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ABSTRACT

This work deals with the three-dimensional magneto-thermo-elastic problem of a functionally graded
truncated conical shell under non-uniform internal pressure subjected to magnetic and thermal fields.
The material properties are assumed to obey the power law form that depends on the thickness
coordinate of the shell. The formulation of the problem begins with the derivation of fundamental
relations of thermo-elasticity in the conical coordinate system. Subsequently, the differential
quadrature method (DQM) is employed to discretize the resulting differential equations and transform
them into a system of algebraic equations. Numerical results are presented to illustrated effects of non-
homogeneity properties of material and thermal loads on the distributions of displacement, stress,
temperature and induced magnetic fields. Finite element method is used to validate the results of DQM
for a functionally graded truncated conical shell which shows excellent agreement.

doi: 10.5829 /idosi.ije.2013.26.12c.05

NOMENCLATURE

K Coefficient of heat conductivity T Inner surface temperature of the cone

O Components of stress tensor 7:, Outer surface temperature of the cone

a Coefficient of thermal expansion A,G Lame’s constants

U Displacement vector L Length of the generator of the cone

U,V, W  Displacement components f; Lorentz’s force

L Distance between the origin and the top surface of the cone H Magnetic field vector

E, Elastic constant I Magnetic permeability

= . . id poi he thick

J Electric current density vector N, M, P Number of g.rld points along the thic 1SS,

circumferential and generator, respectively

h Induced magnetic field vector L Poisson's ratio

R Inner radius of the cone at its small end % Semi-vertex of the conical shell

R, Inner radius of the cone at its large end hg, Thickness of the shell m

n Inhomogenity constant A" B™  Weighting coefficients of the n™ derivative along the

omogenity consta Nokd thickness, generator and circumference, respectively
1. INTRODUCTION found that a conducting truncated conical shell under
the effect of magneto-thermo-elastic field, experiences

Nowadays, the magneto-thermo-elasticity theory that combination of different kinds of loads such as the
deals with the interaction between different physical Lorentz force exerted by the applied primary magnetic
fields has been the subject of high level researches. It is field, thermal load and also the internal pressure,

simultaneously. The aim of the magneto-thermo-elastic
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structure under a prescribed loading behaves as desired
or not. Hence, determining the distribution of stress
field is the top priority of an engineering design [1].

During the last decade, tremendous research efforts
have been devoted to optimize materials performances
and promote their load bearing capabilities. In order to
accomplish this task, a revolutionary design paradigm of
the material technology is developed among which, the
functionally graded material (FGM) is the most notable
one. The basic concept behind FGMs is to engineer
gradual variation or smooth change in the material
properties in a structure. By virtue of gradients of
material properties, an FGM posses some desirable
characteristics such as high temperature resistance,
thermal fatigue and impact performances [2].

Shadmehri et al. [3] proposed a semi-analytical
approach to obtain the linear buckling response of
conical composite shells under axial compression load.
The principle of minimum total potential energy was
used to obtain the governing equations and Ritz method
was applied to solve them. Sofiyev et al. [4] studied the
stability of three layered conical shell containing an
FGM layer subjected to axial compressive load. The
fundamental relations for stability and compatibility
equations were transformed into a pair of time-
dependent differential equations via Galerkin's method.
Xu et al. [5] used the dynamic virtual work principal to
derive non-linear equations of transverse motion of
truncated conical shells. The Galerkin procedure was
used to develop a system of equations for time functions
which were solved by the harmonic balance method.
Patel et al. [6] studied the thermo-elastic stability
characteristics of cross-ply oval cylindrical/conical
shells subjected to uniform temperature rise through
non-linear static and finite element method. Zhang and
Li [7] discussed the buckling behavior of functionally
graded truncated conical shells subjected to normal
impact loads and employed the Galerkin procedure and
Runge-Kutta integration scheme to solve non-linear
governing equations. Aghdam et al. [8] carried out
bending analysis of moderately thick clamped FG
conical panels subjected to uniform and non-uniform
distributed loadings. The First Order Shear Deformation
Theory (FSDT) was applied to derive the governing
equations and Extended Kantorovich Method (EKM)
was used to solve the equations. Wu et al. [9] presented
the three-dimensional solution of laminated conical
shells subjected to axisymmetric loadings using the
method of perturbation. Petrovic [10] investigated stress
analysis of a cylindrical pressure vessel loaded by axial
and transverse forces on the free end of the nozzle
applying the finite element method. Jabbari et al. [11]
developed a general analysis of one-dimensional
thermal stresses in a hollow thick cylinder made of
functionally graded material, using the direct method to
solve the governing equations. Eslami et al. [12]
obtained a general solution for the one-dimensional

steady state thermal and mechanical stresses in a hollow
thick sphere made of functionally graded material. The
analytical solution of heat conduction equation and the
Navier equation were presented using the direct method.
Paliwal and sinha [13] considered large deflection static
analysis of shallow spherical shells on Winkler
foundation, applying Bergler's and Modified Bergler's
methods. Jane and Wu [14] studied thermo-elasticity
problem in the curvilinear circular conical coordinate
system. The hybrid Laplace transformation and finite
difference were developed to obtain the solution of two
dimensional axisymmetric coupled thermo-elastic
equations. Chandrashekhara and bhimaraddi [15]
presented the thermal stress analysis of doubly curved
shallow shells using shear flexible finite element
method. The basic equations were the extensions of
Sanders shell theory to include shear deformation and
thermal strains. Obata et al. [16] carried out thermal
stresses analysis of a thick hollow cylinder, under two-
dimensional temperature distribution. Xing and Liu [17]
studied the magneto-thermo-elastic stresses in a
conducting rectangular plate subjected to an arbitrary
variation of magnetic field using differential quadrature
method. Higuchi et al. [18] investigated the magneto-
thermo-elastic stress fields induced by a transient
magnetic field in an infinite conducting plate and
numerically solved the corresponding electromagnetic,
thermal and elastic equations. Lee et al. [19] considered
three-dimensional axisymmetric coupled magneto-
thermo-elasticity problems for laminated circular
conical shells subjected to magneto-thermo-elastic
loads, using Laplace transform and finite difference
methods. Bodaghi and Shakeri [20] carried out an
analytical investigation on free vibration and transient
response of functionally graded piezoelectric cylindrical
panels subjected to impulsive loads. The present work,
investigates the three-dimensional problem of an FG
truncated conical shell made of non-ferromagnetic metal
such as aluminum permeated by a primary uniform
magnetic field and subjected to internal pressure and
rapid temperature change at the inner surface. The
corresponding governing equations in three dimensions
are extracted and the differential quadrature approach is
applied to discretize the governing equations, boundary
conditions and heat conduction equations. Different
values of the in-homogeneity constant and inner-wall
temperature are used to demonstrate their important
roles on the distribution of displacement, stresses,
temperature and induced magnetic fields. Results
obtained by the present method are validated through
comparison with results of the finite element method.

2. GOVERNING EQUATIONS

Consider a three-dimensional conducting truncated
conical shell made of FGM, as shown in Figure 1. The
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conical shell is referred to the orthogonal coordinate
system (s, 0, {) with the origin located at the vertex of
the complete cone where s is chosen to lay along the
generator and on the internal surface, 6 is the
circumferential coordinate and { is taken along the
thickness; h, denotes the thickness of the shell; L and

L, are the generatrix length and the distance from the
vertex to the top surface of the cone, respectively; ¥ is
the semi-vertex angle of the conical shell; R; and R,
represent the inner radii of the cone at its small and
large ends, respectively.

The perfectly electro conductive truncated conical
shell is assumed to be immersed in a constant magnetic
vector field H that is uniform along the s and 6
directions and acts on the inner surface in ¢ direction
and subjected to a non-uniform internal pressure P (6)

that is uniform along generatrix defined by a cosine
function. Furthermore, the truncated conical shell is
subjected to a rapid temperature change T ({) at the
inner surface. The stiffness, magnetic permeability, heat
conductivity and thermal expansion coefficients are
assumed to vary only through the wall thickness
according to the following power law distribution
function:

Y=Y+ <y (1)
hsh

where Y, and n represent the material property at the
inner surface and the in-homogeneity constant,
respectively. Let u, v and w denote corresponding
displacement components in s, 6 and (-directions,
respectively. The strain-displacement relations, based
on the three-dimensional elasticity formulations and
referred to the designated general curvilinear coordinate
system are defined as follow [21]:

Figure 1. Physical model and system coordinates of the
truncated conical shell
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The mechanical constitutive relations which relate

components of stress field to components of strain field,
€, including the thermal effect for an isotropic material

in the matrix form are:

o] e, @ ¢ 0 0 0]e—aT]

S| |, ¢ ¢ 0 0 0fé&—oT

Oc| |& G & 0 0 0)é —aT ®
Toe 0 0 0 ¢, 0 0 |é&

Ty 0 0 0 0 ¢ 0|e

w0 0 0 0 0 qls

where o and v, represent the Kirchhoff stress
components and g; represents the strain components, T

is the temperature distribution determined from the heat
conduction equation and « is the coefficient of thermal
expansion.

The material elastic constants of the FG truncated
conical shell i.e. ¢;;, =1, 2, 3, 4, 5, 6 are defined in
terms of the elastic module E and the Poisson's ratioU
with the help of two Lame’s coefficients A and G
defined as follow:

_ vE G- E
(I+v)(1-2v) 2(1+v)

“4)

and for the FG truncated conical shell the material
elastic constants c¢;j, i,j=1, 2, 3,4, 5, 6 which can be
obtained from elastic modulus E and Poisson's ratioU
are as follows:
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Gy :Z“+2G’ Gy :;l', Cu :G,
G =61 =G3 =G =Cy =Gy, (5)
i =G =Gy Gy =G5 =G
By substituting Equation (2) into Equation (3),
components of the stress field are defined in terms of
components of the displacement and temperature fields
which are given in Appendix A:

The constitutive electromagnetic relations for a

perfectly conducting, elastic body neglecting the electric
displacement are given in the following form [22]:

J=Vxh Vxe=—-u(r)xh,divh=0,

- - 6
e=—-u(r)x(Uxh) ©

According to above relations the initial magnetic field
vector H produces an induced magnetic field h and an
electric current density vector J . In order to obtain the
induced magnetic field vector p from Equation (6), we
have to invoke the following relation [23]:

curl(Ux B)=Udiv B )~ HdiaU )+ (HV )U- -

(U V)H

The terms in Equation (7) can be evaluated using all
vector differential operators of gradient, divergence and
curl defined in the general conical system( s,0,( ).

The above mentioned operators for the vector function
X (vs, vy, V) are expressed as in Equations (8a) and (8b):

div(v)=—= +% + Z(a— + v, sin(y)+v, cos(y)j (8a)
ds ¢ 00 ¢

and the Conical-curl-component is:

AT N T “
0 ac\z’)fac a7\ o0 as\z (8b)
Applying an initial magnetic field vector

= (0’0’ Hoc) that acts in the {-direction and the
displacement vector U = (u.v.w) in conical coordinate
system (5,0, ) to Equation (6) and employing
Equation (7) results in an approximation of the induced
magnetic field and the electric current density vector
within the shell:

ou ov
h=(hg,hy,h,),h, :[£+ZCOS()/)UJHOC, hg—[a§+

2 0 ov
Zcos(;/)v(l+Z )) o> B *7(£+Z(£+sm(y)ujj oc

2 2
7=t Z| | 2 2 DY sing) 2 | |- L (2| 2L
as00 06 20 )) a¢ '\ \ac

+A cos(y)(l +Zz))v))

J, Hﬂc[gz 2[6669+sm(y)—J—Zz(sin(y)(

% + sm(y)uD — Sgli (cos(y)—CJ z? (cos(y)2 u)),
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]C = HOCZ(—[[@J‘FZ(COSO/)%]] +g(z(¥
+cos(y)vZ(1+Zz))H0€))

The magneto-elastic interactions, subjects the
conducting truncated conical shell to the Lorentz’s force
£ which has two components in the s and 6-directions
as follows:

fi=u(TxH). f=(6. 6. ). £ =pHyJ,,

) (10)
f=—puH, J, £ =0

0
In the presence of body forces, the stress equilibrium
equations in s, O and { -directions are expressed in
Equations (11a), (11b) and (11c¢), respectively as:

0 . 0
0'66)5111(;/)+(‘rsC +%rﬁj (1)

—o, +i‘rsg +Z| (o -
0Os oc

cos())+ £, =0

0 0 0 j .
—T,+—7T, +Z|| —0,, |+21,cos(y)+2r, sin

os ¥ ac @ [(ae W) < (11b)
(N)+ f =

0 0 0 j .

—T, +—0, +Z|| —1, |+T, sin(y)+(o, —0O

os & aC & ((69 o < ( & 99) (110)

cos(y))+ £ =0

Substituting constitutive law as shown in the Appendix
and Lorentz’s force components of Equation (10) into
the equilibrium Equations (11a), (11b) and (llc), a
system of equilibrium equations in terms of
displacement, thermal and magnetic components in
three directions i.e. s ,0 and { are achieved:

Equilibrium equation in the s-direction can be expressed
as:

E, (1 +£)" )
0 h, 0 ( 0 j
—|— 1 (1-v)|—u+05 +v
0s (1+U)(1—21))( ( 0s J
(Z2 (cos(y) sin(y Juw +0.5(cos(;/)2 w? +sin(y)*u? (12a)

+V2) +sin(y) ((% ju - (a—agujV] +cos(y) ((a—ag"
)w _(iwjv] + Z((ivj +w cos(y) +sin(y)u
00 00
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E (1+i
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and the equilibrium equation in the 6- direction can be
expressed as:
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and finally the equilibrium equation in the - direction
is:

(12b)
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The FG truncated conical shell is assumed to be
subjected to a non-uniform pressure P(9), at the inner

surface, the boundary temperature (T;) and permeated by
the initial condition of magnetic field, H, - It is also

supposed that the outer surface of the shell is traction
free with its temperature (T,) being kept at 0°. For the
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sake of simplicity, the initial conditions are expressed
as:

¢=0,0,=PRcos(0), 7, =0,7, =0, =T, H=H,

)
¢=h,,0,=0,1,=0,7,=0,7,=0, H=0
Moreover, top and bottom surfaces are assumed to be
clamped, hence boundary conditions at these surfaces
are expressed as:

R
=—2!1— u=0,w=0,v=0,T,=0
sin(y ) 1
R
s=—!—+Lu=0,w=0,v=0,T,=0
sin(y )

The temperature distribution can be determined by
solving the steady-state heat conduction equation

for the FGM truncated conical shell through the
thickness that is given by:

[ Keos(y) ]iT+Kﬂ+iK

R + ssin(y )+ cos(y) ) o oc? ¢ (15)
D70

o¢

where K is the coefficient of heat conductivity.

3. THE METHOD OF SOLUTION

The differential quadrature method as a powerful semi-
analytical tool is employed to obtain the discretized
forms governing and boundary equations of the conical
shell. The general rule of DQM postulates that
derivatives of any smooth function at a discrete point in
the domain can be expressed as a weighted linear
summation of all the functional values at all discrete
sampling points. The key to DQM is to determine the
weighting coefficients for discretization of a derivative
of any order.

The n™ order derivative of a function F(x) at any
discrete point of a domain with respect to s, 6 and { at
any sampling point i.e. s, 6; and { are explicitly
expressed as [24]:

RN TR I

% fe :1 o fj‘m‘k’% _ gc(z)m £ (16)
L. 2p N
o' f

where A™ are weighting coefficients for the n”-order
derivative at point ¢; along the thickness direction; B™
are weighting coefficients for the n-order derivative at
point s; along the generator and C'™ are weighting
coefficients for the n"-order derivative at point 6; in the
circumferential direction; P, M and N are numbers of
sampling points along the s, 0 and ¢, respectively .The
computation of weighting coefficients in s and ¢-
directions have been made on the basis of polynomial
differential qaudrature (PDQ) and in circumferential
direction using the Fourier Expansion-based differential
quadrature (FDQ) which are defined in Equations (17a)
and (17b), respectively:

1 & x-x . . Moo
4y = g A = ,
k#i,j ki (173)
N
A;j) :z (”1()4'11_)
k=1
M —
G——I8 i =] s S,
2sin(= ) x,) w

X

M
- ) _ X~
G __qu: ¢ i —C,;(ZC,;—OOt( 5
0

#j

RN e URPCC e en

), i#j (17b)

[N Jmm,j

J=0 =0

L
By substituting the relations in Equation (16) into
resulting equations, the following discretized governing,
heat conduction and related boundary equations are
transformed into a set of algebraic equations. The
detailed discretized forms of governing, mechanical
boundary and heat transfer equations are given in
Appendix A.

4. NUMERICAL RESULTS AND DISCUSSION

Based on the Chebyshev-Gauss-Lobatto formula,
sampling points are obtained as follows:
in s- direction:

L i—1

s. =L +—(1--cos ,1=1,..,P 18
=L (5— 7)) (18)
in 0 -direction:

j-1 .
0, = i 2z, j=1,.,.M (19)
in §-direction:

h, i1 .
o= =0(] - =1,.,N
- 2( COS(N_ln)),I sees (20)

Geometrical parameters of the shell are considered to be
L=1,y=15",h, =02, R, =0.5 for the truncated
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conical shell. The shell is made of Aluminum with
material properties as shown in Equation (21) [25]:

E =70Gpa,v =0.33, o, =24x107°1/°C, o
o =4nx107 H/m, K,=92.6x10° W /m°C @)
The shell is assumed to be under the action of the
internal pressure P, :150cos(9) MPa and the initiail
magnetic field H, =5x10°A/m.

The following non-dimensional values are employed
to simplify calculations and present the results in a more
appropriate form:

Fol g gL s % 5 _%w

hy" b, T BRTY R

b . (22)
h= 7 =<

H, * P

The effect of variation of the in-homogeneity constant,

n, on the material properties of the cone i.e. Y, /Y| is

shown in Figure 2., where Y, and Y] are the material

properties of the shell at the outer and the inner
boundaries of the shell, respectively.

The convergence and accuracy of the present
approach is investigated in Figure 3. Numerical results
for the distribution of non-dimensional displacement
component, W through the shell thickness in case of

axisymmetric loading condition for various number of
grid points along the thickness and the generator are
demonstrated. According to the presented results,
converged results are achieved using total number of
Nx P =12 discrete points. As it can be seen, this
method converges quite fast with considerably lower
number of grid points. On the other hand, results
obtained by the present method are verified with results
obtained using the finite element software ANSYS, as
illustrated in Figure 3. In the axisymmetric case, the
truncated conical shell is modeled and meshed with
Solid5 element that has eight nodes with up to six
degrees of freedom per node and has 3-D magnetic,
thermal and structural field capabilities with limited
coupling between them. As it is observed, an excellent
agreement exists between the results of the proposed
method and the finite element method.

Results obtained for the circumferential distribution
of the non-dimensional through thickness components

of displacement, W and the stress, 5. for n=0 using

the DQ and FE methods are shown and compared in
Figures 4 and 5, respectively. It can be concluded from
theses figures that these results are in very good
agreement. Effects of in-homogeneity constant, n, on
the dimensionless component of displacement field W,
stress components, the induced magnetic field vector
and temperature distributions along the circumferential

direction are demonstrated in Figures 6 to 11. In these
calculations n, varies from -2 to 2. Figure 6 presents the
distribution ~ of  non-dimensional  displacement
component, W with various values of in-homogeneity
constant along the circumferential direction. Results
revealed that by changing n, from positive to negative
the absolute value of V_V’ increases. The highest

amplitude level belongs to n = -2 and the lowest one
belongs to n=2. It can further be observed from
Figure 6 that all curves intersect at some specific
positions i.e. @ x/2 and 37 /2 .In Figure 7
variations of & o in the circumferential direction with

different values of in-homogeneity constant for an FG
truncated conical shell is depicted. It can be seen that by
changing the value of n, from positive to negative, the

value of stress through the thickness Gy decreases. A

careful study of results shown in Figure 7 will assist
designers to strengthen a shell made of non-
homogeneous material against the internal pressure and
magnetic  field by selecting an  appropriate
inhomogeneous constant.

Variations of the circumferential stress along the
circumference with variation of n from -2 to 2 are
shown in Figure 8. It can be readily seen that as n
changes from positive to negative, the value of stress
reduces and the distribution tends to be more uniform
along the circumferential direction. It appears that the
in-homogeneity constant has significant effects on the

circumferential stress. The behavior of shear stress T 20

distribution of an FG truncated conical shell along 6,
with different values of in-homogeneity constant n, is
depicted in Figure 9. It is observed that the absolute
value of shear stress Ty gently increases as n, changes

from positive to negative which implies that it is much
less dependent to the value of n. It can also be noted that
the maximum shear stress T, occurs at 9 7 /2 and

3z /2 . Figure 10 illustrates the influence of n, on the
distribution of the induced magnetic field along
circumferential direction. As it is shown from the figure,
as n changes from negative to positive, the absolute
value of amplitude of the magnetic induction decreases
and produce more uniform curve. It can be concluded
that there is substantial influence of the in-homogeneity
constant on the induced magnetic field. Figure 11 is
plotted to show the variation of temperature along the
thickness of the shell for different values of n. It is
shown in the figure that as n, changes from -2 to 2, the
temperature amplitude decreases. It is also found that
for n=0, the temperature distribution is in linear form
and for other values of n it has a parabolic shape. Stress
components resulted from thermal fields play a great
role in the fatigue crack initiation, rapid fracture of
components causing failure of components at stress
levels much below the nominal strength of the material.
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Thermal load effects on various parameters of the shell
are performed and results are shown in Figures 12 to 16.
It is assumed that the in-homogeneity constant is equal
to 1, i.e. n=1 and the outer surface temperature is kept at
zero with T=10 °C, 170 °C and 350 °C. Figure 12 shows
the distribution of non-dimensional displacement
component, W at the middle section of generator of the
cone (g= L+ L/2) in the circumferential direction

with different values of the inner-wall temperature. It is
observed that as the temperature difference between two
surfaces increases, the dimensionless displacement
component, W increases. Figure 13 shows the effect of
uniform temperature rise of the inner surface of an FG
truncated conical shell on the distribution of stress
component, G, by keeping the outer surface

temperature at zero. As it is expected, increasing the
temperature difference increases the magnitude of stress
Gy - Distribution of the circumferential stress with

different values of the inner-wall temperature along the
circumference is shown in Figure 14. It is observed
form the figure that as the temperature of the inner
surface increases the circumferential stress increases.
Since, the thermal effect strongly dominates the values
of circumferential stress, usage of FGMs to increase
impact resistance and resistance to thermal stress
fractures is necessary and vital in appropriate designing
of structural components. Figure 15 depicts the effect of

the thermal field on the shear stress FCG for the FG

truncated conical shell. It can be inferred from the figure
that the corresponding response curves are overlapping.
This low degree of dependency of the shear stress

component FCG , to the thermal field are observed in the

corresponding thermo-elastic formula which are given
in Appendix A. The influence of the thermal field on the
variation of the induced magnetic field is shown in
Figure 16. The trend is observed to be similar to that of
Figures 13 and 15 which means that the influence of
temperature difference is noticeable in the induction of
magnetic field within the shell. As the value of
temperature of the inner-wall increases, the value
induced magnetic field significantly increases.
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5. CONCLUSION

The three-dimensional magneto-thermo-elastic problem
of an FG truncated conical shell made of perfect
conducting material in the presence of a constant initial
magnetic field and subjected to thermal and mechanical
loads is investigated in details. Characteristic
parameters including the mechanical, magnetic and
thermal properties are assumed to vary as function of
the thickness and according to a power law formulation.
The governing equations of the conical shell are derived
and discretized with the help of the semi-analytical
differential quadrature method. It is observed that
results obtained by DQ method converge to very
accurate numerical results using considerably small
number of grid points and hence requiring relatively
little computational effort. Numerical results were also
obtained for different values of the non-homogeneity
property of the material and the inner-wall temperature
to demonstrate their high effects on the behavior of the
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normalized displacement, stress, thermal and induced
magnetic fields. By observing the numerical results, it
appears that optimum way of designing can be
performed by selecting an appropriate non-homogeneity

constant, n.

For instance, changing the non-

homogeneity constant from negative to positive, causes
the stress components along the circumference and the
thickness of the shell to have smaller amplitudes.

6.R
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APPENDIX A

The stress field in terms of components of the displacement
and temperature fields:
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presented as follow:
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