The absolute error of   ( ),   ( ) and  ( ) with 
m=5 for example 1. 

T    ( )     ( )    ( ) 
0  0.0000370274   0.0000185137   0.0000185137  

0.25  9.25254× 10     4.62627× 10     4.62627 × 10    
0.5  0.000012124   6.062 × 10    6.062× 10    
0.75  8.2268× 10     4.11341 × 10     4.1134 × 10    

1  0.0000112909   5.64543 × 10    5.64543× 10    
1.25  2.6185× 10     1.30925 × 10     1.30925 × 10    
1.5  0.0000113565   5.67823 × 10     5.67823 × 10    
1.75  0.0000113912   5.69559 × 10     5.69559 × 10    

2  0.0000370272   0.0000185136   0.0000185136  

 
Figure 1. Exact and estimated solutions for   ( ) with  = 10 in example 1.  
 
 

 
Figure 2. Exact and estimated solutions for   ( ) with  = 10 in example 1.  
 
 

 
Figure 3. Exact and estimated solutions for  ( ) with  = 10 
in example 1.  
 
 
Example 2.      Consider the optimal control of unstable 
time-varying singular system   2        0           0     ̇ ( ) ̇ ( ) =  4          0−         1    ( ) +  02    ( ),      0 ≤  ≤ 2,  
where  (0) =  10 , 
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and the performance index   =   ∫         (   +   )  .  
The objective is to determine an optimal control u(t) 
that will drive from an admissible initial state  (0−) =   to some desired final state    in a given time    and 
minimize the above cost function (performance index). 
The exact solution for   = 2 is:    ( ) =    ,    ( ) =         ,   ( ) =         .  
The absolute error of   ( ),   ( ) and corresponding 
optimal control u (t) are calculated in some points using 
Bernstein polynomials of degree  = 5, 10 and the 
results are presented in Table 3 and Table 4, 
respectively. In Figures 3, 4 and 5 images of exact and 
estimated solutions of   ( ),   ( ) and  ( ) for  = 10 are ploted, respectively. The exact value of 
optimal control and estimated values of optimal control 
by  = 5, 10 are equal       = 2468.4527080   
and     . = 2468.36,     . = 2468.452638, 
respectively. From numerical results, it can be found 
that the method provides high efficiency and uniformly 
converges to the exact solution and gives accurate 
solutions especially for unstable singular systems. Also, 
this example shows that absolute error decreases rapidly 
when degree of Bernstein polynomials are doubled.  
 
 
Example 3.       Consider the optimal control of singular 
system presented in [9, 23, 35]:   0          10          0     ̇ ( ) ̇ ( ) =  1          00          1    ( ) +  01    ( ),           0 ≤  ≤ 2,  
 (0) =     1− √   ,  
by minimizing the performance index   =   ∫        (   +   )  ,  
whose exact solutions under the above-mentioned 
constrains is:    ( ) =   √  ,      ( ) = − √     √  ,   ( ) = √    √  .  
We approximate   ( ),   ( ) and  ( ) by Bernstein 
polynomials of degree  = 3, 5, 7 on interval [0, 2] 
and present the absolute error of   ( ),   ( ) and  ( ) 
for some points in Table 5, Table 6 and Table 7, 
respectively. The exact value of optimal control and 
estimated values of optimal control by  = 3, 5, 7 are 
equal       = 0.35231825561    ,    . = 0.351089,         . = 0.351092 and     . = 0.351092, respectively. 
Numerical results demonstrate the feasibility of the 
method. 

TABLE 2. The absolute error of )(1 tx , )(2 tx  and )(tu  with 
m=10 for example 1.  

T    ( )     ( )    ( ) 

0  2.74002×  1110−    1.15576×  1110−    1.49232×  1110−   

0.25  2.20091×  1210 −    9.27175×  1210 −    1.10639×  1210−   

0.5  2.23621×  1210 −    2.67986×  1110−    7.24032×  1310−   

0.75  2.03171×  1210−    3.66686×  1010 −    8.26469×  1210 −   

1  5.57443×  1310 −    1.37799×  910 −    2.19486×  1110−   

1.25  9.66172×  1310 −    2.55455×  910−    2.9886×  1110−   

1.5  1.23643×  1210 −    3.33117×  910−    2.32852×  1110−   

1.75  3.0749×  1210 −    3.5851×  910−    6.61682×  1210 −   

2  2.74002×  1110−    3.59851×  910−    1.371×  1110−   
 
 
TABLE 3. The absolute error of   ( ),   ( ) and  ( ) of 
example 2 for  = 5. 

T    ( )     ( )    ( ) 
0  0.0543755   0.097876   0.195752  

0.25  0.0177606   0.0301454   0.0602908  
0.5  0.0152232   0.0362046   0.0724092  
0.75  0.00607243   0.0051087   0.0102174  

1  0.0153619   0.0398034   0.0796068  
1.25  0.00322383   0.0000417667   0.0000835332  
1.5  0.0177799   0.0476396   0.0952791  
1.75  0.0113037   0.0393502   0.0787004  

2  0.0552443   0.164169   0.328338  
 
 

 
Figure 4. Exact and estimated solutions for   ( ) with  = 10 in example 2. 
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Figure 6. Exact and estimated solutions for  ( ) with  = 10 
in example 2. 

 
 

TABLE 4. The absolute error of   ( ),   ( ) and  ( ) of 
example 2 for  = 10. 

T    ( )     ( )    ( ) 

0  1.21003× 10     3.99602× 10     7.9868× 10    
0.25   1.54127× 10     1.93468× 10     8.00346× 10    
0.5   3.1485× 10     8.06245× 10     4.75277× 10    

0.75   1.85167× 10     2.71612× 10     5.2744× 10    
1  4.81083× 10     3.63834× 10     9.99076× 10    

1.25   1.10634× 10     3.27331× 10     6.04075× 10    
1.5   1.18365× 10     3.36985× 10     7.09836× 10    

1.75   7.77893× 10     3.20602× 10     9.26404× 10    
2  1.21003× 10     8.01143× 10     0.00001089  

 
 
TABLE 5. The absolute error of   ( ),   ( ) and  ( ) of 
example 3 for  = 3. 

T    ( )     ( )    ( ) 

0  0.0169508   0.00794424   0.00794424  

0.25   0.00350157   0.00478137   0.00478137  

0.5   0.00689598   0.00542015   0.00542015  

0.75   0.0137541   0.0044623   0.0044623  

1  0.0185624   0.0068358   0.0068358  

1.25   0.0213305   0.0135629   0.0135629  

1.5   0.0259471   0.0229231   0.0229231  

1.75   0.0390242   0.0312704   0.0312704  

2  0.0690859   0.0336063   0.0336063  
 
 
TABLE 6. The absolute error of   ( ),   ( ) and  ( ) of 
example 3 for  = 5. 

T    ( )     ( )    ( ) 

0  0.00715461   0.000152787   0.000152787  

0.25   0.00735793   0.00181398   0.00181398  

0.5   0.00883999   0.00372923   0.00372923  

0.75   0.0112511   0.00626271   0.00626271  

1  0.0151088   0.00957249   0.00957249  

1.25   0.0210056   0.0139872   0.0139872  

1.5   0.0295156   0.020195   0.020195  

1.75   0.0415902   0.0290857   0.0290857  

2  0.0592977   0.0413503   0.0413503  

TABLE 7. The absolute error of   ( ),   ( ) and  ( ) of 
example 3 for  = 7. 

T    ( )     ( )    ( ) 

0  0.00696458   1.53036× 10     1.53036× 10    
0.25   0.00740281   0.00177682   0.00177682  

0.5   0.00877684   0.00377894   0.00377894  

0.75   0.0112602   0.00625787   0.00625787  

1  0.0151665   0.00952659   0.00952659  

1.25   0.0209867   0.0139999   0.0139999  

1.5   0.029459   0.0202406   0.0202406  

1.75   0.0416522   0.0290377   0.0290377  

2  0.0591077   0.0415015   0.0415015  
 
 

8. CONCLUSION 
 
In the present work, a technique has been developed for 
obtaining an optimal control of time-varying singular 
systems with a quadratic cost function using Bernstein 
polynomials. The operational matrices of integration, 
differentiation and product of Bernstein polynomials 
basis are introduced and are utilized to reduce the 
optimal control of time-varying singular system to the 
solution of algebraic equations. The proposed method is 
general, easy to implement, and yields accurate results. 
Absolute error reduced quickly when degree of 
Bernstein polynomials is increased, but when  ≥ 15, 
volume of computations increases and obtained 
algebraic equation set is difficultly solved which is one 
of the limitation of this method. Simulation results give 
a satisfactory solution and demonstrate good 
performance of the proposed methods for solving 
optimal control of time-varying singular systems. 
Numerical tests also show that the method converges to 
the exact solution and can be used for unstable singular 
systems. 
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  چکیده

  
   

ي سیستم هاي تکین وابسته به زمان با شاخص عملکرد  ي کنترل بهینه در این مقاله، یک روش عددي براي حل مسئله
هاي عملیاتی  ماتریس. هاي برنشتاین پایه ریزي شده است اي این روش بر اساس چندجمله. ي دوم ارائه شده است درجه

و ضرب معرفی شده اند و از آنها براي حل مسایل مذکور به صورت حل دستگاه معادلات جبري بکار  انتگرال، مشتق
ي کنترل  هاي عملیاتی براي حل مسئله ي ماتریس ي یک تکنیک عددي بوسیله قدرت این روش در ارائه. گرفته شده است

یق همگراست ونتایج بسیار دقیقی حتی این روش به سرعت به جواب دق. بهینه با کمک یک دستگاه معادلات می باشد
مثال هاي گویایی براي اثبات عملکرد و تاثیرگذاري این تکنیک و همگرایی این روش به . ارائه می دهد mبراي مقادیر کم 

  .جواب هاي دقیق بخصوص براي سیستم هاي تکین ناپایدار بیان شده است
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