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In this paper, a numerical method for solving the constrained optimal control of time-varying singular
systems with quadratic performance index is presented. Presented method is based on Bernstein
polynomials. Operational matrices of integration, differentiation and product are introduced and

utilized to reduce the solution of optimal control problems with time-varying singular systems to the
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solution of algebraic equations set. The strength of the method is shown by exhibiting a numerical
implementation using operational matrices that solves the determined control problem by solving an
equation set. The method converges rapidly to the exact solution and gives very accurate results even
by low value of m. Illustrative examples are included to demonstrate the validity and efficiency of the
technique and convergence of method to the exact solution especially for unstable singular systems.
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1. INTRODUCTION

Problem of optimal control of singular systems is an
immense interest; especially those researchers are
investigating on the existing problems in the field of
control theory and in numerical computation of the
value of control vector which is controlling the state
vector. These types of systems are encountered in many
areas, such as network theory, economics, demography,
neural systems, composite systems, etc. Chen and Hsiao
[1] and Chen and Shih [2] have used Walsh series to
study the problem of optimal control of time-invariant
and time-varying linear systems. A review of the
literature suggests that Cobb [3] and Pandolfi [4] were
the first authors to consider the optimal regulator
problem of continuous-time singular systems. Both the
used state feedback and the results were derived with
the aid of Ricatti-type matrix equations. Walsh
functions have been widely used to study problem of
optimal control of linear systems with quadratic
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performance index [1, 2]. Analysis of linear singular
systems using orthogonal functions has been presented,
among others, by Trzaska [5] and Marszalek [6, 7].
References [5, 7] used block-pulse and reference [6]
applied Walsh operational matrices of integration to
calculate the integral involved in the analysis of singular
systems. Palanisamy [8] analyzed optimal control of
linear systems using a single-term Walsh series (STWS)
method. Balachandran and Murugesan [9] have applied
the STWS method to optimal control of linear singular
systems. Razzaghi and Marzban [10] introduced a
piecewise linear polynomial function method for
optimal control of singular systems. Observability and
controllability of linear time-varying singular systems
have been studied in [11, 12]. Murugesan et al. [13] and
Park et al. [14] used RK-Butcher algorithm to compute
numerical solution of the industrial robot arm control
problem and optimal control of time-invariant linear
singular systems. Optimal control of singular system has
also been studied using genetic programming approach
in [15]. In view of this situation, numerous research
articles have been dedicated to singular systems in the
past three decades. Liu and Sreeram [16] and Chang and
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Davison [17] constitute a representative collection of
the other works. Recently, a numerical algorithm to
obtain the consistent conditions satisfied by singular
arcs for singular linear-quadratic(LQ) optimal control
problems is presented in [18]. In [19] the existence of
singular arcs for optimal control problems is studied by
using a geometric recursive algorithm inspired in
Dirac’s theory of constraints. For more information on
the mathematical modeling and solution of this model
and some other similar models, we refer the interested
reader to the papers [20-30]. [19, 20] [21-30]

In this paper, Bernstein polynomial basis is used for
solving an optimal control of time-varying singular
system with a quadratic cost function. In the following,
major difficulties and challenges which are to be met in
the paper are summarized. At first, state vector x(t) and
control vector u(t) are expanded in terms of Bernstein
polynomial. Operational matrices of Bernstein
polynomial are applied to estimate x(t) using x(t). In
section 6, when k < n by a technic the system dynamics
and cost function (performance index) are
approximated, then a new minimization problem is
attained. Approximated solution of problem is
calculated using the Lagrange multipliers method.
These unknown coefficients are determined in such a
way that the necessary conditions for extremization are
met. The presented method shows that a more accurate
solution of the time-varying optimal control of linear
singular systems with a quadratic performance index
can be obtained. Numerical evidence of the stability of
the algorithm will be presented by discussing various
relevant numerical experiments.

This paper is structured as follows: in section 2,
problem of time-varying singular system is described.
Section 3 describes the basic formulation of Bernstein
polynomials which is required for our subsequent
development. Section 4 is devoted to the function
approximation using Bernstein polynomial basis whilst
the upper bound of approximation error is deduced. In
section 5, we elaborate operational matrices of
integration, differentiation, dual and product using
Kronecker product [31]. In section 6, solution of time-
varying singular system problem is approximated by
Bernstein polynomial basis and an algebraic equation
set is presented using Lagrange multipliers method. In
section 7, numerical findings are presented which
demonstrate the validity, accuracy and applicability of
our new method. Section 8 consists of the remark and
brief summary.

2. STATEMENT OF THE PROBLEM

Consider following time-varying singular system:
E@®)x(t) = A(O)x(t) + B(H)u(d),
x(to) = xo,

(1

where the matrix E(t) is singular, x(t) €R" is a
generalized state vector, u(t) € R¥ is a control vector,
A(t) and B(t) are known coefficient matrices
associated with x(t) and wu(t) with appropriate
dimensions, respectively, and x,, is the given initial state
vector.

In order to minimize a cost function, considering
both state and control signals of the feedback control
system, a quadratic performance index is usually
minimized:

] = 33" @)Sxe) +3 [ [T (OF ©x(0)

+uT (OR(Du(t)]dt,

2)

where t, and t; are prescribed times, S € R*™ and
F(t) are weighting matrices for x(t) and S is a
symmetric and positive definite (or semi definite)
matrix, R(t) is a weighting matrix for u(t), R(t) and
F(t) are matrices with appropriate dimensions [32].

3. PROPERTIES OF BERNSTEIN POLYNOMIALS

Bernstein polynomials of mt"degree are defined on
[a,b] as |5, 6, 7, 23]:
) (x-a)t(b—x)m

Bim(x) = (7} b 0sism
where
(.,,; ) _ m!

il(m—i)!

These Bernstein polynomials form a basis on [a,b].
There are m + 1 number m®"degree polynomials. For
convenience, B;,,(x) =0, if i<0 or i>m. A
recursive definition can also be used to generate the
Bernstein polynomials over [a, b] as:

Bim () = S22 By () + = By e (2.

It can be shown that each of the Bernstein polynomials
are positive and linear independent and the sum of all
the Bernstein polynomials is unity for all real x € [a, b],
i.e, X%o Bim(x) = 1. It is easy to show that any given
polynomial of degree m can be expanded in terms of
these basis functions.

4. APPROXIMATION OF FUNCTIONS

Suppose that H = L*[t,,t;] where t;,tr €ER , let
{Boms»Bims s Bm} € H is the set of Bernstein
polynomials of mt" degree and

Y = Span {Bo,m' Bl,m' T Bm,m}

and f is an arbitrary element in H. Since Y is a finite
dimensional vector space, f has a unique best
approximation out of Y, say y, € Y, that is:

yo€Y; VyeY [If =wollz < lIf =l
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where ||f|l, =< f.f >and < f,g >= f:of firdmdt -
In [39], it is shown that a unique coefficient vector
cT = [cy, €1, , €] exists such that:

f~yo =L ciBim =", A3)

where ¢ = [Bym, By, Bm] and ¢ can be
obtained:

" = ([ F@e@dx) QY 4

which Q is said dual matrix of ¢ and introduced as:

Q=<¢, ¢>= ] d@d@ dx.

Theorem 1. Suppose that H be a Hilbert space and
Y be a closed subspace of H such that dim Y < oo and
{y1,¥2,**, ¥} 1s any basis for Y. Let x be an arbitrary
element in H and y, be the unique best approximation
to x out of Y. Then

_ 2 _ Gxy1Y2yn)
Il = yollz GY1Yy2yn)’
where
G(xlyllyZI'”lyn) =
<xx> <Ay > <X,y >
<yux > <Yuy1 > <YVuYn >
<yntx> <ynty1 > <yntyn>
Proof. [33].

Exact value of approximation error is presented by the
Theorem 1. In the following lemma, an upper bound of
approximation error is presented.

Lemma 1. Suppose that function g: [ty t;] > R be
m+1 times continuously differentiable, g €
C™ Mty te], and Y = Span{By 4, B1m,*, Bym}. If
cT ¢ be the best approximation g out of Y then the mean

error bound is presented as follows:
2m+3

g — Tl < s —fo) 2
2T m+1D)!V2m+3’

where M = maxxe[to,tfﬂg(m“) )]

Proof. [34].

Lemma 1 shows that the method of approximation
converges to f when m — oo.

Now, let x(t) = [x.(2), x5 (t),...,x,(t)]T where
x;(t)€H for i =1,2,...,n. If we approximate x;(t)
out of Y by (3), we have:

x () = cld

where ¢/ = [c;0,Ci1,...,Cim] can be calculated by (4)
fori =1,2,...,n. Then

f) [ 4]
2=~ |C?T¢|
il g

€10 C1,1 C1m

C2,0 C2,1 C2,m
= Bom + B : ++Bnm

Cn,O Cn,l Cn,m

~ T
= [BO,mInt Bymln, - Bm,mIn] =o¢, C

where I, is the identity matrix of order n ,
T —
C" =[c1,0200+5€n,0C1,1,C2,15 0+ Cny1)

e Cimy Comr -+ or Cpml

isamatrix 1 X [n(m + 1)] and
BO,mIn

R e BT )
B mln

where ® denotes the Kronecker product [31], so
x" =T, (6)
We can also approximate a matrix of functions using
(6). Therefore, suppose that A,..(t) = [a;;()]rxs =
Ay (1)
Ay (8) N (1) ie ith

: where a; ;(t) € H and A;(t) is i*" row of A(¢)
A (1)
fori =1,2,...,7.
If we approximate A;(t) out of Y by (6), we will get

At) ~ A, (P, () fori = 1,2,...,7, then

A1 T4 ds] 4]
A | . [~r]
a=|%|= 142" 13, = 4B, ™
Ar ArT$s I-ArTJ
)
~ T
where Arx[s(m+1)] = |14.2 |
i

5. OPERATIONAL MATRICES

Operational matrices of the integration P, differentiation
D dual Q and product C of vector ¢ are respectively
defined by:

IS o@dt~Po(x), ty<x<t
“O ~ Do),

Q=7 d@T @,
TP ~ ()",

which the details of obtaining these matrices are given
in [34].
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Analogously, we can define [n(m + 1)] X [n(m + 1)]
operational matrices of §,, as:

Jp, dn(®dt = Py (),

tonStf,

d&;n(x) n R
a0 B, 3,(0)

bn = f) GG ()" dx ,

Con()Pn(0)" = bp(0)"Cy

which C is an arbitrary n X [n(m + 1)] matrix.

It can be easily shown that the operational matrices of
the integration, differentiation and dual of ¢,, are as:

B,=PQ®]I,
D,=D®I, (3)

0h=0Q®1I,

5. 1. Operational Matrix of Product of ¢,, It is
aimed to derive an explicit formula for operational
matrix of product of ¢,. Suppose that C =
[Co,Cy,...,Cp] 1s an arbitrary n X [n(m + 1)] matrix
where C; is n X n matrix for i = 0,1,2,...,m, then én is
[n(m + 1)] X [n(m + 1)] operational matrix of product
of ¢, whenever

CHn()Bn ()T = B (),

Since C,(x) = X% C;B;pm(x), we have

CPn(X)pn ()" =

[ 2‘{10 CiBi,m(x)BO,m(x)' 2‘{10 CiBi,m(x)Bl,m(x)r Tt
21:10 CiBi,m(x)Bm,m(x)]'

Now, we approximate all functions By, (x)B;,(x) in
terms of {B; ,,(x)}1%, for i,k = 0,1,--,m, i.e, we must
find vector ef; = [eg", e, e5", ..., en'] by (4) such that
Bk,m(x)Bi,m(x) = el’g,iq)(x)’ l,k = 0111'”1m'
Therefore, for k = 0,1,---,m '

T CiBim(0)Bim(x) = T2 Ci(Z2o €' Bim(®))

[XZo Ciecl){'i
L ki
= Lo Bim(D(Zio Cief*) = BnC)" |20 Cie” |
=0 Cierlﬁii
Co
~ C
= ¢n(x)T[ek,0 ® In:ek,l ® I, €km ® In] 51 =
¢n(x)TCk+1
where
Co
- C1
Cre1 = [ek,o ® Iy, €K1 ® Iy, Cem ® In] ;|
Cm
If we define [n(m+ 1)] X [n(m+ 1)] matrix C =

[C_ll C_Zl ’ Cm+1]a then

CPn () Pn ()"

=[ I CiBim()Bom (%), X0 CiBipm(X)Bym(x), -+,
2;10 CiBi,m(x)Bm,m(x)]

~ $p(OT[Cr Gy ) Conga] = G (D'C,

therefore
Con(@)Pn(D)" ~ br(M'C. 9

so C is the operational matrix of product of .

6. SOLUTION OF PROBLEM USING BERNSTEIN
POLYNOMIALS BASIS

6. 1. Approximation of the System Dynamics We
approximate (1) as follows:
Let k < n ( for k = n follows quite same) and

(1) = [x,(8), %2(8),..., %, (D], (10)

u(t) = [ug (), uz (6, ., e (O] 1mn
Using (3), each of x;(t) and each of w;(¢), i=
1,2,...,n,j=1,2,..., k, can be approximated in terms
of basic functions as %;(t) = ¢/ ¢p(t) and w;(t) =
U () where ¢ =[cig,Ci1seenrCipn] and U =
[W 0, Wj1,---)Ujm] Which can be calculated by (4).
Then we can write (10), (11) by (6) as:

x(t) = b (OC (12)
u(®) = b (' (13)
where
CT = [C10:C2,00+++1Cn0or C1.1,Co1re+»Crtse-mr
Cl,mr CZ,m' T Cn,m]'
and
T = [U1,00 U200+ s Upe,00 Up, 1, Uz 15+ o5 Uk 15 (14)
e U Uz - U]
From (10) and (8) we have:
x(6) = & BB C + x(t0) = $n ()X (15)
~ AT P
where X = P, C+d and x(t,) = ¢, (t)7d.
Now, we approximate matrices A and E by (7)
A~ Ad, (16)
E =~ EEﬁn: (17)
sincek < n,
Uy Uy
u u
Bu=[By,By,..., Bl |:*| = [B1,Ba,.... Bal | :* | = B°U,
Uk Un
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whereB* = [By, B,,...,B,] , U* = [ug,uy,...,u,]" in
0
which B; = |°

0
If we approximate B* and U* by (7) and (6),

respectively, we get:

anduj =0forj=k+1,k+2,...,n

B* = E*CTJn»

~ T
U* ~ ¢n U*,
where
U™ = [ug0,Upgre-er Unor Us,1, Uz 1s- s Un 1)

T
e U Uz U]
therefore
-~ o~ T

Bu=B'U* =~ B*$,b, U". (18)

Substituting (12), (15), (16), (17) and (18) in (1) we
obtain:

¢ C= Ay X+ B3,y T, (19)

using (9) we have:

AbpBy ~ b Ay, (20
B$,3, ~ b, By, 21
E®ndy ~ & En, (22)

where An, E,*l and En are operational matrices of
product, by replacing (20), (21) and (22) in (19) we get
~ T~ ~ T A & -~ TA* S~

by EnC=¢, A X+, B U,

)

AX+BU*—E,C=0. (23)

6.2. The Performance Index Approximation
Now, we approximate (2) as follows:
At first, we approximate matrices F' and R by (7), i.e.

F~ Fby, 24
R =~ Ry (25)
Substituting (13), (15), (24) and (25) in (2) we obtain:

J =3xSt +3 [ T T @F (©)x(8) +
uT(OROu®]dt  ~5X Tduty) S Bulty) TR+

1 R o R n (26)
IR TEOF 08, 0.0) "X

+U "o (OROP(i () TUNdL,

by using (9) we have:

ﬁ(t)$n(t) EI\)n(t) T'x EI\)n(t) Tﬁn: (27)
R®e(®) b)) T = dr () "Ry, (28)

which E, and R, are operational matrices of product. By
replacing (27) and (28) in (26), and using (8) we get:

J =38 "6u(ty) S Gulty) "X

- o (29)
+-[X TQnF X + U TQuR, U]

6. 3. Solution of the Optimization Problem From
(23) and (29) in sections (6.1) and (6.2), respectively,
the main problem is reduced to:

Min
12 75(6)S ) TR+ 2[R TQuBK + U T QR D)

Subjected to:

AR+BO—EC=o.

Using the Lagrange multipliers method, Lagrangian
equation for this problem is:

J =28 TPa(ty) S $alty) TR +2[R TQLEK +

0 "0, R[4, + B:0 — B,Cl,

therefore, unknown coefficients cab be calculated by
solving the following system of algebraic equations:

aJ*

0, %=0

aJ
o

o

=0,
ac

Unknown coefficients can be found by simultaneously
solving the above system of algebraic equations (e.g.
using Mathematica™ ).

7. ILLUSTRATIVE EXAMPLES

In order to show the performance of the presented
method in this paper we applied it to solve some
examples. The following case studies are given to show
the merit of the proposed method. This method differs
from other methods presented in [9, 10, 23, 35] and thus
could be used as a basis for comparison.

Example 1. Consider the optimal control of time-
varying singular system presented in [10]:

Lo RO oo
0=st=<2

1
x(0) = [l

2

’

with the optimal control minimizing the performance
index

J= %foz (xTx + u?)dt,

whose exact solutions under the above-mentioned
constraints is:

a®=¢ we=5  ww=-%
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Here, we solve the problem using Bernstein
polynomials of degree m =5, 10 and present the
absolute error of x;(t), x,(t) and u(t) on some points
in Table 1 and Table 2, respectively. In Figures 1 and 2
images of exact and estimated solutions of x, (t), x,(t)
and u(t) for m = 10 are ploted, respectively.

The exact value of optimal control and estimated values
of optimal control by m =5, 10 are equal t0 Jorqct =
0.36813163541672467 and ], = 0.3681316353957
and J,s; = 0.368131635789, respectively. This example
shows that absolute error decreases rapidly when degree
of Bernstein polynomials are doubled.

Note that, the given exact solutions in [10]

x @) =et, x,(t) = et + sint, u(t) =sint

with initial points x(0) = [ﬂ is failed to meet the

optimality requirement because the value of optimum
control i8S  Jopgqer = 2.14667246697579 by the
presented exact solutions in [30] whereas there are some
solutions which satisfy on given constraints with lower
optimal control value, for example:

M =e @) =et+s u(t) =3
provide the optimum control value

Jose. = 1.4545059223673806. Likewise

x () =e™, —et 4L _t
1() X)) =e +oo u(t) —
provide the optimum control value
Jest. = 0.49704878872520114 or
x(6) = e, L - sint

1 (0 M) =+ )=

the optimum control value J, . = 0.4913621261074325
and etc. In fact, using Euler-Lagrange equation it can be
demonstrated that this problem does not have an

optimum solution with initial points x(0) = [ﬂ, SO we

and then

1
have to change the initial points to x(0) = [1
2
solve it analytically using Euler-Lagrange equation to

obtain exact solutions.

TABLE 1. The absolute error of x;(t), x,(t) and u(t) with
S5 for example 1.

T x,(t) x5 (t) u(t)

0 0.0000370274 0.0000185137 0.0000185137
0.25 9.25254x 107 4.62627%x 107° 4.62627 X 1076
0.5 0.000012124 6.062 x 107° 6.062x 1076
0.75  8.2268x 1077 4.11341 x 1077 4.1134 x 1077

1 0.0000112909
125  2.6185x 107°
1.5 0.0000113565
1.75  0.0000113912

2 0.0000370272

5.64543x 1076
1.30925 x 1076
5.67823 x 107¢
5.69559 x 107¢
0.0000185136

5.64543 x 107°
1.30925 x 1076
5.67823 x 107°
5.69559 x 107°
0.0000185136

0.5 1.0 L5 2.00

Figure 1. Exact and estimated solutions for x;(t) with
m = 10 in example 1.

0.5 1.0 L5 2.00

Figiure 2. Exact and estimated solutions for x,(t) with
m = 10 in example 1.

-0.1r

-02+

-03r

—04 L

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.5 1.0 15 2.0
Figure 3. Exact and estimated solutions for u(t) with m = 10

in example 1.

Example 2.  Consider the optimal control of unstable
time-varying singular system

] e RS HES
0<t<?2,
where x(0) = [(1)],
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and the performance index
J= ;fotf (xTx +u?)dt.

The objective is to determine an optimal control u(t)
that will drive from an admissible initial state x(0—) =
X, to some desired final state x in a given time t; and
minimize the above cost function (performance index).
The exact solution for ty = 2 is:

x,(t) = e?t,

x5 (t) =§ te?t, u(t) =§ te?t,

The absolute error of x,(t), x,(t) and corresponding
optimal control u (f) are calculated in some points using
Bernstein polynomials of degree m =5, 10 and the
results are presented in Table 3 and Table 4,
respectively. In Figures 3, 4 and 5 images of exact and
estimated solutions of x,(t), x,(t) and u(t) for
m = 10 are ploted, respectively. The exact value of
optimal control and estimated values of optimal control
by m=5, 10 are equal J,.q: = 2468.4527080
and /., = 2468.36, J,,; = 2468.452638,
respectively. From numerical results, it can be found
that the method provides high efficiency and uniformly
converges to the exact solution and gives accurate
solutions especially for unstable singular systems. Also,
this example shows that absolute error decreases rapidly
when degree of Bernstein polynomials are doubled.

Example 3. Consider the optimal control of singular
system presented in [9, 23, 35]:

0 JEG=[ 9o+ wo

0<t<2,
1

x(0) = [_J_f :
2

by minimizing the performance index
_lr2..71 2
]—Zfo (xTx + u?)dt,
whose exact solutions under the above-mentioned
constrains is:

a® = =0 e,

u(t) = ‘/77 e V2,
We approximate x,(t), x,(t) and u(t) by Bernstein
polynomials of degree m = 3, 5, 7 on interval [0, 2]
and present the absolute error of x, (t), x,(t) and u(t)
for some points in Table 5, Table 6 and Table 7,
respectively. The exact value of optimal control and
estimated values of optimal control by m =3, 5, 7 are
equal Joxa r = 0.35231825561 ], = 0.351089,

Jese. = 0351092 and J,. = 0.351092, respectively.
Numerical results demonstrate the feasibility of the
method.

TABLE 2. The absolute error of x(t), x,(f) and u(t) with
10 for example 1.

T x;(8) x,(t) u(t)
0 2.74002X 107" 1.15576 X 107" 1.49232X 1ot
025 220091X 1072 9.27175X 197= 1.10639X 1012
0.5 223621X 1972 2.67986X 107" 7.24032%X 107"
0.75 2.03171X 1072 3.66686X 10 8.26469X 107
1 5.57443% 1078 1.37799% 10 2.19486X% 10"
125 9.66172X 10713 2.55455% 107 2.9886%X 107!
1.5  1.23643X 107" 3.33117X 10™° 2.32852% 107!
175 3.0749% 102 3.5851%X 10 6.61682X 102
2 2.74002% 107" 3.59851%X 107 1371% 107"

TABLE 3. The absolute error of x,(t), x,(t) and u(t) of
example 2 form = 5.

T x;(t) x,(t) u(t)
0 0.0543755 0.097876 0.195752
0.25 0.0177606 0.0301454 0.0602908
0.5 0.0152232 0.0362046 0.0724092
0.75 0.00607243 0.0051087 0.0102174
1 0.0153619 0.0398034 0.0796068
1.25 0.00322383 0.0000417667 0.0000835332
1.5 0.0177799 0.0476396 0.0952791
1.75 0.0113037 0.0393502 0.0787004
2 0.0552443 0.164169 0.328338
50| //
[ /
a0f /
30l
20p
b -
10 - _—

0.5

1.0

I
2.00

Figure 4. Exact and estimated solutions for x;(t) with
m = 10 in example 2.

!
0.5

1.0

I
L.s 2.0t

Figure 5. Exact and estimated solutions for x,(t) with
m = 10 in example 2.
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TABLE 7. The absolute error of x;(t), x,(t) and u(t) of
example 3 form = 7.

Figure 6. Exact and estimated solutions for u(t) with m = 10
in example 2.

TABLE 4. The absolute error of x;(t), x,(t) and u(t) of
example 2 for m = 10.

T x4 (t) x2(t) u(t)

0 0.00696458 1.53036x 107 1.53036x 10~°
0.25 0.00740281 0.00177682 0.00177682
0.5 0.00877684 0.00377894 0.00377894
0.75 0.0112602 0.00625787 0.00625787

1 0.0151665 0.00952659 0.00952659
1.25 0.0209867 0.0139999 0.0139999
1.5 0.029459 0.0202406 0.0202406
1.75 0.0416522 0.0290377 0.0290377

2 0.0591077 0.0415015 0.0415015

T x1 () x2(t) u(t)

0 1.21003x 10~° 3.99602x 10~° 7.9868x 10~°
025 1.54127x 1077 1.93468x 1077 8.00346x 1077
0.5 3.1485x 1078 8.06245%x 1077 4.75277x 1077
0.75 1.85167x 1078 2.71612x 107 5.2744x 1077

1 4.81083x 1078 3.63834x 107° 9.99076x 10~8
125  1.10634x 1077 3.27331x 107° 6.04075% 1077
1.5 1.18365x 1077 3.36985x% 10~° 7.09836x 1077
1.75  7.77893x 1078 3.20602x 107 9.26404x 1077

2 1.21003x 10~ 8.01143%x 10~° 0.00001089

TABLE 5. The absolute error of x;(t), x,(t) and u(t) of
example 3 form = 3.

T x4 (t) x2(t) u(t)

0 0.0169508 0.00794424 0.00794424
0.25 0.00350157 0.00478137 0.00478137
0.5 0.00689598 0.00542015 0.00542015
0.75 0.0137541 0.0044623 0.0044623

1 0.0185624 0.0068358 0.0068358
1.25 0.0213305 0.0135629 0.0135629
1.5 0.0259471 0.0229231 0.0229231
1.75 0.0390242 0.0312704 0.0312704

2 0.0690859 0.0336063 0.0336063

TABLE 6. The absolute error of x;(t), x,(t) and u(t) of
example 3 form = 5.

T x1 () x2(t) u(t)

0 0.00715461 0.000152787 0.000152787
0.25 0.00735793 0.00181398 0.00181398
0.5 0.00883999 0.00372923 0.00372923
0.75 0.0112511 0.00626271 0.00626271

1 0.0151088 0.00957249 0.00957249
1.25 0.0210056 0.0139872 0.0139872
1.5 0.0295156 0.020195 0.020195
1.75 0.0415902 0.0290857 0.0290857

2 0.0592977 0.0413503 0.0413503

8. CONCLUSION

In the present work, a technique has been developed for
obtaining an optimal control of time-varying singular
systems with a quadratic cost function using Bernstein
polynomials. The operational matrices of integration,
differentiation and product of Bernstein polynomials
basis are introduced and are utilized to reduce the
optimal control of time-varying singular system to the
solution of algebraic equations. The proposed method is
general, easy to implement, and yields accurate results.
Absolute error reduced quickly when degree of
Bernstein polynomials is increased, but when m > 15,
volume of computations increases and obtained
algebraic equation set is difficultly solved which is one
of the limitation of this method. Simulation results give
a satisfactory solution and demonstrate good
performance of the proposed methods for solving
optimal control of time-varying singular systems.
Numerical tests also show that the method converges to
the exact solution and can be used for unstable singular
systems.
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