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A B S T R A C T  
   

The present study deals with a robot safety system composed of standby robot units and inbuilt safety 
unit. When the main operative unit fails, it is replaced by the standby robot unit available in the system. 
The concept of reboot delay is also incorporated in this study according to which the robot unit is 
rebooted if it is not successfully recovered. The recovery and reboot times of failed units, life time of 
the operative as well as standby units and the repair time are assumed be exponentially distributed. 
Furthermore, the repair time of partially-failed unit of total system failure is assumed to be arbitrarily 
distributed. The expressions for the state probabilities, availability, reliability and mean time to failure 
are derived with the help of Markovian and supplementary variable methods. The occurrence of 
standby units, imperfect coverage and reboot demonstrates the significant impact on the robot system 
reliability, availability and mean time to failure.  A numerical illustration has been provided to validate 
the present model as well as to demonstrate the effects of various parameters on the performance 
measures of the robot safety system. 
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1. INTRODUCTION 1 

 
In industrial and production systems, different types of 
machines are employed in order to make the production 
more efficient, easier and faster. Due to advancement of 
technology, the automated machines used in industry 
have become more sophisticated, flexible and complex. 
They are helpful in reducing the human labor that may 
be dangerous in many ways. However, recent 
developments have made industrial robots more user-
friendly, affordable, and intelligent than ever before. 
The robot is one of the examples of these kinds of 
machines which improve the grade of production and 
reduce the unpleasant and dangerous works. A position 
controlled reprogrammable, multifunctional manipulator 
having a number of degrees of freedom in three 
dimensional spaces and capable of handling materials, 
parts, tools or specialized device through variable 
programmed motion for the performance of a variety of 
                                                        
*Corresponding Author Email: preetypro06@gmail.com (Preeti) 

tasks is known as Robot. The applications of robots can 
be seen in many fields such as industries, manufacturing 
systems, electric systems, military operations, hospitals 
and medical, space, warehouses, laboratories, home 
needs, etc. There are numerous dirty, dangerous, dull or 
inaccessible tasks which can be completed by robots, 
including welding, forging, sandblasting, painting, 
palletizing and packing of manufactured goods, 
removing tiny electronic components from strips or 
trays, complex surgeries, defusing roadside bombs and 
explosives, vacuum cleaning, floor washing, lawn 
moving, and so on. There are so many instances 
including the engineering deficiency, lack of proper 
procedures, inadequate programming, comprehensive 
instruction wherein the human errors may lead to 
unexpected movement of robot which can crash and 
cause injury to the persons around it. Although robots 
protect human being from various hazards, but their 
existence may create some types of safety problems 
which must be taken into account. Robots safety 
depends upon the size of the robot’s work envelope, its 
speed and its proximity to humans. The provision of 
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safety unit in these systems is for the prevention of 
injury or accident in the workplace. Safety provision 
should be made to robot system particularly in the 
situations wherein human involvement is a must and the 
system safety approaches to prevent the damages and 
the occurrence of the accidents. Robot safety must 
include the usual consideration of man, machine and 
workstations, environment and the interface behavior. A 
remarkable work has been done by several researchers 
in the field of the robot safety system. Jiang and Cheng 
[1] presented a procedure analysis for the planning, 
installation and operation stages of adding a robot to the 
workplace. Dhillon and Anude [2] gave a review report 
about the reliability of robot safety. Dhillon and Yang 
[3] did an availability analysis of a robot with safety 
system. Again Dhillon and Yang [4] suggested formulae 
to perform reliability and availability analyses of a 
redundant robot configuration with a built-in safety 
system. A probabilistic analysis of robotic systems has 
been done by Dhillon and Fashandi [5]. Zurada et al. [6] 
described a neuro-fuzzy approach to robot safety which 
uses an integrated sensing architecture for monitoring 
the robot workspace, and a new detection and decision 
logic for regulating the safe operation of the robot. 
Dhillon and Li [7] discussed a stochastic analysis of a 
maintainable robot-safety system with common-cause 
failures. Oliveira et al. [8] did unavailability analysis of 
the safety systems under aging by supplementary 
variables with imperfect repair. Dhillon and Li [9] 
presented a mathematical model to perform availability 
analysis of a robot-safety system having n-redundant 
robots and m-redundant built-in safety units with 
common-cause failures. Further, a stochastic analysis of 
a system with redundant robots, one built-in safety unit, 
and common-cause failures has been explained by 
Dhillon and Li [10]. Kulic and Croft [11] explained 
strategy for ensuring safety for human–robot interaction 
in real-time. Probabilistic analysis of a repairable robot-
safety system composed of (n-1) standby robots, a 
safety unit, and a switch has been considered by Dhillon 
and Cheng [12]. Savsar and Aldaihani [13] developed a 
model of machine failures in a flexible manufacturing 
cell (FMC) which consists of two machines served by a 
robot loading and loading purposes, and a pallet 
handing system. Vanderperre and Makhanov [14] found 
point availability of a robot system with internal safety 
device which is characterized by a safety shut-down rule 
and by the natural feature of standby. Gultekin et al. 
[15] introduced the flexibility of machines leading the 
robot to move cycles which are called the pure cycles in 
flexible robotic cells. Oh et al. [16] studied the bridge 
inspection robot system with machine vision. 
Vanderperre and Makhanov [17] discussed overall 
availability of a robot with internal safety device. In 
order to obtain the point availability of twin system, 
they introduced a stochastic process endowed with a 
time-dependent potential satisfying an integro-

differential equation. Arbuckle and Requicha [18] 
discussed the algorithms and simulations for a self-
assembly and self-repair of arbitrary shapes of reactive 
robots. Kaupp et al. [19] gave a probabilistic approach 
human-robot communication for the collaborative 
decision making. Paviglianiti et al. [20] explained 
robust fault detection and isolation for proprioceptive 
sensors of robot manipulators. The reliability and 
availability analysis of a robot-safety system have been 
done by Cheng and Dhillon [21]. Sharma [22] discussed 
a new idea about the reliability analysis of 
robotic system. The optimal values of mean time 
between failures (MTBF) and mean time to repair 
(MTTR) are obtained using GAs. To enhance the 
relevance of the reliability study, triangular fuzzy 
numbers (TFNs) are developed from the computed data, 
using possibility theory.                           
     If in a system, the failures are not successfully 
detected, located and recovered, then this situation is 
called the imperfect coverage. The faults, which are not 
covered, belong to the uncovered fault class with the 
probability ‘1-q’ where q is the recovery probability of 
the fault class. A lot of work has been done in this field 
by many researchers. Trivedi [23] introduced the 
concept of detection and imperfect coverage and their 
effect on the repairable systems. Optimal design of K-
out-of-n: G subsystem subjected to imperfect fault 
coverage was presented by Amari et al. [24]. Wang and 
Chiu [25] did a cost benefit analysis of availability 
system with warm standby units and imperfect 
coverage. Myers [26] studied the reliability of a K-out-
of-n: G system with imperfect fault coverage. Ke et al. 
[27] used Bayesian approach to predict the performance 
measures of a repairable system with detection, 
imperfect coverage and reboot. Hsu et al. [28] 
statistically studied an availability system with reboot 
delay, standby switching failures and an 
unreliable repair facility, which consists of two active 
components and one warm standby. The reliability 
characteristics of a repairable system consisting of two 
independent operating units by incorporating the 
coverage factor have been discussed by Jain et al. [29]. 
Xing [30] proposed an efficient method for the exact 
reliability evaluation of k-out-of-n systems with 
identical components subject to phased-mission 
requirements and imperfect fault coverage.  

Recent advance have made robots more complex 
and hazardous, therefore there is an urgent need to 
explore these robot systems in order to prevent the 
harms to human beings. Also, these systems should be 
more reliable, safe and cost effective providing better 
maintenance-related decisions. In the present 
investigation, we consider a robot safety system with 
standbys by incorporating the concepts of imperfect 
coverage and reboot. The organization of the rest of the 
paper is as follows. The requisite assumptions and 
notations stating the model formulation are given in 
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Section 2. The governing equations of the existing 
model in the steady state as well as in the transient state 
are also constructed by taking appropriate transition 
rates in Section 3. Various performance indices of the 
system are evaluated explicitly in term of steady state 
probabilities and for the various special cases in Section 
4. In Section 5, the general expressions for the 
reliability and the mean time to failure of the model are 
evaluated in terms of the transient probabilities of the 
system states. Numerical illustration and sensitivity 
analysis are facilitated to explore the effects of various 
parameters on the system performance in Section 6. 
Finally, the concluding remarks are drawn in Section 7. 

 
 

2. MATHEMATICAL DESDRIPTION 
 
In the present investigation a robot system in which the 
safety unit is inbuilt has been considered by 
incorporating the concepts of imperfect coverage and 
the reboot delay. In this model we consider a robot 
safety system consisting of n robot units and one safety 
unit; out of n units, one robot unit is treated as operating 
unit and remaining (n-1) robot units behave like the 
standby units as shown in Figure 1. After the failure of 
operating unit, the standby robot units are switched on 
one by one in the system as per requirement due to 
failure of the operating unit. When a unit fails, it is 
immediately detected, located and recovered. The 
recovery can be successfully performed with probability 
q and if the recovery does not perform successfully, the 
system needs to be rebooted so as to facilitate 
uninterrupted functioning. 
The following assumptions have been considered in 
order to develop the model:                                              
Ø The system consists of one main operating robot 

unit, n-1 standby robot units and a safety unit inbuilt 
in the system. 

Ø For the perfect functioning of the system one robot 
unit and a safety unit are required. 

Ø After the repair, the failed unit works as good as new 
one. 

 
 

 
Figure 1. Repairable robot system with safety unit and reboot 
delay 

Ø The individually failed units as well as the whole 
failed robot safety system can be repaired. 

Ø The life times of the robot units and the safety unit 
follow exponential distribution with parameters 

rλ and sλ . 
Ø The repair times of both the robot units and the 

safety unit are exponentially distributed with 
parameters rµ and sµ , respectively. 

Ø The times to repair of the total system are 
independent and identically distributed random 
variables following a general independent and 
identical distribution (i.i.d.) ( ) ( ) ( ){ }n,1,n,0jxj =µ . 

Ø As soon as an operating unit fails, it is 
instantaneously detected and sent for repair. 

Ø The operating units can be successfully recovered 
with probability ‘q’ and the recovery may fail with 
the probability ‘1-q’. 

Ø The system needs some time for the recovery of 
operating units; the recovery time of operating units 
is exponentially distributed with parameter ‘θ ’. 

Ø The whole system needs to be rebooted in case of 
unsuccessful recovery of a failed unit. The reboot 
time is exponentially distributed with mean ‘ β/1 ’. 

Ø The reboot or recovery cannot be performed after 
the failure of the nth unit. 
At time ‘t’, the system may be in any one of the 

following states:  
(0, 0) State at which one robot and the safety unit are 

working normally and there is no failed robot in the 
system.                           

(0, j) State at which one robot and the safety unit is 
working normally and j (j=1, 2, 3, …., n-1) robots 
have failed.                         

(0, n) State at which the all robots are failed while the 
safety unit is working normally. 

(C, j) State at which the recovery of jth (j=1, 2, 3, …., n-
1) robot unit takes place.                   

(R, j) State at which the reboot of jth (j=1, 2, 3,    …., n-1) 
robot unit takes place. 

(1, 0) State at which one robot is in working    state and 
the safety unit is in failed state. 

(1, j) State at which one active robot works whereas the 
safety unit and j (j=1, 2, 3, …., n-1) robots have 
failed.                         

(0, n) State at which all the robots and the safety unit are 
in failed state.                                 

The following notations are used to develop the     
mathematical model:                                                          
λr Failure rate of the operating as well as the 

standby robot units.                                        

λs Failure rate of the safety unit. 
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µr Repair rate of the operating as well as the 
standby robot units. 

µs Repair rate of the safety unit. 

θ The recovery time of the failed robot unit. 

β The reboot time of the failed robot unit. 

q The coverage probability of the failed robot  
unit.  

S Laplace transform variable. 

X Elapsed time of failed robot safety system. 

µ(j, n)(x) Instantaneous repair rate of the server at  
(j, n) state; j=0,1. 

w(j, n)(x) Probability density function of repair time when 
the failed robot safety system is in   (j, n) state; 
j=0,1.                                            

Ars The steady state availability of the robot safety 
system with the working safety unit. 

Ar The steady state availability of the robot safety 
system with or without the working safety unit.      

Rrs(s) The reliability of the robot-safety system with 
functioning safety unit.                         

Rr(s) The reliability of the robot-safety system    with 
or without functioning safety unit. 

MTTFrs The mean time to failure of the robot-safety 
system with functioning safety unit.             

MTTFr The mean time to failure of the robot-safety 
system with or without functioning safety unit.                                                               

 
 

 
3. THE GOVERNING EQUATIONS AND ANALYSIS 
 
In order to obtain the general expressions for the 
reliability, availability and mean time to failure, it is 
assumed that the failure rates of robot as well the safety 
unit, recovery time and reboot time are constant while 
the failed system time are arbitrary distributed. We use 
the supplementary variable and Markov methods to 
develop these expressions. In this section the governing 
equations of the model have been constructed for the 
transient state as well as the steady state of the robot-
safety system. On solving these equations, the 
expressions for various performance measures of the 
model can be computed in terms of state probabilities. 
Using appropriate in-flow and out-flow rates given in 
Figure 1, we construct the governing Chapman-
Kolmogorov equations as follow. The associated 
boundary conditions are as follows: 

( ) ( )
( )( ) ( ) ( )dxt,xPtP)t(P)(

dt
tdP

n,jn,j

1

0j
1,0r)0,0(sr
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=
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The associated boundary conditions are as follows:         

)t(P)t(P)t,0(P )1n,R()1n,C()n,0( −− β+θ=  (11) 

)t(P)t,0(P )1n,1(r)n,1( −λ=  (12) 

In limiting case when ∞→t , Equations (1) to (12) 
become                               

( ) ( )( )dxxPPP)( n,jn,j

1

0j
1,0r)0,0(sr µ+µ=λ+λ ∑

=
 (13) 

( ) )1i,R()1i,C(1i,0r)i,0(rsr PPPP)( −−+ β+θ+µ=µ+λ+λ

 i=1, 2, 3,……, n-2
(14) 

)2n,R()2n,C()1n,0(rsr PPP)( −−− β+θ=µ+λ+λ (15)
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)i,0(r)i,C( qPP λ=θ ,       i=0, 1, 2, 3,……, n-2

 
(16)

 

)i,0(r)i,R( PqP λ=β ,       i=0, 1, 2, 3,……, n-2

 
(17)

 

( ) ( )1,1r0,0s)0,1(r PPP µ+λ=λ
 (18) 

( ) ( )1i,1ri,0s)i,1(rr PPP)( +µ+λ=µ+λ   

i=1, 2, 3,……, n-2
 

(19) 

)1n,0(s)1n,1(rr PP)( −− λ=µ+λ
 (20) 

( )( ) ( ) 0)x(Px
dx

xdP
)n,0(n,0

n,0 =µ+  (21) 

( )( ) ( ) 0)x(Px
dx

xdP
)n,1(n,1

n,1 =µ+  (22) 

The associated boundary conditions are:
 

 

)1n,R()1n,C()n,0( PP)0(P −− β+θ=  (23) 

)1n,1(r)n,1( P)0(P −λ=  (24) 

The normalizing condition is given by:
 

 

( ) 1PPPP
n

0i
i,Ri,Ci,1i,0 =+++∑

=
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From Equations (16) and (17), we have:
 

 

)i,0(
r
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θ

λ
=  
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(26) 

)i,0(
r

)i,R( PqP
β

λ
=  

i=0, 1, 2, 3,……, n-2 

(27) 

On putting these values in Equations (14), (15) and (23), 
we get: 

( ) )i,0(
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






β
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λ
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(28) 

( ) ,PPP)( )i,0(r1i,0r)i,0(rsr λ+µ=µ+λ+λ +
 

i=1, 2, 3,……, n-2
 

(29) 

)2n,0(r)1n,0(rsr PP)( −− λ=µ+λ+λ  (30) 

)1n,0(r)n,0( P)0(P −λ=
 (31)

 

On solving Equations (21) and (22), we have:
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We know that:
 

 

( )dxxPP
0

jj ∫
∞

=     
for j= (0, n) and (1, n)

 (34)
 

Then from Equations (32) and (34), we have:
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Similarly from Equations (33) and (34), we have:
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x
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    Here, W(0, n) and W(1, n) are the mean time to repair of 
the total system from the states (0, n) and (1, n), 
respectively. Now, on solving Equations (13)-(38), we 
have 

( ) ( )∏
=

=
i

1k
0,0k,0)i,0( PAP        (i=1, 2, 3,……., n-1) (39) 

( ) ( )0,0i,1)i,1( PKP = ,             (i=0, 1, 2, 3,……., n-1) (40) 

( )i,01)i,C( PP α= ,                 (i=0, 1, 2, 3,……., n-1) (41) 

( )i,02)i,R( PP α= ,                 (i=0, 1, 2, 3,……., n-1) (42) 
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( ) ( ) ( )0,0n,jn,j)n,j( PWaP = ,           (j=0, 1) (43) 

where,
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 Now, P(0, 0) can be obtained using normalizing condition 

as follows: 
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4. THE AVAILABILITY  
 
The availability of the robot safety system can be 
determined by using the steady state probabilities of the 
system states as follows. The availability can be 
obtained with the help of those states at which at least 
one robot unit is working properly whether the safety 
unit be in either working or non-working state.   The steady state availability of the robot safety 
system with the working safety unit is given by: 
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The steady state availability of the robot safety system 
with or without the working safety unit is given by: 
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4. 1. Availability for Special Distributions     In this 
section we obtain the normalizing constant H given in 
Equation (45) corresponding to the different repair time 
distributions. Some of the special cases are as follows: 

 
a) Gamma Distribution:  In this case, the 
probability density function is given by: 

( ) ( )

)(
ex

)x(w
x1

n,j
)n,j(

n,j

γΓ
µ

=
µ−−γγ

,       (γ>0, j=0, 1) 

where x is the time variable, Г(γ) is gamma function, 
µ(j,n) is the scale parameter and γ is the shape function. 
The mean time to repair of robot safety system is: 
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    On putting the results of Equation (48) into Equation 
(45), we have: 
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b) Weibull Distribution:    The probability density 
function in this case is given by: 
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where  x is the repair time variable, µ(j,n) the scale 
parameter and γ the shape function. For this case, the 
mean time to repair of robot safety system is: 
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    On substituting the results of Equation (50) into 
Equation (45), we have: 
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c) Exponential Distribution:  For exponential 
distribution, the probability density function is given by: 

( )
( )x

n,j)n,j(
n,je)x(w µ−µ=  ,      (γ>0, j=0, 1) 

where µ(j,n) is the constant repair rate from the jth state. 
The mean time to repair of robot safety system is 
determined as: 
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Now using Equations (52) and (45), we have: 
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5. RELIABILITY AND MEAN TIME TO FAILURE  
 
In thissection the reliability indices of the robot safety 
system are evaluated by considering the transient state 
equations of the model. For the reliability analysis, we 
set µ(j, n)=0 (for j=0, 1) ; now the state transition diagram 
is as shown in Figure 2.  
 
5. 1. Governing Equations    The governing equations 
for the reliability model are same as the governing 
Equations (1)-(8) for previous section along with two 
additional equations which are as  follows: 
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5. 2. The Analysis    Taking Laplace transform of 
Equations (1)-(8) and (54)-(55) with initial condition 
that t=0, P(0,0)(0)=1, we have: 
 
 

 
Figure 2. Repairable robot system for reliability analysis 
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From Equations (59) and (60), we have:
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On putting these values in Equations (57), (58) and (64), 
we obtain: 
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On solving the Equations (56)-(70) together with 
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for  i=1. 2, 3,……., n-2 

Now P(0, 0)(s) can be obtained as follows: 
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5. 3. Performance Indices   The performance 
measures such as reliability and the mean time to failure 
of robot functioning unit with or without the functioning 
safety unit can be obtained with the help of the Laplace 
transform of the governing equations of the exiting 
model. Now, we proceed for the same as follows: 
The reliability of the robot-safety system (RSS) with the 
functioning safety unit (FSU) is given by: 
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With the help of Equation (79), the mean time to failure 
of RSS with FSU unit is given by: 
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The reliability of RSS with or without FSU is given by: 
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The mean time to failure of RSS with or without FSU is 
obtained by using Equation (81) as: 
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6. NUMERICAL ILLUSTRATION 
 
To demonstrate the computational tractability, a 
numerical illustration of the robot safety system with 
standby, imperfect coverage and reboot has been done 
in this section by taking a suitable example. For this 
purpose, the computer program is made in MATLAB 
software to evaluate various reliability indices such as 
availability, mean time to failure, etc.. For 
computational purposes, we fix the default parameters 
as λs=0.1, µr=2, θ=0.5, β=0.05. It is also assumed that 
there are one operating robot and two standby robots in 
the system. The performance measures are evaluated for 
the different values of λr, µr and the coverage 
probability (q) and the numerical results are shown in 
Figures 3-8.    

In Figures 3(a)- 6(b), the effects of the failure rate of 
robot λr and the repair rate of robot µr are displayed on 
the steady state availability (Ars) of the robot safety 
system with the working safety unit and the steady state 
availability (Ar) of the robot safety system with or 
without the working safety unit for the different values 
of the coverage probability ‘q’. It is observed from all of 
these figures that Ars and Ar increase with increasing q. 
From Figures 3(a) - 4(b), the variation in Ars and Ar can 
be seen with respect to λr and µr for different values of q 
for gamma distribution. It is observed from Figures 3(a) 
and 4(a) that Ars and Ar follow decreasing trend for the 
increment in the values of λr whereas when the value of 
µr increases, Ars and Ar also increase as shown in 
Figures 3(b) and 4(b).  

For different values of q, we can demonstrate the 
changes in Ars and Ar for the increasing values of λr and 
µr for exponential distribution in Figures 5(a)- 6(b). We 
can see easily form 5(a) and 6(a) that Ars and Ar 
decrease as λr increases and from 5(b) and 6(b), we 
notice the increasing trend in Ars and Ar with respect to 
µr. Figures 7(a)- 8(b) show the effects of λr and µr on the 
mean time to failure MTTFrs of the robot safety system 
with the working safety unit and the mean time to 
failure MTTFr of the robot safety system with or 
without the working safety unit for the different values 
of q. It can be visualized from all these figures that 
MTTFrs and MTTFr increase as the coverage probability 
‘q’ increases. Figures 7(a) and 8(a) show the effects of 
λr on MTTFrs and MTTFr; we see that MTTFrs and 
MTTFr decrease fast first, then decrease slowly with the 
increment in λr. The increasing trend of MTTFrs and 
MTTFr is found with respect to µr in Figures 7(b) and 
8(b). 

From all the graphs we conclude that the steady 
state availability as well as the mean time to failure of 
the robot safety system in both cases (i) with working 
safety unit and (ii) with or without working safety unit 
increase as the values of the coverage probability ‘q’ 
and the repair rate (µr) of the robot increase, while 
decrease as the failure rate (λr) of the robot increases.  

 
Figure 3(a). Effect of λr on Ars by varying ‘q’ for Gamma 
distributed  repair time 

 
 

 
Figure 3(b). Effect of µr on Ars by varying ‘q’ for Gamma 
distributed  repair time 

 
 

 
Figure 4(a). Effect of λr on Ar by varying ‘q’ for Gamma 
distributed  repair time 

 
 

 
Figure 4(b). Effect of µr on Ar by varying ‘q’ for Gamma 
distributed  repair time 



M. Jain and Preeti / IJE TRANSACTIONS C: Aspects   Vol. 26, No. 9, (September  2013)   1077-1088                         1086 
 

 
Figure 5(a). Effect of λr on Ars by varying ‘q’ for Exponential 
distributed  repair time 

 
 

 
Figure 5(b). Effect of µr on Ars by varying ‘q’ for Exponential 
distributed  repair time 

 
 

 
Figure 6(a). Effect of λr on Ar by varying ‘q’ for Exponential 
distributed  repair time 

 
 

 
Figure 6(b). Effect of µr on Ar by varying ‘q’ for Exponential 
distributed  repair time 

 
Figure 7(a). Effect of λr on MTTFrs by varying ‘q’ 

 
 
 

 
Figure 7(b). Effect of µr on MTTFrs by varying ‘q’ 

 
 
 

 
Figure 8(a). Effect of λr on MTTFr by varying ‘q’ 

 
 
 

 
Figure 8(b). Effect of µr on MTTFr by varying ‘q’ 



1087                                     M. Jain and Preeti / IJE TRANSACTIONS C: Aspects   Vol. 26, No. 9, (September  2013)   1077-1088 

7. CONCLUSION  
 
In this investigation the reliability/availability prediction 
of a robot safety system incorporating various factors 
such as standby, coverage and reboot is done. Safety is 
an important component in industrial automation in 
which robots are widely used. The expressions for the 
steady state availability, reliability and the mean time to 
failure evaluated with the help of the steady state and 
the transient state probabilities by developing Markov 
model may be beneficial for the industrial engineers as 
well as the system designers in order to improve the 
quality and the grade of the performance of the robot 
system with safety provision under the techno-economic 
constraints. The present research work provides the 
study on combined effects of imperfect coverage, 
redundant robots and reboot on a robot safety system 
which is one the first steps in the scenario and it is also 
hoped that it will help to develop appropriate policies     
for the organizations that use robots quite frequently.     
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  چکیده
 

   

. درونی است ایمنی واحد آماده به کار و روبات از واحدهاي شده  تشکیل ربات ایمنی یک سیستم با پژوهش حاضر
راه  در تاخیر  مفهوم. گیرد جاي آن را می سیستم در موجود کار به آماده روبات از کار بیفتد، واحد واحد اصلی که هنگامی

درست کار  اندازي شده دوباره راه روبات اگر واحد که بر طبق آن این بررسی وارد شده است، نیز در اندازي مجدد سیستم
کار واحدهاي فعال و آماده  زمان از کار افتاده، اندازي مجدد واحد و راه بهبودي زمان .شود اندازي می نکند، یک بار دیگر راه

از کار افتاده در   نیمه یک واحد تعمیر توزیع زمان بر این،علاوه  .است توزیع شده تعمیر به صورت نمایی زمان و به کار
قابلیت اطمینان  در دسترس بودن، حالت، احتمالات متغیرهاي. است  شده گرفته نظر کلاً از کار افتاده، تصادفی در سیستم

آماده به کار،  وقوع  واحدهاي. است استخراج شده متغیر مکمل مارکوف و روش زمان از کار افتادگی با کمک  متوسط و
ربات، در دسترس  سیستم تاثیر قابل توجهی روي قابلیت اطمینان دهد که اندازي مجدد سیستم نشان می و راه ناقص پوشش
براي نشان  و همچنین حاضر، مدل به منظور اعتبارسنجی. تا از کار افتادگی دارند زمان متوسط و بودن
 .عددي ارائه شده است یک مثال ربات، سیستم ایمنی ملکرداندازه گیري ع در مختلف  پارامترهاي اثرات دادن
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