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A B S T R A C T  
   

The main purpose of the present work is multi-objective shape optimization of a projectile tip for 
impacting and normal penetrating. Velocity drop, weight and inner volume of projectile have been 
considered as three conflicting objective functions.  For this purpose, at the first step, finite element 
modeling was done using ABAQUS/Explicit and projectile penetration was examined in different 
geometric dimensions. Hammersley sequence sampling was employed for designing computer 
experiments. In the next step, results of the FEM were employed as raw data for MLF-type neural 
network training to achieve a mathematical model which is able to describe velocity drop behavior. 
Projectile weight and Inner volume were also expressed in explicit mathematical form using geometric 
relations. Obtained mathematical models were used as conflicting objective functions for multi-
objective optimization of projectile tip using modified NSGA-II. Finally, it is shown that some 
interesting and important relationships as useful optimal design principles involved in the performance 
of projectile impact have been discovered by Pareto based multi-objective optimization. 
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1. INTRODUCTION1 
 
Researches on projectile penetration can be divided into 
two main classes. The first class is related to the 
performance of projectile penetration and the second 
one is about the performance of penetration resistance. 
Analytical and experimental studies on the ballistic 
resistance of thin, flat beams of pure aluminum and 
6061-T6 aluminum alloy, was done by Marom and 
Bonder [1]. They showed that the multi-layered beams 
in contact have greater penetration resistance than 
monolithic beams under the same conditions. Corran et 
al. [2] carried out research on the performance of 
multilayered steel plates under projectile impact. They 
showed that the layers placed in contact were superior 
to equivalent monolithic plates when the response of 
individual plates changed from petalling and shearing to 
membrane stretching. Investigation of the penetration 
resistance of layered steel plates using conical and flat 
nosed projectiles was conducted by Nurick and Walter 
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[3]. The ballistic limit of monolithic plates was 4-8% 
higher than that of the in-contact layered targets under 
the same conditions. Gupta and Madhu [4, 5] showed 
for relatively thicker plates in two layers, the residual 
velocity was comparable to single plate of equivalent 
thickness. Nevertheless, for thin plates, in-contact 
layered combination gave higher residual velocity for 
all the materials tested. Borvik et al. [6, 7] investigated 
the behavior of 12mm thick single steel plates impacted 
by blunt, conical and hemispherical nosed projectiles of 
20mm diameter. They showed that experimental and 
corresponding finite element results are in good 
agreement. Blunt nosed projectiles were more efficient 
penetrators than hemispherical and conical projectiles at 
low velocities. At higher impact velocities however, 
conical nosed projectiles required least energy to 
perforate the target plates. In 2012, Nilakantan [8], as a 
new approach, considered the effects of projectile 
characteristics on the probabilistic impact response of 
single-layer fully-clamped flexible woven fabrics is 
numerically studied and the probabilistic fabric impact 
response is observed to be strongly dependent on the 
shape of the projectile’s impact face and the manner of 
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projectile–yarn interactions at the impact site. Zhang 
Wei et al. [9], as an engineering approach conducted an 
experimental investigation on the ballistic performance 
of monolithic and layered metal plates. In 2013, Iqbal et 
al. [10] studies the impact of double-nosed projectile on 
aluminum plates. They observed that 0.82 mm thick 
target offered highest ballistic limit for blunt–blunt 
projectile, and 1.82 mm thick target offered highest 
ballistic limit for single-nose blunt projectile. 

Optimal design of projectiles is related to many 
competing criteria such as minimizing velocity drop, 
minimizing projectile weight and maximizing projectile 
inner volume. Therefore, to consider all such criteria 
simultaneously, a complex multi-objective optimization 
problem (MOP) must be solved. Many different 
methods have been proposed by previous researchers 
for solving MOPs [11-15]. Non-dominated Sorting 
Genetic Algorithm (NSGA-II) which is Pareto based 
approach and one of the efficient algorithms for solving 
MOPs was proposed by Deb et al. [11]. It generates a 
set of non-dominated solutions (Pareto solutions), where 
a non-dominated solution performs better on at least one 
criterion than the other solutions. To improve NSGA-II, 
Nariman-Zadeh proposed modified NSGA-II which use 
ε-elimination algorithm instead of crowding factor  [12]. 
This method has been employed successfully in many 
recent studies [16, 17]. 

System identification techniques are applied in many 
fields in order to model and predict the behaviors of 
unknown and/or very complex systems based on given 
input–output data [18]. Theoretically, in order to model 
a system, it is required to understand the explicit 
mathematical input–output relationship precisely. Such 
explicit mathematical modeling is, however, very 
difficult and is not readily tractable in poorly understood 
systems. Alternatively, soft computing methods [19], 
which concern computation in an imprecise 
environment, have gained significant attention. The 
main components of soft computing, namely fuzzy 
logic, neural networks and evolutionary algorithms, 
have shown great ability in solving complex non-linear 
system identification and control problems.   

In the present work, the optimal design of a 
projectile tip was performed considering three objective 
functions namely, projectile velocity drop, projectile 
weight and projectile inner volume. In the first instance, 
a finite element model using ABAQUS/Explicit was 
generated for modeling projectile penetration through 
target made of steel 1045. Hammersley Sequence 
Sampling was then exploited for design of experiments 
so that the whole search space could be covered 
uniformly. After evaluation of all designed experiments 
using finite element model, a data base of inputs-outputs 
was generated. A multi-layered feed-forward-type 
(MLF) neural network was applied as a common 
powerful system identifier for describing projectile 
velocity drop behavior. Finally, a multi-objective 

evolutionary based optimization using modified NSGA-
II was performed for achieving Pareto-optimal set 
which constitute some important and informative design 
principles which can be used efficiently as optimal 
performance of projectile penetration.  

 
 

2. HAMMERSLEY SEQUENCE SAMPLING 
 

Thanks to steady and continuing growth of 
computational power, studying physical process and 
engineering problems through deterministic computer 
simulated experiments has become very popular. But, 
generally these experiments are computationally 
expensive. As an example, evaluation of a finite element 
model can take from a few minutes up to several hours. 
Therefore, notable attempts have been made to develop 
cheaper and accurate surrogate models as a replacement 
for optimization and reliability analysis tasks. In order 
to achieve an appropriate surrogate model, choosing an 
efficient method for sampling technique or Design of 
Experiments (DOE) can play a vital role.  

Classical experimental methods are those applied for 
physical experiments so that the principle of 
randomization, replication and blocking are respected in 
this class of experimental methods. However, on 
contrast, the aforementioned considerations are 
irrelevant when it comes to deterministic computer 
experiments. Thus, space-filling designs have been 
suggested for computer simulated experiments [20] to 
treat all regions of the design space equally. Orthogonal 
arrays [21], Latin hypercube sampling (LHS) [22], 
Hammersley sequences [23] and uniform designs [24] 
are space-filling designs have attracted more attention 
than others in the literature. Hammersley sequence 
sampling (HSS), which uses an optimal design scheme 
for placing the n points on a k-dimensional hypercube, 
has been found to provide better uniformity and either 
faster than Latin hypercube designs for a multi-
dimensional unit hypercube [23]. The HSS sampling 
technique will be used in the present work to design the 
experiments for finite element model analyzing. 

The algorithm that generates a Hammersley 
sequence makes use of the radix-R (R is an integer) 
notation of an integer. Any integer P can be presented 
through radix-R as below:  =       …         (1)  

 =    +    +     + ⋯+       (2)  

Where m = [logRn] (square brackets denote the integer 
part) and pm to p0 are digits of integer P. By reversing 
the order of the digits of P around the decimal point, a 
unique number in the interval [0 1) can be generated. 
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This number is called inverse radix number and can be 
stated as follows:    = .      …     (3)    =       +       + ⋯ +          (4)  

Thus, a set of N Hammersley points on a k-dimensional 
hypercube is as follows:  ⃗ ( ) =    ,    ( ),   ( ), … ,      ( ) ;    = 1,2, … ,    

(5)  

where R1, R2, …,Rk-1 are first k-1 prime numbers.  
 
 
3. MODELING OF MATERIAL BEHAVIOR 

 
As the deformation of both projectile and target occur at 
high strain rate, modeling of material behavior should 
be conducted according to this high strain rate. In this 
regard, different models have been developed to 
describe material behavior for high strain rates. 
Johnson-Cook model which expresses plastic and 
disruptive behavior of material, have attracted lots of 
attention to solve problems involving high strain rates. 
Three main parts of Johnson-Cook [25] modeling are 
stiffness strain effect, strain rate effect and effect of 
temperature. These three important factors can be 
incorporated in Equation (6) to describe material 
behavior.    = [ +  (  ̅ ) ][1 +    (  ̇   ̇ )](1− (             ) )  (6) 

where A, B, C, n and m are constant values which can 
be calculated for different materials through some 
special tests. The parameter  ̅   is equivalent value for 
plastic strain,  ̅̇   the value of equivalent strain rate,  ̇  
the symbol for describing reference strain rate, T current 
temperature, Tmelt the melting point temperature, and T0 
the room temperature. In the present paper, S7 and 1045 
Steel have been chosen as materials for the projectile 
and the target, respectively. The corresponding Johnson-
Cook coefficients are given in the Table 1 [26]. 

In addition to modeling plastic behavior of material, 
another model known as Johnson-Cook fracture model 
has been presented. In this model, it is supposed that 
rupture phenomena occurs when value of a variable 
named D reaches 1. 

 
 

TABLE 1. Coefficient of Johnson-Cook plastic behavior 
equation applied materials [26] 

Material A B n C m 

S7  1539 447 0.18 0.012 1 

St 1045 553 600 0.234 0.0134 1 

The aforementioned variable which is called damage 
criterion mathematically can be stated as follows:  = ∑(∆         )  (7) 

where Δ ̅   denotes equivalent plastic strain rate and   ̅  denotes equivalent strain in fracture so that all the 
rates are accumulated. In Equation (7),   ̅   can be 
calculated in accordance with the equation given below: 

where the coefficients D1 to D5 are constants, σm/σeq is 
the stress triaxiality ratio, and σm the mean stress; and 
other parameters have been defined earlier. 
ABAQUS/Explicit software is able to define plastic 
behavior of the material and also fracture behavior 
based on Johnson-Cook equations so that the software 
has the capability to delete elements with value of 1 for 
fracture criterion (D) using element deletion algorithms. 
Thus, fracture phenomena can be modelled. Table 2 
provides values of coefficients of Johnson-Cook 
fracture equation for the target material (steel 1045). 

 
  

4. FINITE ELEMENT ANALYSIS OF IMPACT AND 
NORMAL PENETRATION OF PROJECTILE 

 
To analyze behavior of projectile penetration, a finite 
element model has been developed. Figure 1 represents 
projectile shape and geometrical variables. Radius of the  
tip (r), angle of the tip (θ) and wall thickness (t) of the 
projectile are considered as geometrical parameters 
which affect its penetration behavior. 
 
 
 

TABLE 2. Coefficient of Johnson-Cook departure equation 
Material D1 D2 D3 D4 D5 

St 1045 553 600 0.234 0.0134 1 
 
 

 
Figure 1. Geometrical variables and projectile shape 

  ̅  =    +             1 +  ln   ̇   ̇   + 1 +                   
(8)  

r  

D = 600 mm 

R=100 mm 

t  

θ  
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TABLE 3. Some of the geometrical variables and finite 
element results for normal penetration 
No. r (mm) θ (deg) t (mm) Velocity Drop (m/s) 

1 0 10 10 13.465 

2 20 20 15 12.081 

… … … … … 

18 80 20 25 14.301 

19 90 30 10 50.009 

… … …  … 

29 40 10 10 16.262 

 
 
To evaluate the effect of variables presented in Figure 1, 
29 different experiments have been designed with the 
help of Hammersley sequence sampling technique so 
that all design space can be covered uniformly. Table 3 
contains the data related to the designed computer 
experiments. Geometrical model of projectile for 
samples 7, 9, 10 and 17 are depicted in Figure 2. In all 
finite element models impact velocity has been 
considered to be 200 meters per second and all the 
analysis have been carried out in a symmetric plane. 
The three dimensional element C3D8R mesh type has 
been used for meshing both projectile and target. A 
concentrated mass of 150 kg in the end of the projectile 
has been considered as well. Qualitative results of 
modeling for the models 9 and 17 are illustrated in 
Figure 3. 

Velocity drop is one of the objective functions 
which is regarded in this paper, can be stated 
mathematically through Equation (9). Δ =                 −                  =    −    (9)  

The value of velocity drop (Δv) for the defined models 
is shown in Table 3.   
 
 

 
Figure 2. Three dimensional visualization of the projectile 
belonging to models 7, 9, 10 and 17 

 

 
Figure 3. Visualization of finite element results for the 
samples 9 and 17 
 

 
 

5. MULTI-LAYERED FEED-FORWARD NEURAL 
NETWORKS  

 
In principle, neural networks have the power of a 
universal approximator, i.e. they can realize an arbitrary 
mapping of one vector space onto another vector space. 
The main advantage of neural networks is the fact that 
they have ability to use some priori unknown 
information hidden in data (but they are not able to 
extract it). Process of capturing the unknown 
information is called learning of neural network or 
training of neural network. In mathematical formalism 
learning means adjusting the weight coefficients in such 
a way that some conditions are satisfied. Multi-Layered 
feed-forward (MLF) neural networks, trained with a 
back-propagation learning algorithm, are the most 
popular neural networks and have been applied to a 
wide variety of problems [27, 28]. A MLF neural 
network consists of neurons that are ordered into layers. 
The first layer is called the input layer, the last one is 
called the output layer, and the layers between are 
hidden layers. A surrogate model using MLF neural 
networks is constructed from computer experiment 
results to estimate projectile velocity drop. This MLF 
model consists of two hidden layers with 4 and 2 
neurons in the first and second hidden layers 
respectively. Tan-sigmoid and purelin transfer functions 
are used for hidden and output layers respectively. It 
should be noted that in this paper two hidden layers 
have been selected for the neural networks to trace 
accurately nonlinearity behavior of the present 
phenomena. Schematic of MLF neural networks is 
shown in Figure 4. 

Model 17 

Model 9 
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Figure 4. Schematic of MLF neural network with two hidden 
layers. 

 
 

 
 

 
Figure 5. Representation of MLF neural networks accuracy 
using linear regression plot for train and test data set 
 
 
TABLE 4. Statistical measures of the obtained MLF models 
for tracing velocity drop behavior for both train and test data  

Data set RMSE MAPE (%) R2 

Train set 0.0031 1.0668 0.9996 

Test set 2.8446 8.5142 0.9133 
 

 
Figure 6. Error convergence history of train and test data set 

 
 
 

A back-propagation (BP) algorithm with Levenberg-
Marquardt (LM) optimization technique was employed 
to train MLF-type neural network. By reducing mean 
square error (MSE) for each epoch the accuracy of the 
networks was improved. To reveal the accuracy of the 
surrogate model (MLF neural network), Table 4 and 
Figure 5 are given as quantitative and qualitative 
representations. Figure 6 also has been committed to 
show convergence history of train and test data set error 
during the process of neural network training. 

The surrogate model obtained in this section is 
utilized as one of the objective functions involved in 
Pareto multi-objective optimization process. The results 
of this optimization process may unveil some interesting 
and important optimal design principles that would not 
have been obtained without the use of a multi-objective 
optimization approach. 
 
 
6. MULTI-OBJECTIVE SHAPE OPTIMIZATION OF 
PROJECTILE TIP 

 
Multi-objective optimization, which is also called multi 
criteria optimization or vector optimization, has been 
defined as finding a vector of decision variables 
satisfying constraints to give acceptable values to all 
objective functions [29, 30]. In these problems, there are 
several objectives or cost functions (a vector of 
objectives) to be optimized (minimized or maximized) 
simultaneously. These objectives often conflict with 
each other so that improving one of them will 
deteriorate another. Therefore, there is no single optimal 
solution as the best with respect to all the objective 
functions. Instead, there is a set of optimal solutions, 
known as Pareto optimal solutions or Pareto front [13-
15] for multi-objective optimization problems. The 
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concept of Pareto front or set of optimal solutions in the 
space of objective functions in MOPs stands for a set of 
solutions that are non-dominated to each other but are 
superior to the rest of the solutions in the search space. 
Each solution of the Pareto set includes at least one 
objective inferior to that of another solution in that 
Pareto set, although both are superior to others in the 
rest of search space. Such problems can be 
mathematically defined as: 
Find the vector  ∗ = [  ∗,  ∗ , …  ,   ∗ ]to optimize  ( ) = [  ( ),  ( ), … ,   ( )]   (10)  

subject to m inequality constraints   ( ) ≤ 0  ,    = 1             (11)  

and p equality constraints ℎ ( ) = 0      ,      = 1               (12)  

where  ∗ ∈ ℜ  is the vector of decision or design 
variables, and  ( ) ∈ ℜ  is the vector of objective 
functions, which must each be either minimized or 
maximized. However, without loss of generality, it is 
assumed that all objective functions are to be 
minimized. Such multi-objective minimization based on 
Pareto approach can be conducted using some 
definitions. 

A vector  = [  ,  , … ,   ] ∈ ℜ  is dominant to 
vector  = [  ,  , … ,   ] ∈ ℜ  (denoted by U≺   ) if and 
only if ∀ = {1, 2, … ,  },   ≤   ^ ∃ ∈ {1, 2, … ,  } :   <   . In other words, there is at least one    which is 
smaller than    whilst the remaining  ’s are either 
smaller or equal to corresponding  ’s. A point  ∗ ∈Ω 
is a feasible region in ℜ  satisfying Equations (11) and 
(12)) is said to be Pareto optimal (minimal) with respect 
to all  ∈ Ω if and only if  ( ∗) ≺  ( ). Alternatively, 
it can be readily restated as: ∀ = {1, 2, … , }, ∀ ∈Ω − { ∗}  ( ∗) ≤   ( )^ ∃ ∈ {1, 2, … ,  } ∶   ( ∗) <  ( ). In other words, the solution  ∗ is said to be 
Pareto optimal (minimal) if no other solution can be 
found to dominate  ∗ using the definition of Pareto 
dominance. For a given MOP, a Pareto set Ρ∗is a set in 
the decision variable space consisting of all the Pareto 
optimal vectors  ∗ = { ∈ Ω|∄  ∈ Ω ∶  (  ) ≺  ( ). 
In other words, there is no other    as a vector of 
decision variables in Ω that dominates any  ∈  ∗.  For 
a given MOP, the Pareto front ΡϜ is a set of vector of 
objective functions which are obtained using the vectors 
of decision variables in the Pareto set  ∗, that is 

 ΡϜ∗ = { ( ) =    ( ),  ( ), … ,  ( ) ∶  ∈  ∗}.  
In other words, the Pareto front ΡϜ is a set of the 

vectors of objective functions mapped from  ∗.  
Evolutionary algorithms have been widely used for 

multi-objective optimization because of their natural 
properties suited for these types of problems. This is 

mostly because of their parallel or population-based 
search approach. Therefore, most of the difficulties and 
deficiencies within the classical methods in solving 
multi-objective optimization problems are eliminated. 
For example, there is no need for either several runs to 
find the Pareto front or quantification of the importance 
of each objective using numerical weights. In this paper, 
modified NSGA-II which has been used successfully in 
the previous researches [16, 17] has been employed for 
multi- objective optimization process. 

In order to investigate the optimal shape of projectile 
tip, three objective functions have been involved in 
optimization process. Velocity drop as one of the 
objective functions has been estimated from computer 
experimental results using MLF-type neural network. 
The two other objective functions namely, weight and 
inner volume of the projectile can be stated explicitly as 
a mathematical formulation. For evaluating inner 
volume as an explicit mathematical formula, it can be 
divided into three parts (see Figure 7) with the help of 
geometry and calculus, inner volume can be expressed 
as follows:  ́ =  −  ;    = 100 −  ,   =     ́         ,     =       600 −   −  ́(1 − sin ) ,     =         +  ́  +  ́  ,     =   ́        − sin  +    ,              =   =    +    +    ,  

(13) 

Mass can be calculated through difference between 
total volume and inner volume multiplied by density. 
Hence, the governing equation for the mass can be 
formulated as follows:  = 100,  =            ,    =  100  (600 −  −  (1 − sin  )),    =    (100 + 100 +   ),    =           − sin  +    ,              =  =   +   +   ,      =  =    −    ,  

(14) 

 
 

 
Figure 7. Inner volume of the projectile has been divided to 
three parts 
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The multi-objective shape optimization of projectile 
tip will allow finding trade-off optimum design points 
from the view point of all three objective functions 
simultaneously. This optimization problem can be 
formulated in the following form: 

Design vector:[tip radius, tip angle, thickness of 
projectile wall]=  [ ,  ,  ] 
Bounds of design variables: 0 <  < 90;  10 <  < 80;  10 <  < 25  
Objective functions: 
        =    ( ,  ,  )         =    ( ,  ,  )          =    ( , ,  )  

 (15) 

A population of 100 individuals with a crossover 
probability of 0.8 has been used in 1000 generations for 
this three-objective optimization problem. Figure 8 
depicts the non-dominated individuals of three-objective 
optimization in the plane of Δv-V. Pareto front of two-
objective optimization of velocity drop and inner 
volume has been also depicted in this figure. Such non-
dominated individuals of three-objective optimization in 
the plane of Δv-W and W-V together with 
corresponding Pareto fronts are shown in Figures 9 and 
10, respectively. 

As can be seen, there are some points in each plane 
that may dominate some other points when considering 
two-objective optimization results. However, these 
points are all non-dominated when considering all three 
objectives simultaneously. For multi-objective 
optimization problem with three objective functions a 
three-dimensional graph of non-dominated points can be 
presented which is called Pareto surface (see Figure 11). 

 

 
 

 
Figure 8. Pareto surface in view of Velocity drop-Mass plane 
to represent corresponding Pareto front and optimal desired 
points 

 
Figure 9. Pareto surface in view of Velocity drop-Mass plane  
to represent corresponding Pareto front and optimal desired 
points 

  
 

 
Figure 10. Pareto surface in view of Mass-Inner volume plane 
to represent corresponding Pareto front and optimal desired 
points 
 
 

 
Figure 11. Pareto surface of three-objective optimization of 
Velocity drop-Mass-Inner volume 
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TABLE 5.The values of objective functions and their associated design variables of the optimum desired points 
Optimum Desired Points r (mm) θ (degree) t (mm) Velocity drop (m/s) Mass (kg) Inner volume (m3) 

A 34.162 29.709 13.679 10.65 34.117 0.01184 

B 0 10 10 13.227 14.135 0.00514 

C 44.959 80 10 34.819 29.015 0.01475 

D 12.96 21.144 10 11.39 22.892 0.0112 

E 12.97 29.709 10 11.024 24.634 0.01241 

 
 

It is now desired to find a trade-off optimum design 
points out of all non-dominated three-objective 
optimization process compromising all objective 
functions. This can be achieved by two different 
methods employed in this paper, namely nearest to ideal 
point method and Mapping method. 

In the nearest to ideal point method, first, an ideal 
point with the best values of each objective functions is 
considered. Secondly, the distances among all non-
dominated points to the ideal point are calculated. In 
this method, the desired point represents minimum 
distance to the ideal point. In the mapping method, the 
values of objective functions of all non-dominated point 
are mapped into interval 0 and 1.  

Using the sum of these values for each non-
dominated point, the desired point simply represents the 
minimum of the sum of those values.  

The points A, B and C represent minimum velocity 
drop, minimum weight and maximum inner volume, 
respectively, which can be achieved also in single 
objective optimization process. In addition, by applying 
nearest to ideal point method and Mapping method on 
the results of three-objective optimization, optimum 
desired points D and E have been obtained. These 
optimum design points could be the trade-off optimum 
choices when considering the optimum values of three 
objectives. According to Figures 8 to 10, optimum 
design points D and E are located close to the Pareto 
front which demonstrates such important optimal design 
fact. The values of design variables and objective 
functions for the points A to E are represented in Table 
5. 

To evaluate the worthiness of an optimum design 
point from the view point of ith objective function a 
criterion, namely Optimum Points Worthiness (OW) is 
proposed and employed in this paper in the following 
form:   ( ,  ) =      ,   ,    , × 100  (16)  

where p and fi are the corresponding optimum points 
and ith objective function, respectively. pi is the value of 
ith objective function at the point p.fi,B, and fiW are also 
the best and worst values of the ith objective function in 
all of the obtained non-dominated optimum points. To 

show the efficiency of the nearest to ideal point method 
and Mapping method, OW coefficients can be obtained 
for the points D and E. Simply, OW(D,f1), OW(D,f2) and 
OW(D,f3) are equal to 2.73, 43.3 and 37.03%, 
respectively. Similarly, corresponding values for the 
optimum point E are 1.38, 51.91 and 24.4%, 
respectively. These values show the effectiveness of the 
approach of the present work. Such optimum points 
would not have been obtained without the use of such 
approach. Moreover, results of such multi-objective 
optimization of velocity drop, weight of projectile and 
inner volume provides more optional choices of design 
variables which can be selected from a trade-off point of 
view. 
 
 
7. CONCLUSION  

 
Genetic algorithm has been successfully used for multi-
objective Pareto based shape optimization of a projectile 
tip. An efficient and accurate surrogate model to 
simulate velocity drop has been created using MLF-type 
neural networks from some numerically obtained input-
output data extracted from the finite element modeling. 
The other two objectives, namely mass and inner 
volume have been formulated using explicit 
mathematical statements. These models then have been 
used in evolutionary multi-objective Pareto based 
optimization process. The multi-objective shape 
optimization of projectile tip led to the discovering 
some important trade-offs among those objective 
functions. Such combined application of MLF neural 
network modeling of numerical input-output data and 
subsequent non-dominated Pareto optimization process 
of the obtained meta-model is very promising in 
discovering useful and interesting design relationships. 
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  چکیده

 

وزن و  هدف اصلی در این مقاله بهینه سازي شکل نوك یک پرتابه در برخورد و نفوذ قائم با در نظر گرفتن افت سرعت،
 ABAQUS/Explicitبراي این منظور، ابتدا با استفاده از نرم فزار . داخلی پرتابه به عنوان سه تابع هدف متضاد است  حجم
هاي کامپیوتري با  آزمایش. سازي اجزاي محدود انجام و با نظر گرفتن ابعاد هندسی مختلف، نفوذ پرتابه بررسی شد مدل

هاي خام  سازي اجزاي محدود، به عنوان داده ي نتایج مدل در قدم بعدي از مجموعه. ي همرسلی طرحی شد استفاده از دنباله
یابی به یک مدل ریاضی براي بیان افت سرعت  دست به منظورد هاي عصبی فیدفوروار براي آموزش و آزمایش شبکه

سازي  دست آمده براي بهینهه از روابط ب. نیز روایط صریح ریاضی توسعه داده شد براي وزن و حجم پرتابه. شداستفاده 
دست آمده روابط سودمندي را در طراحی بهینه نمایش ه نتایج ب. چندهدفی با استفاده از الگوریتم ژنتیک استفاده شد

تحصیل سازي چندهدفی مدل ریاضی استخراج شده از نتایج حل اجزاي محدود قابل  دهد که تنها با به کارگیري بهینه می
  .است
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