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A B S T R A C T  
   

A method for constructing confidence intervals on parameters of a continuous probability distribution 
is developed in this paper. The objective is to present a model for an uncertainty represented by 
parameters of a probability density function.  As an application, confidence intervals for the two 
parameters of the Weibull distribution along with their joint confidence interval are derived. The model 
admits complete data, as well as censored data. The estimation accuracy of the proposed model is 
compared to those of the existing procedures by a numerical method. The validation analysis shows 
that the estimation accuracy of the proposed model lead to an encouraging conclusion. It is shown that 
improper use of available information in the data that affects the width of the confidence intervals 
obtained by the existing procedures. It does not affect the coverage of the proposed confidence interval 
method. 
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1. INTRODUCTION 1 

 
Interval estimation for unknown parameters of a 
continuous pdf from a sample data requires sufficient 
statistics. Sufficient statistics arise in nearly every 
aspect of statistical inference. Intuitively, a sufficient 
statistic captures all information from sample data that 
are relevant to estimating the values of the unobservable 
parameters. In other words, a sample data is used for 
estimating the underlying probability distribution of a 
random variable that the data has been drawn from it. 
For example, for the family of normal distributions, the 
pair 2 2 2

1 2 1 2( ...  and ... )n nX X X X X X+ + + + + +  are sufficient 
statistics. This means that the conditional probability 
distribution of the data 1 2, ,..., nX X X  given the values of 

1 2 ... + nX X X+ +  and 2 2 2
1 2 ... + nX X X+ +  does not depend 

on the mean and the variance of the normal distribution. 
Similarly, for the family of Poisson distributions, the 
sum 1 2 ... + nX X X+ +  is sufficient for the parameter λ  
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and for the family of uniform distributions on (0, )θ , the 
{ }1 ,..., nMax X X  is sufficient for θ . A sufficient 

statistic often does not exist, for example no sufficient 
statistic is known for the Weibull distribution [1]. This 
could be a problem that may prevent construction of 
confidence intervals for widely used distributions. There 
are two alternative approaches to deal with this type of 
problem. The first alternative is to use the Monte Carlo 
simulation procedure, where the results are usually 
summarized in some tables (see for example [1].) Since 
the Monte Carlo procedures are very time-consuming or 
require extensive simulation tables, this approach could 
be cumbersome [2]. The other approach for constructing 
an exact confidence interval uses a nonsufficient 
statistic; examples are given by Yang et al. [2], Chen 
[3], and Lawless [4]. This approach is discussed in 
section 3.  Aljuaid [5] proposed Bayes estimators for 
two parameters exponentiated inverted Weibull 
distribution when sample is available from complete 
and Type-II censoring scheme. The estimators were 
compared with the corresponding maximum likelihood 
estimators using Monte Carlo simulation. Ng [6] 
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derived maximum likelihood estimators (MLE) of the 
parameters of a modified Weibull distribution based on 
a progressively Type-II censored sample. He also 
constructed an approximate confidence intervals for the 
parameters based on the s-normal approximation and 
log-transformed MLE. He numerically evaluated the 
coverage probabilities of the proposed confidence 
intervals. Soliman [7] developed MLE, Bayes 
estimators for some life parameters as well as the 
parameters of the Burr XII model based on 
progressively Type-II censored samples. He obtained 
the Bayes estimators using both the symmetric squared-
error and asymmetric general-entropy loss functions. 
This was performed based on the conjugate prior for the 
shape parameter and discrete prior for the other 
parameter. Zaindin and Sarhan [8] proposed MLE and 
least squares estimators for the parameters of the 
modified Weibull distribution based on Type-II 
censored data. Moreover, assuming a log-concave prior 
density function for the shape parameter of a Weibull 
distribution,  and letting the scale parameter to have a 
conjugate prior distribution for a given shape parameter, 
Kundu [9] developed Bayesian inference of unknown 
parameters of the progressively censored Weibull 
distribution. He employed the Lindley’s approximation 
to compute the Bayes estimates and the Gibbs sampling 
procedure to calculate the credible intervals. Perdon´a et 
al. [10] investigated the properties of the modified 
Weibull model, a three-parameter model that allows U-
shaped hazards to be accommodated. They presented 
inferences for this model’s parameters based on both 
complete and censored samples. While none of the 
above-mentioned studies and to the best of authors' 
knowledge no research provides exact confidence 
intervals on the parameters of a two-parameter Weibull 
distribution, this paper first presents a new method for 
constructing confidence intervals for the parameters of 
continuous distributions. The novelty comes from an 
uncertainty, where the uncertainty is due to a lack of 
information about unknown parameters, and the 
modeling. Although the proposed method, as 
demonstrated in section 2, does not use sufficient 
statistics, still provides identical results to those 
obtained from sufficient statistics. Then, section 3 
presents an application of this method in construction of 
confidence intervals on the shape and scale parameters 
of a two-parameter Weibull distribution. The model 
considers complete and censored data. Two existing 
methods that only allow the Type-II censoring are 
selected to evaluate and to compare the performances of 
the proposed method. 

 
 

2. THE METHOD 
 
The theory behind the new confidence interval  method 
for the parameters of continuous distributions is 

proposed in this section. It is first shown that 
constructing a confidence interval procedure is 
equivalent to obtaining a probability distribution. Then, 
the steps involved in the proposed procedure are 
presented and followed by selection process of the prior 
distribution. 
 
2. 1. Confidence Interval Determination is 
Equivalent to Finding a Probability Distribution  
Let ( ; )Xf x θ  be the probability density function (pdf) of 
a random variable X with an unknown parameter θ . A 
confidence interval 1I α− , which has been defined using 
a series of observations, is a set in which the probability 
of presence of θ  is 1 α−  [11].  Suppose there are two 
confidence intervals 1I α−  and 1I β−  based on the same 
vector x  of observations, in which the latter is a subset 
of the former. Then, the probability of presence of θ  in 

1 1A I Iα β− −= −  is β α−  and by assigning different values 
to α  and β , one can find the probability of a presence 
of θ  in different regions. In other words, constructing 
confidence intervals for a parameter is equivalent to 
finding a probability distribution that determines the 
probability of presence of θ  in different regions.  
 
2. 2. The Similarity Between the Bayes Equation 
and the Confidence Interval Methods   A two-step 
process for constructing a CI is proposed as follows: 
1. Prior to construction of the confidence interval, no 

information is available on the parameter θ . In fact, 
θ  can take any quantity among all possible values 
with an equal chance. This is called uncertainty 
about θ .  

2. By constructing the confidence interval, we have 
condition the uncertainty based on the observations.  

As a result, the stages involved in constructing a 
confidence interval are the same as those of the 
Bayesian estimation. This will lead to find a Bayesian 
based approach to construct a CI. First, a prior 
distribution should be identified to model the 
uncertainty, and then information from a given data is 
used to design the CI.  The unknown parameter is 
treated as a random variable and the observed data are 
utilized to obtain the posterior distribution. To conduct 
the above two-step process, let ( );f X x θ be the joint pdf 
of the random vector X , which represents the 
observations taken from the distribution with unknown 
parameter vector θ . The second step is discussed first, 
and the first step is presented later (in section 4) , based 
on the outcome of step two. The posterior distribution in 
the second step is obtained as follows: 

( ) ( ) ( )
( ) ( )

|

|

|
|

|

f f
f

f f d
∀

=
∫
θ

x θ θ
θ x

x θ θ θ
Θ

Θ X
Θ

|
X

X

Θ

Θ

 
(1) 
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where, ( )f θΘ  is the prior distribution of the parameter 
vector θ  that represents uncertainty about θ , and |f X Θ

 
is the likelihood function. 
 
2. 3. The Prior Distribution Code Validation    The 
key for modeling uncertainty (i.e. finding a proper ( )f Θ θ

) is to note the integration in Equation (1) and the 
integration used later on the posterior distribution to 
construct CI. Therefore, dθ  must be defined. This is 
explained in the following example: 
 
2. 3. 1. Example      Let ( )2≈X N ,µ σ  and define the 

distribution of X given ( )2,µ σ  be a function in 

( )R R ,S+× {for all random variables with normal 

distribution} with a ,bX ( a ,b ) X .=  Since µ  and σ  are 
considered two random variables, the X is actually the 
random variable of our interest. Since for a normal 
random variable with mean µ  and variance 2σ we 
know what dx is, we aim to define d µ  or dθ  in terms 
of dx of a defined normal random variable. For 
example we can say ( ) ( )2 0 1≈ = × +X N , X ,µ σ σ µ . If we 

are interested in 2dσ  in Equation (1) (and assuming µ is 
known), then ( ) ( ) ( )2 21 2 0 1dX , X , dµ σ σ σ= × . In fact if 

in Equation (1), we are using 2d σ  instead of ( )2X ,µ σ , 

we should be careful to use 2d σ  with coefficient 
( ) ( )1 2 0 1X ,σ × or just coefficient 1 σ , for the 

integration to make sense. Since we are using ( )f Θ θ  as 
an adjustment for dθ , in this example we use 

( )2
2 1fσ σ σ= . In section 2. 4, a more formal procedure 

to calculate ( )f Θ θ is developed when θ  is the only 
unknown parameter and in section 2. 5 we will develop 
the procedure for a case of more than one unknown 
parameter.     
 
2. 4. Interval Estimation for one Unknown 
Parameter   Suppose there is only one unknown 
parameter θ and ( )X θ is a function which takes value 
with parameter θ . We are looking for a transformation 
for converting every ( )X θ  to reference random variable 
(for continuous random variables such transformation 
always exists since for every continuous random 
variable an inverse of its distribution function has 
uniform distribution between 0 and 1). To make 
calculation easier, let ( )( ) ( )( )1 1 2 2O X , O X ,=θ θ θ θ  for 

every possible 1θ  and 2θ , where ( )( )O X ,θ θ is the 
transformation. Next, we calculate ( )( )dO X , dθ θ θ  for 

both sides and eliminate repeated values, then the 
remaining simplified terms (which should be a function 
of θ ) is the prior distribution ( )f Θ θ . For example for a 
normal distribution with mean 0 and unknown variance 

2σ  for ( )2
1 10,≈X N σ  and ( )2

2 20,≈X N σ , these 
transformations can be obtained by dividing the random 
variables by their standard deviations, to transform the 
random variables to standard normal variables, 

( ) ( )1 1 1 2 2 20 , 0Z x Z xσ σ= − = −  that do not depend on 
their variances, i.e. 

1 1( )Zg z  and 
2 2( )Zg z  for all 1σ  and 

2σ .   
Next, the differentials of the transformations 

1 1( )Zg z  and 
2 2( )Zg z  with respect to the unknown 

parameters are obtained, and after the simplification, the 
coefficient for dθ is chosen to be ( )f θΘ

. In this 
example, the differentials are equal, that is

( ) ( )2 3 2 3
1 1 1 2 2 22 2X d X dσ σ σ σ− = − . Since 1 2Z Z= , the 

simplification implies 2 2 2 2
1 1 2 2d dσ σ σ σ= . This means 

identical differentials are obtained by selecting 
( ) ( ) 1f fθ σ= =θ σ σ . Appendix A shows that a prior pdf 

is independent of a transformation of random variables. 
To further ascertain the accuracy of this statement, the 
proposed method was employed to build confidence 
intervals on: 
a.  a parameter of a normal distribution where the other 

parameter is known 
b.  the parameter of an exponential distribution, and 
c.  an unknown parameter of the uniform distribution. 
This leads to identical results obtained from the other 
existing confidence interval methods listed below (see 
Motaei [12] for more detailes).   
 
2. 5. Interval Estimation for more than one 
Unknown Parameter     This section presents interval 
estimation for unknown parameters of a pdf having 
more than one parameter. This method is similar to the 
one presented in section 2. 4. Suppose there are two 
unknown parameters, namely 1θ  and 2θ , where the 
vector of observations is denoted by ( )1 2 nx ,x ,..., x=x . 
Then, to obtain ( )

1| 1 |f θΘ xX , from Bayes' equation: 

( ) ( ) ( )
( ) ( )

1 1

1

1 1

1

| 1 1
| 1

| 1 1 1

|
|

|

f f
f

f f d
θ

θ θ
θ

θ θ θ
Θ Θ

Θ

Θ Θ
∀

=
∫

X
X

X

x
x

x
 

(2) 

where, ( )
1| 1|f θΘ xX

can be derived as: 

( ) ( ) ( )
1 1 2 2 1

2

| 1 | , 1 2 | 2 1 2| | , |f f f d
θ

θ θ θ θ θ θΘ Θ Θ Θ Θ
∀

= ∫x xX X
 

(3) 

Note that ( )
1| 1|f θΘ xX  can be improper (if the integration 

is not equal to 1), but ( )
1 | 1 |f θΘ xX  is a proper density 

function. 



A. Motaei et al. / IJE TRANSACTIONS C: Aspects   Vol. 26, No. 9, (September  2013)   985-996                                          988 
 

The method described in section 2. 4 can be used to 
obtain ( )

2 1| 2 1|f θ θΘ Θ
, in which 2θ  is unknown and 1θ  is 

known. The ( )
1

f θΘ  is determined from a vector of 
transformed random variables ( )1 2' , ' ,..., ' ,nX X XX' = where 

' ( )
ii X iX g x=  does not depend on 2θ , and the only 

unknown parameter is 1θ . Note that, independent iX s 

do not necessarily lead to independent '
iX s. The 

distribution of iX s is obtained first, then using the 

weight ( ) ( )
2 1 2 1

2
| 2 1 | 2 1 2| |f f d

θ
θ θ θ θ θΘ Θ Θ Θ∀∫ , '

iX is obtained. The 

denominator of the weight is added to convert 
( )

2 1| 2 1|f θ θΘ Θ
 to a proper distribution. This is clarified by 

the following example. 

 
2. 5. 1. Example   Consider a vector of dependent 
random variables ( )1 2, ,..., kY Y YY =  and a random 
variable Z  where the conditional values of Y  on Z  
are independent. Then, ( ) ( ) ( )

i iY i i ZY Zz
f y f y z f z dz

∀
= ∫ . 

Since 2θ  is unknown, it is treated as a random variable. 
Hence, the distribution of iX is obtained as follows. 

( ) ( )
( )
( )

2 1

1 1 22
2 1

2

| 2 1
| 1 | , 1 2 2

| 2 1 2

|
| | ,

|
Θ Θ

Θ Θ Θ∀
Θ Θ∀

=∫
∫i iX i X i

f
f x f x d

f dθ

θ

θ θ
θ θ θ θ

θ θ θ
 (4) 

To construct a confidence interval on 1θ  based on the 

sample 'x , any transformation can be used (see section 
2. 4). Then, the cumulative distribution of any 
continuous distribution follows a uniform distribution 
between 0 and 1, and the transformation to obtain 

( )
1

f θΘ  is derived as: 

( ) ( )
( )

( )
( )
( )

2 1

1 2
2

2 1
2

2 1
"

1 22
2 12

| 2 1 '
'| , 1 2 2'

| 2 1 2

| 2 1 "
1 2 2| ,"

| 2 1 2

| '
' | ' ,

| '

| "
"| " ,

| "

Xx

Xx

f
f x d dx

f d

f
f x d dx

f d

θ
θ

θ
θ

θ θ
θ θ θ

θ θ θ

θ θ
θ θ θ

θ θ θ

Θ Θ
Θ Θ∀

Θ Θ∀

Θ Θ

Θ Θ∀
Θ Θ∀

=∫ ∫
∫

∫ ∫ ∫

 (5) 

where, 'X is a random variable with 1 1'θΘ =  and ''X is 
a random variable with 1 1"θΘ = .  

The proposed method was employed to construct 
confidence intervals on the two unknown parameters of 
both a uniform distribution and a normal distribution. 
The results were identical to those obtained from using 
other existing confidence interval estimation methods 
[12]. In a case of more than two unknown parameters, 
the proposed method can be used recursively. It should 
be mentioned that in some special cases, the proposed 
method could even be employed more easily. The 
following theorem can be helpful in this regard. 

2. 5. 2. Theorem     Suppose X is a continuous 
random variable with unknown parameters 1 2, ,..., mθ θ θ

that has the independent parameters property. Then we 
have: 

( )

( ) ( ) ( )
( ) ( ) ( )

1 2 1

1 2 1

|

| , ,..., 1 2 1

; | , ,..., 1 2 1

|

| , ,..., ...

| , ,..., ...

i

m m

j m m

j

i

m m
j

j i m m j

f

f
d

f dθ
θ

θ

θ θ θ θ θ
θ

θ θ θ θ θ θ

Θ

Θ Θ Θ Θ Θ

∀ ≠ Θ Θ Θ Θ Θ
∀

=

 
 ∆ ∆
 

∆ ∆ 
  

∫ ∫

X

X

X

x

x

x

 (6) 

The proof of this theorem for the case of two 
unknown parameters is given in the Appendix B, which 
can be extended to more than two parameters cases. 

Section 3 presents an application of the proposed 
methodology, to construct confidence interval for the 
two unknown parameters of Weibull distribution. 
 
 
 
3. INTERVAL ESTIMATION OF PARAMETERS OF 
WEIBULL DISTRIBUTION 
 
 
Due to its flexibility, the Weibull distribution has been 
extensively applied in reliability and life data analysis. 
The statistical methods for tests of hypotheses and 
constructions of confidence intervals on the parameters 
of this distribution usually depend on using extensive 
statistical tables, or estimation from Weibull graphical 
papers. In practice, utilization of these methods could be 
quite cumbersome and inconvenient.  

In this section, the proposed method is employed to 
construct confidence intervals on the two parameters of 
the Weibull distribution for complete data, and for the 
Type-I and the Type-II censored data.  Notation and 
definitions are given in section 3. 1, then the 
performances of the proposed procedure are compared 
against two of the existing confidence interval 
estimation methods.  Section 3. 2 presents a comparison 
of the proposed method with Yang et al. [2] method on 
confidence interval of the scale parameter. The second 
comparison involves building a joint confidence interval 
for both the shape and the scale parameters is described 
in section 3. 3 with Chen [3] method. These two 
methods can only be used for either Type-II censored 
data or uncensored data. Further, neither of the two 
methods uses sufficient statistics. Section 3. 4 discusses 
the effects of using nonsufficient statistics on the 
accuracy of the confidence interval methods. Section 3. 
5 presents an application of the proposed method to 
build confidence intervals on the two parameters of the 
Weibull distribution. Finally, numerical experiments are 
presented in section 3. 6 for analysis and validation of 
the proposed model, followed by conclusions in section 
4. 
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3. 1. Notation and Definitions   The pdf of the 
Weibull distribution with scale parameter 0α >  and 
shape parameter 0β > , is ( )/1( ) x

Xf x x e
βαβ ββα −− −= , for 

0x > . Suppose we have a sample of n  observations 
from a Weibull distribution. The ith observation and the 
ith smallest observation is denoted by ix and ( )ix , 
respectively, and any observations less than a fixed 
value r , is defined as a Type-I censoring. If the data 
consists of k smallest observations ( k is a fixed 
number), then it is a Type-II censoring, where k n  is 
called the degree of censorship.  

 
3. 2. The Exact Confidence Interval on the Scale 
Parameter   This section briefly describes the Yang et 
al. [2] method of constructing a confidence interval for 
only the scale parameter of the Weibull distribution for 
a complete, and for a Type-II censored data.  

Let ( ) ( )( ) ( )
1

k

i k
i

S x n k xβ ββ
=

= + −∑ . Then it can be shown 

that ( )2S ββ α  follows a chi-square distribution with 
2k  degrees of freedom. Hence, a ( )100 1 %δ−  
confidence interval for the scale parameter α  can be 
easily obtained as: 

( ) ( )1/ 1/

2 2
2 , / 2 2 ,1 / 2

2 2
,  

k k

S S
β β

δ δ

β β

χ χ −

                 

) )) )

 (7) 

where, β
)

 is the MLE of the shape parameter and 2
,ν δχ  

denotes the upper δ -percentile of a chi-squared 2χ  
random variable. Since the shape parameter is 
estimated, as Yang et al. [2]  indicated, there will be a 
convergence problem in the confidence. As a result, 
they replaced the chi-squared distribution with a 
distribution that has an exact mean and a variance of 

( )2S ββ α
)) . Moreover, they used a modified unbiased 

version of MLE, to estimate the shape parameter with 
the following confidence interval forα : 

( )
( )

( )
( )

1/ 1/

2 2
2 , / 2 2 ,1 /2

2 2
,  

2 1 2 1k k

S S

c k c c k c

β β

δ δ

β β

χ χ −

            − − − −     

) )) )

 (8) 

where, c is a constant that depends only in the degree of 
censorship. 

 
3. 3. Joint Confidence Interval for the Scale and 
Shape Parameters      Chen [3] presented a joint 
confidence interval on the scale and shape parameters of 
the Weibull distribution. This method is similar to Yang 
et al. [2] procedure that can only be applied for a Type-
II censored data or for an uncensored data.  

They defined ( ) ( ) ( ) ( )1

k
i ki

S x n k xβ ββ
=

= + −∑  and 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 11
1 .k

i ki
x n k x nx n k xβ β β βξ β

=
= + − − −∑  

( )2S ββ α  follows a chi-square distribution with 2k
degrees of freedom and ( )ξ β  has an F distribution with 
2 2k −  and 2 degrees of freedom. Furthermore, ( )S β  
and ( )ξ β  are independent. Hence, a ( )100 1 %δ−  joint 
confidence interval for the scale parameter α  and the 
shape parameter β  were given as: 

( ) ( )

( ) ( )

1 1 1 1
2 2

1/ 1/

2 2
1 1 1 12 , 2 ,

2 2

2 2, 2 2 2, 2

2 2

k k

F k F k

S S

δ δ

β β

δ δ

φ β φ

β β
α

χ χ

+ − − −

− − + −

    
− ≤ ≤ −           


    
    

≤ ≤    
    
    

) )

) )
 

(9) 

where, ( )1 2,Fδ υ υ  is the upper δ -percentile of a ( )1 2,F υ υ

random variable. 
 
3. 4. Effects of a Non-sufficient  Statistics on the  
Interval Estimation of an Unknown Parameter   If 
a confidence interval is constructed based on a sufficient 
statistic, the corresponding probability distribution is 
referred by ( )| |f θΘ X x , and if it is constructed based on 
a statistic ( )n X  , we use 

( ) ( )( )| |nf nθΘ xX
 to refer to this 

probability distribution. 
Suppose ( )n X  is a sufficient statistic. Then 

( ) ( )( ) ( )|| | |nf n fθ θΘΘ = XX x x . Since there is a vector of 
observations on the right-hand side, we have 

( ) ( ) ( )( )| || |nf f nθ θΘ Θ=X X, Xx x, x . As a result, 

( ) ( )( ) ( ) ( )( )| || |  n nf n f nθ θΘ Θ=x x xX X, X ,  which implies 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

, ,, ,n n

n n

f n f n

f n f n

θ θΘ Θ=
x x

x x
X X, X

X X, X

x,
x,

 That is equivalent to 

( ) ( )( ) ( ) ( )( ), ,n nf n f nθΘ=x xX | X X | Xx | x | . 
In other words, a statistic is sufficient if and only if the 
probability distribution of the vector of observations 
conditioned on a statistic does not depend on an 
unknown parameter. This fact leads to the conclusion 
that none of the statistics used in sections 3. 2 and 3. 3 
are sufficient.  

Since nonsufficient statistics do not properly utilize 
the available data and discard some information, 
confidence intervals constructed from nonsufficient 
statistics are expected to be wider than those obtained 
from sufficient statistics are. This is further clarified by 
utilizing partial data for an interval estimation of an 
unknown parameter. Suppose a vector of observations 
from a normal distribution is available for constructing a 
confidence interval on the mean. An interval estimation 
from only one half of the observations will be wider 
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than the one from the full set of observed data. 
However, as discussed in section 2. 1, every confidence 
interval is equivalent to a probability distribution. 
Moreover, for any two different probability 
distributions, there are two regions, in which the 
probability of occurrence is greater in one. Hence, when 
the width of a confidence interval is referenced, it is an 
indication of the width of the critical confidence 
interval. A critical confidence interval is the tightest 
possible confidence interval made using a given 
probability coverage. In summary, we expect critical 
confidence intervals based on nonsufficient statistics to 
be wider than the critical confidence interval 
constructed from a sufficient statistic. 

In a nonsufficient statistics, only partial information 
is utilized, and all invalid information is excluded. As a 
result, the coverage of the confidence intervals is not 
affected by a statistical non-sufficiency. This fact has 
been further clarified by the experiments on the 
coverage of exact confidence intervals presented by 
Yang et al. [2]. 

  
3. 5. Interval Estimation for Parameters of 
Weibull Distribution   An application of the proposed 
method on two parameters of Weibull distribution is 
presented in this section. Consider the cumulative 
distribution function (cdf) of the Weibull distribution 
given below: 

( ) 1    ;   0
x

XF x e x
β

α
 − 
 = − >  (10) 

where, 0α >  is the scale and 0β >  is the shape 
parameter. First it is shown that, the Weibull 
distribution has independent parameter property. The 
following approach from the cumulative distribution 
function is proposed to obtain the transformation froms 
of the pdf of two Weibull random variables, 

( )1 1 ,≈X Weibull α β  and ( )2 2 ,≈X Weibull α β  
 Let 1 1 (1, )≈X Weibullα β  and 2 2 (1, )X Weibullα β . 
Thus  

1 2 1 2
1 2 1 22 2

1 2 1 21 2

1 1X X X Xd d d dα α α α
α α α αα α

= ⇒ = ⇒ =  (11) 

Now, let ( )1 1,≈Y Weibull α β  and ( )2 2,≈Y Weibull α β . 
Then 

1 2 1

1 2 1 1
1ln

Y Y Y Y
d

β β β

β
α α α α

        = ⇒ =        
        

 

2

2 2
2ln

Y Y d
β

β
α α

     ⇒    
    
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1 1

Y Yd d

d d
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β α β α

β β
β β

   =   
   

⇒ =

 (12) 

Hence, the Weibull distribution has independent 
parameter property and the confidence interval can be 
derived using: 

( )
( )

( )

| , 1 1

, | 1 1

| , 1 10 0

1 | ,
, |

1 | ,  

X
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+∞ +∞

= =

=

∫ ∫

f
f

f d d

α β

α β

α ββ α

α β
αβ

α β
α β α β

αβ

 (13) 

Then, ( )| , 1 1| ,f α β α βX x  can be obtained from Type-I or 
from Type-II censored data. For a computational ease, 
we replace the ranked data with the unranked ones. 

In a sample of Type-I censored data, 1k observations 
are less than or equal to a fixed value r , denoted by 

( ) 1   ;   1,2,...,ix i k= , and 1( )n k−  observations re 
greater than r . Thus 

( )

( )( )
( ) ( )1 1 1

11
1 1 11 1

1 1
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1
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 (14) 

In a Type-II censored data, values of the k smallest 
observations, denoted by ( )    ;   1,2,...,ix i k= , are 

known and ( )n k−  observations are greater than
 ( )kx . 

Hence, 

( )

( )( )
( ) ( ) ( )

1 1
1

1 1
1

1

| , 1 1

1
1

1
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i ri
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∑
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X x
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Equations (14) and (15) can be shown in a unique form 
as follows: 

( )| , 1 1| ,f α β α β =X x  

( )( )
( ) ( )1 1

1
1 1

1

1

1
1

1
1

K
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x n K R
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x e
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∑
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(16) 

where, 1K k= and R r=  are used for the Type-I 
censored data, and K k= and ( )rR x= are used for the 
Type-II censored data. Then the joint confidence 
interval is derived from: 

( )
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As a result, for a confidence interval (Bayesian) on the 
scale parameter we have 
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( ) ( )
1

| 1 , | 1 1 1
0

| , |f f dα α β
β

α α β β
+∞

=

= ∫X Xx x  (18) 

The Bayesian confidence interval on the shape 
parameter is obtained from: 

( ) ( )
1

| 1 , | 1 1 1
0

| , |f f dβ α β
α

β α β α
+∞

=

= ∫X Xx x  (19) 

Then, the ( )100 1 %δ−  confidence intervals for the above 
two parameters are the regions on which the integration 
of the posterior distribution (Equations (17), (18) or 
(19)) is equal to ( )1 δ− . 
 
3. 6. Experiments   This section presents some 
experiments that are designed to evaluate the 
performances of the proposed methodology for the 
intervals estimation of the parameters of Weibull 
distribution. It is assumed that the scale parameter 

1α =  and the shape parameter 2β = . The confidence 
intervals based on samples of size n = 20 and 50 with 
m  replications are constructed. Three confidence levels 
are assumed at: 1 0.90δ− = , 0.95, and 0.99. 
Furthermore, all experiments are coded and run in 
MATLAB (R2008a). Table 1 shows the average 
confidence interval coverage of the proposed method 
(column P ), the average coverage for the scale 
parameter of the Yang et al. [2] method (column Y ), 
and the average coverage for the joint confidence 

interval presented by Chen [3] (column C ). Note that 
the results shown on columns  Y and C  are based on a 
Type-II censored data. The number of confidence 
intervals used for experiments appears in the column 
under “Runs.” The results shown on Table 1 indicate 
that all methods provide good performances in terms of 
coverage. Moreover, these results show that 
nonsufficient statistics do not affect the coverage of the 
confidence intervals. For Type-I censored data, the 
average coverage and width of the estimated confidence 
intervals on the scale parameter, the shape parameter, 
and both parameters using the proposed method are 
given in Table 2. For the r value, the 7th decil 7( )d , 8th 
decil 8( )d , and 9th decil 9( )d of the Weibull distribution 
are chosen. Based on the results given in Table 2, in all 
scenarios of Type-I censored data, the estimated 
confidence intervals from the proposed method have 
exact coverage as well as tight widths. Table 3 shows 
the results obtained on the average width of the critical 
confidence intervals for the scale parameter from the 
proposed method, and the method developed by Yang et 
al. [2]. It also contains the results obtained for the 
average joint confidence intervals of the proposed 
method and the Chen [3] procedure. These results show 
that in all cases the widths of the critical confidence 
intervals from the proposed method are less than those 
obtained from the other two methods. 

 
TABLE 2. The average coverage and length of the methods for Type-I censoring data 

   Coverage  Length  
  r  α  β  Joint  α  β  Joint Runs 

  7 1.097d =  0.892 0.888 0.910  0.571 1.623 1.348 1000 

n=20 1 0.9δ− =  8 1.269d =  0.910 0.900 0.907  0.492 1.471 1.030 1000 

  9 1.517d =  0.908 0.895 0.912  0.442 1.339 0.832 1000 

  7 1.097d =  0.956 0.942 0.952  0.724 1.919 1.936 1000 

n=20 1 0.95δ− =  8 1.269d =  0.944 0.954 0.948  0.608 1.739 1.404 1000 

  9 1.517d =  0.946 0.948 0.946  0.539 1.584 1.115 1000 

  7 1.097d =  1.000 1.000 1.000  1.198 2.613 4.436 100 

n=20 1 0.99δ− =  8 1.269d =  1.000 0.990 1.000  0.924 2.346 2.718 100 

  9 1.517d =  0.990 1.000 0.990  0.744 2.146 1.933 100 

  7 1.097d =  0.914 0.916 0.918  0.312 1.004 0.441 1000 

n=50 1 0.9δ− =  8 1.269d =  0.907 0.913 0.912  0.283 0.912 0.363 1000 

  9 1.517d =  0.891 0.889 0.888  0.267 0.827 0.311 1000 

  7 1.097d =  0.957 0.957 0.957  0.377 1.203 0.596 1000 

n=50 1 0.95δ− =  8 1.269d =  0.953 0.941 0.950  0.341 1.091 0.488 1000 

  9 1.517d =  0.945 0.953 0.950  0.320 0.990 0.414 1000 

  7 1.097d =  1.000 1.000 1.000  0.529 1.557 1.141 100 

n=50 1 0.99δ− =  8 1.269d =  0.980 1.000 0.990  0.482 1.414 1.065 100 

  9 1.517d =  0.980 1.000 0.990  0.454 1.287 0.94 100 
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TABLE 1. Comparing the coverage of the methods for Type-II censoring data 

   
α  β  Joint α  Joint 

 
n  1 δ−  Degree of censorship P  P  P  Y  C  Runs 

20 0.9 0.4 0.914 0.9 0.916 0.888 0.886 1000 
20 0.9 0.5 0.885 0.911 0.913 0.902 0.897 1000 
20 0.9 0.6 0.885 0.901 0.894 0.91 0.893 1000 
20 0.9 0.7 0.886 0.895 0.894 0.886 0.902 1000 
20 0.9 0.8 0.908 0.898 0.913 0.885 0.909 1000 
20 0.9 0.9 0.908 0.902 0.911 0.911 0.914 1000 
20 0.9 1.0 0.901 0.891 0.896 0.918 0.918 1000 

  
average 0.898 0.8997 0.905 0.900 0.903 

 
20 0.95 0.4 0.963 0.96 0.961 0.951 0.963 1000 
20 0.95 0.5 0.949 0.95 0.949 0.963 0.951 1000 
20 0.95 0.6 0.941 0.954 0.95 0.944 0.953 1000 
20 0.95 0.7 0.937 0.944 0.96 0.948 0.948 1000 
20 0.95 0.8 0.937 0.944 0.956 0.947 0.942 1000 
20 0.95 0.9 0.961 0.942 0.948 0.941 0.951 1000 
20 0.95 1.0 0.953 0.954 0.952 0.949 0.952 1000 

  
average 0.949 0.9497 0.954 0.949 0.951 

 
20 0.99 0.4 0.994 0.993 0.992 0.992 0.995 1000 
20 0.99 0.5 0.988 0.995 0.987 0.991 0.991 1000 
20 0.99 0.6 0.984 0.991 0.987 0.984 0.989 1000 
20 0.99 0.7 0.985 0.991 0.987 0.987 0.989 1000 
20 0.99 0.8 0.993 0.992 0.991 0.993 0.987 1000 
20 0.99 0.9 0.993 0.990 0.992 0.988 0.993 1000 
20 0.99 1.0 0.996 0.986 0.989 0.987 0.996 1000 

  
average 0.990 0.991 0.989 0.989 0.991 

 
50 0.9 0.4 0.908 0.908 0.908 0.888 0.912 1000 
50 0.9 0.5 0.910 0.913 0.915 0.907 0.915 1000 
50 0.9 0.6 0.912 0.910 0.912 0.903 0.913 1000 
50 0.9 0.7 0.912 0.907 0.913 0.897 0.905 1000 
50 0.9 0.8 0.891 0.912 0.896 0.898 0.885 1000 
50 0.9 0.9 0.891 0.889 0.897 0.885 0.882 1000 
50 0.9 1.0 0.893 0.912 0.91 0.915 0.892 1000 

  
average 0.902 0.907 0.907 0.899 0.901 

 
50 0.95 0.4 0.963 0.953 0.953 0.958 0.958 1000 
50 0.95 0.5 0.950 0.957 0.950 0.953 0.963 1000 
50 0.95 0.6 0.957 0.953 0.960 0.957 0.967 1000 
50 0.95 0.7 0.947 0.950 0.953 0.946 0.936 1000 
50 0.95 0.8 0.947 0.948 0.947 0.943 0.933 1000 
50 0.95 0.9 0.938 0.948 0.943 0.943 0.943 1000 
50 0.95 1.0 0.947 0.949 0.953 0.957 0.943 1000 

  
average 0.95 0.951 0.951 0.951 0.949 

 
50 0.99 0.4 1.000 0.990 1.000 0.990 1.000 100 
50 0.99 0.5 1.000 0.990 0.990 0.990 1.000 100 
50 0.99 0.6 1.000 1.000 1.000 0.980 0.990 100 
50 0.99 0.7 0.990 1.000 0.990 0.930 0.990 100 
50 0.99 0.8 0.980 1.000 0.990 0.960 0.970 100 
50 0.99 0.9 0.980 1.000 0.990 0.960 0.960 100 
50 0.99 1.0 0.980 1.000 0.990 0.990 0.980 100 

  
average 0.990 0.997 0.990 0.970 0.980 
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TABLE 3. Comparing average lengths of the methods for Type-II censoring data 
   α  α  Joint Joint  

n  1 δ−  Degree of censorship P  Y  P  C  Runs 

20 0.9 0.4 1.027 1.765 3.576 4.251 1000 

20 0.9 0.5 0.650 1.262 2.186 2.579 1000 

20 0.9 0.6 0.504 1.061 1.570 1.790 1000 

20 0.9 0.7 0.448 1.026 1.230 1.383 1000 

20 0.9 0.8 0.401 1.016 1.007 1.149 1000 

20 0.9 0.9 0.374 0.984 0.848 1.039 1000 

20 0.9 1.0 0.364 0.914 0.718 1.071 1000 

20 0.95 0.4 1.377 2.137 5.580 6.065 1000 

20 0.95 0.5 0.883 1.558 3.232 3.682 1000 

20 0.95 0.6 0.666 1.292 2.231 2.551 1000 

20 0.95 0.7 0.554 1.220 1.695 1.943 1000 

20 0.95 0.8 0.496 1.181 1.367 1.609 1000 

20 0.95 0.9 0.462 1.171 1.142 1.459 1000 

20 0.95 1.0 0.443 1.133 0.961 1.498 1000 

20 0.99 0.4 2.593 3.092 10.009 10.923 1000 

20 0.99 0.5 1.260 2.205 4.467 6.442 1000 

20 0.99 0.6 0.856 1.817 2.661 4.393 1000 

20 0.99 0.7 0.683 1.756 1.919 3.315 1000 

20 0.99 0.8 0.597 1.687 1.526 2.729 1000 

20 0.99 0.9 0.549 1.695 1.275 2.465 1000 

20 0.99 1.0 0.521 1.617 1.083 2.525 1000 

50 0.9 0.4 0.508 0.957 1.047 2.061 1000 

50 0.9 0.5 0.400 0.725 0.713 1.290 1000 

50 0.9 0.6 0.337 0.612 0.533 0.913 1000 

50 0.9 0.7 0.299 0.602 0.426 0.707 1000 

50 0.9 0.8 0.276 0.584 0.356 0.591 1000 

50 0.9 0.9 0.263 0.576 0.307 0.539 1000 

50 0.9 1.0 0.255 0.547 0.266 0.564 1000 

50 0.95 0.4 0.624 1.155 1.448 2.848 1000 

50 0.95 0.5 0.488 0.872 0.973 1.776 1000 

50 0.95 0.6 0.407 0.735 0.721 1.254 1000 

50 0.95 0.7 0.360 0.699 0.573 0.969 1000 

50 0.95 0.8 0.330 0.687 0.477 0.808 1000 

50 0.95 0.9 0.314 0.676 0.409 0.737 1000 

50 0.95 1.0 0.304 0.661 0.353 0.772 1000 

50 0.99 0.4 1.011 1.571 2.915 4.938 100 

50 0.99 0.5 0.702 1.165 1.925 3.025 100 

50 0.99 0.6 0.572 0.974 1.274 2.117 100 

50 0.99 0.7 0.504 0.917 1.114 1.628 100 

50 0.99 0.8 0.482 0.892 1.071 1.352 100 

50 0.99 0.9 0.542 0.908 0.859 1.224 100 

50 0.99 1.0 0.467 0.874 0.679 1.269 100 
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4. CONCLUSION 
 
In this paper, a novel method for constructing exact 
confidence intervals on the parameters of continuous 
distribution was proposed. It was shown that the 
proposed methodology could produce the same exact 
confidence intervals from sufficient statistics; it could 
also construct reliable confidence intervals in the 
absence of sufficient statistics, through a numerical 
integration method. As an application, this method was 
employed to construct confidence intervals for the shape 
and scale parameters of a Weibull distribution, as well 
as their simultaneous confidence region for complete 
data, and for a Type-I and Type-II censored data. The 
numerical experiments indicated that this method lead 
to the tightest confidence intervals for Type-II censored 
data, and to the exact confidence intervals for a Type-I 
censored data. 

Although the proposed method is powerful and easy 
to implement, for some distribution a closed form 
formula for a prior distribution cannot be easily derived, 
therefore numerical methods are preferred. 
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APPENDIX A  
 
 
Independence of Prior PDF from Transformation 
of Random Nariables   For continuous random 
variables with one unknown parameter, it is shown that 

( )f θΘ
 is independent of the transformation. Let X  be 

an arbitrary continuous random variable with only one 
unknown parameter. If 1θ θ=  we denote X  by 1X  and if 

2θ θ= , then X is denoted by 2X . Suppose there exist 
two transformations ( ) ( )1 1 2 2; ;O X O Xθ θ= and 

( ) ( )1 1 2 2; ;Q X Q Xθ θ= . Let Oh and Qh  be the 
transformations that convert the random variables 
generated by O and Q , and 1( )Q OH h h−=  is a mapping 
that converts O to .Q  This transformation exists for 
every continuous random variable. Furthermore we 
show that:  

1 1 2 2 1 1 2 2( ; ) ( ; ) ( ; ) ( ; )
÷ = ÷

dQ X dQ X dO X dO X
d d d d

θ θ θ θ
θ θ θ θ  (A.1)

 

Let  1 1 2 2( ; ) ( ; )dQ X dQ X
k

d d
θ θ

θ θ
÷ = . Then 

( )( )( ) ( )( )( )

( ) ( ) ( )

( ) ( ) ( )

1 1 2 2

1 1 1 1
1 1

2 2 2 2
2 2

; ;

; ;
;

; ;
;

d dk h O X h O X
d d

d dO X h O X
d dO X

d dO X h O X
d dO X

θ θ
θ θ

θ θ
θ θ

θ θ
θ θ

= ÷

 
÷    

 
 

    
 

 (A.2)
 

Since ( ) ( )1 1 2 2; ;O X O Xθ θ= , we have 

( ) ( ) ( ) ( )1 1 2 2
1 1 2 2

; ;
; ;

d dh O X h O X
dO X dO X

θ θ
θ θ

=        and it 

follows that ( ) ( )1 1 2 2; ;d dO X O X k
d d

θ θ
θ θ

= . Therefore, 

( )f θΘ  is independent of the transformation. Moreover, 
using the change of variable technique in Equation (1), 
it can be shown that by selecting either θ  or any 
function of θ  leads to equivalent results. 
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APPENDIX B.  
 
 
Prof of the Theorem   Suppose X is a continuous 
random variable with unknown parameters 1 2, , ..., mθ θ θ  
with an independent parameter property. Then we have: 
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 (B.1) 

 
Proof:     The proof is given for the case of two 
unknown parameters. It can be easily extended for the 
cases of more than two unknown parameters. 

For the first parameter of a two dimensional 
parameter vector 1 2[ , ]θ θ=θ , we are to prove the 
following expression 
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By the independent parameters property we have 
( ) ( )

2 1 2| 2 1 2|f θ θ θΘ Θ Θ= ∆ . Then, expression (B.3) can be 
written as: 
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We first prove ( ) ( )
1 11 1f θ θΘ Θ= ∆ . To do this, according to 

lemma 1, ( )
2 2θΘ∆  is independent of transformation and 

( )
1| 1|f θΘX x is obtained uniquely. Hence, the random 

variable that is obtained in this step is unique and 
according to lemma 1, ( )

1 1f θΘ
 is unique and 

independent of transformation.  
Let us introduce two transformations to obtain 
( )

1 1θΘ∆  and ( )
1 1f θΘ . Let ( )1 2; ,XF x θ θ  be the CDF of a 

random variable X with known parameters 1 2,θ θ  and 

( )1
1 2; , ; 0 1YF y yθ θ− ≤ ≤  is the inverse of this function. 

( )1;XF x θ  and ( )1
1; ; 0 1YF y yθ− ≤ ≤  are defined 

similarly. Furthermore, we have: 
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Then, the transformations are defined as:  

( )
( )

( )( )

( )( )

1
1 2

1 2

1

1
1 2

1
1 2

; ',

| , 2
1

; ",

| , 2
1

'
' 1

1
"

"1
1

; ,

; ,

Y

Y

F y

Xx

F y

Xx

d
f x

d
d

f x
d

dx

dx

θ θ

θ θ

θ θ
θ θ

θ θ θ
θ

−

−

Θ Θ= −∞
Θ

Θ
Θ Θ= −∞

∆
=

∆

∫

∫
 (B.5)

 

( )
( )

( )( )

( )( )

1

1

1

1

1
1

'
1

"
1

;

|
1

;

|
1

'
' 1

1
"

"1
1

;

;

Y

Y

F y

Xx

F y

Xx

d
f xf d

df f x
d

dx

dx

θ

θ

θ
θ θ

θ θ
θ

−

−

Θ=−∞
Θ

Θ
Θ=−∞

=
∫

∫
 (B.6) 

Since 2θ s in the numerator and denominator of 
expression (12) are equal, we have: 
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Also, since ( )
2 2θΘ∆  does not depend on 1θ , we have: 
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Note that ( )
1 1θΘ∆  does not depend on 2θ  and by 

integration on 2θ  we have: 
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Therefore, 
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Hence, 
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Thus, 
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In other words, ( ) ( )
1 11f θ θΘ ΘΘ = = ∆ . Now using 

expression (2), we have: 
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Again since ( )
1

θΘ∆ does not depend on 2θ , we have: 
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This concludes the proof. 
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 چکیده
 

  

در این مقاله ابتدا یک روش عمومی جدید براي ساخت فواصل اطمینان براي پارامترهاي یک توزیع احتمال پیوسته توسعه داده 
به عنوان یک کاربرد، فواصل .هدف ارائۀ روشی براي مدلسازي عدم قطعیت موجود در پارامترهاي این توزیعهاست. می شود

این مدل هم داده هاي کامل و هم داده . مینان براي دو پارامتر توزیع وایبول به همراه ناحیۀ اطمینان توام آنها به دست می آیداط
دقت تخمین به دست آمده توسط مدل با دقت تخمین روشهاي موجود با استفاده از روشهاي . هاي سانسور شده می پذیرد

نشان داده  چنینهم. نهادي امیدوار کننده استان می دهد که دقت تخمین روش پیشتحلیل اعتبار نش. عددي مقایسه می شود
می شود که استفادة نامناسب اطلاعات موجود که بر عرض فواصل اطمینان حاصل از روشهاي موجود اثر می گذارد بر میزان 

  .همپوشانی روش پیشنهادي اثرگذار نیست
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