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A B S T R A C T  
   

In this paper, a remedial measure is first proposed to eliminate the effect of autocorrelation in phase ІІ 
monitoring of autocorrelated polynomial profiles, where there is a first order autoregressive (AR(1)) 
relation between the error terms in each profile. Then, a control chart based on the generalized linear 
test (GLT) is proposed to monitor the coefficients of polynomial profiles and an R-chart is used to 
monitor the error variance, the combination of which is called GLT/R chart. The performance of the 
proposed GLT/R chart is evaluated by comparing it to those obtained from prevalent methods 
including multivariate T2, EWMA/R and T2 residual control charts, in terms of the average run length 
(ARL) criterion. Furthermore, an estimator based on the likelihood ratio approach is proposed to 
estimate the change point in the parameters of autocorrelated polynomial profiles. The results of 
extensive simulation experiments show good performance of the proposed estimator. Finally, the 
applicability of the proposed method is illustrated using a real data example. 
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1. INTRODUCTION 1 

 
Sometimes, quality characteristic(s) of a process follows 
a univariate or multivariate distribution and 
consequently, statistical control charts are used to 
monitor them. However, in many situations, the quality 
of a process or a product can be better characterized by 
a relationship between a response and one or more 
independent variables, where this relationship is 
referred to a profile. Many researchers including Stover 
and Brill [1], Kang and Albin [2], Mahmoud and 
Woodall [3], Woodall et al. [4], Wang and Tsung [5], 
and Woodall [6] discussed practical applications of 
profiles. Authors, including Kang and Albin [2], Kim et 
al. [7], Mahmoud et al. [8], Mahmoud and Woodall [3], 
Mestek et al. [9], Stover and Brill [1], Gupta et al. [10], 
Kang and Albin [2], Kim et al. [7], Noorossana et al. 
[11], Zou et al. [12], Niaki et al. [13], and Saghaei et al. 
[14] studied monitoring of simple linear profiles in 
phases I and II. The purpose of the phase І analysis is to 
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evaluate the stability of a process and to estimate 
process parameters while, in phase ІІ analysis, one is 
interested in detecting shifts in the process parameters 
as quickly as possible. In some cases, models that are 
more complicated are needed to represent profiles. 
Kazemzadeh et al. [15] extended three phase І methods 
in polynomial profile monitoring. Zou et al. [16] 
proposed a multivariate exponentially weighted moving 
average (MEWMA) control chart for monitoring 
general linear profiles in phase ІІ. Kazemzadeh et al. 
[17] transformed polynomial regression to an 
orthogonal polynomial regression model and proposed a 
method based on using exponentially weighted moving 
average (EWMA) control charts to monitor the 
parameters of the orthogonal polynomial model in phase 
ІІ. 

In all aforementioned research works, it is assumed 
that the error terms of the models are independent and 
identically distributed (iid) normal random variables. 
However, in some cases these assumptions are violated. 
Noorossana et al. [18] investigated the effect of non-
normality of the error terms on the performance of the 
EWMA/R method proposed by Kang and Albin [2]. 
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Jensen et al. [19] developed a linear mixed model 
(LMM) to account for the autocorrelation within a linear 
profile. Jensen and Brich [20] showed that use of mixed 
models have significant advantages when there is 
autocorrelation within nonlinear regression models. 
Noorossana et al. [21] considered linear profiles and 
modeled autocorrelation between profiles as a first order 
autoregressive AR(1) process. Kazemzadeh et al. [17, 
22] considered polynomial profiles in the presence of 
profile autocorrelation modeled by AR(1).  

Soleimani et al. [23] investigated the effect of within 
profile autocorrelation in simple linear profiles and 
proposed a transformation technique to eliminate the 
effect of autocorrelation. Niaki et al. [13] addressed the 
problem of monitoring autocorrelated polynomial 
profiles and proposed three control schemes including, 
and EWMA/R control charts based on a transformation 
method for monitoring purposes in phase II. 

In this paper, the problem of monitoring 
autocorrelated polynomial profiles is addressed in which 
the relationship between a response and a single 
explanatory variable is defined by a kth order 
polynomial regression, where it is assumed that the 
error terms within each profile are correlated based on a 
first order autoregressive model. Moreover, we assume 
there is no correlation between polynomial profiles. 
Niaki et al. [13] employed the concept of generalized 
linear test to design a control chart for monitoring linear 
regression profiles and applied an R-chart, 
simultaneously, to detect shifts in the error variance. 
Accordingly, we first extend the method of Soleimani et 
al. [23] to autocorrelated polynomial profiles and then 
develop a GLT/R control chart based on the work of 
Niaki et al. [13] to monitor polynomial profiles. In 
addition, three other existing methods that were 
extended to monitor autocorrelated polynomial profiles 
are compared with the GLT/R method by simulation 
studies via the average run length (ARL) criterion. 
Finally, a change point estimator based on the 
likelihood ratio approach is proposed to determine the 
location of a change in the profile. 

The rest of the paper is organized as follows. In the 
next section, the problem formulation as well as 
assumptions is given. The transformation technique and 
application of the general linear test to monitor 
polynomial profiles are presented in section 3. Three 
existing monitoring methods are presented and a change 
point estimator is developed to determine the location of 
a step change in the parameters of the profile in sections 
4 and 5, respectively. The effect of autocorrelation on 
the performance of GLT/R control chart along with the 
performances of the proposed methods is investigated in 
section 6 and 7. In section 8, a real data example is 
provided to illustrate the applicability of the proposed 
method. Finally, the paper is concluded in section 9.  

2. AUTOCORRELATED POLYNOMIAL PROFILE 
MODELING 
 
Considering the jth sample of the process being 
monitored is collected over time for a single explanatory 
variable x , the observations are ( )2 1 2k

i i i ijx ,x ,..., x , y ; i , ,...n=

In other words, the subscript i shows the ith observation 
within each profile, and subscript j shows the jth profile 
collected over time. When the process is in statistical 
control, the autocorrelated polynomial profile is 
modeled as: 

2
0 1 2

1

k
ij i i k i ij

ij ( i ) j ij

y A Ax A x ... A x
a

ε

ε Φε −

= + + + + +

= +  (1) 

where ijε ’s are the correlated error terms, ija ’s are 
independent and identically distributed (iid) normal 
random variables with mean zero and variance 2σ , 

0 1 kA , A ,..., A  are model parameters and 1 1Φ− < <  is the 
autocorrelation coefficient. Moreover, it is assumed that 
x -values are known constants from profile to profile 
and that since phase II profile monitoring is at aimed the 
in-control values of Φ , 0 1 kA , A ,..., A , 2σ  are assumed 
known. 

It can be easily shown that the existing 
autoregressive structure between the error terms, 
defined in Equation (1), leads to autocorrelation 
between observations at different values of x  in each 
profile. It means that, the observations in each profile 
can be expressed by: 

2
0 1 2

k
ij i i k i ijy A Ax A x ... A x ε= + + + + +  

and 
2

1 0 1 1 2 1 1 1
k

( i ) j ( i ) ( i ) k ( i ) ( i ) jy A Ax A x ... A x ε− − − − −= + + + + +  
leading to: 

( )
( )

2
0 1 2

2
1 0 1 1 2 1 1− − − −

− + + + + =

 − + + + + + 

k
ij i i k i

k
( i ) j ( i ) ( i ) k ( i ) ij

y A A x A x ... A x

y A A x A x ... A x aΦ
 (2) 

 
 

3. THE PROPOSED METHOD 
 

In this section, a transformation technique first proposed 
by Soleimani et al. [23] for simple linear profiles is first 
extended for autocorrelated AR(1) polynomial profiles 
to eliminate within-profile autocorrelation. Then, a 
control chart based on the general linear statistical test 
as well as three existing monitoring schemes are derived 
to monitor the coefficients of the transformed 
polynomial regression model. 
 
3. 1. Transformation   In the proposed transformation 
technique, all observations on the response variable are 
transformed via the following equation: 
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1ij ij ( i ) jY Y YΦ −′ = −  (3) 

If observations Yij  and Y(i-1)j in Equation (3) are replaced 
by their equivalents in the regression model (1), a 
polynomial regression model with independent error 
terms is obtained as: 

( ) ( ) ( )
( ) ( )

2 2
0 1 1 2 1

1 1

1

1 2

ij i i i i

k k
k i i ij ( i ) j

Y A A X X A X X ...

A X X ; i , ,...,n

Φ Φ Φ

Φ ε Φε

− −

− −

′ = − + − + − + +

− + − =
 (4) 

that results in 
2

0 1 2
k

ij i i k i ijY A A X A X ... A X a′ ′ ′ ′ ′ ′ ′ ′= + + + + +  (5) 

where 

1ij ij ( i ) jY Y YΦ −′ = −  
2 2 2

1 1 1
k k k

i i i i i i i i iX X X , X X X ,..., X X XΦ Φ Φ− − −′ ′ ′= − = − = −  
and 

( )0 0 1 1 2 21 k kA A ,A A ,A A ,...,A AΦ′ ′ ′ ′= − = = =  
It should be noted that the transformed model contains 
one observation less than the original model. Now, the 
control charts are developed to monitor the parameters 
of the polynomial profiles in Equation (5). This is 
demonstrated in the next subsection. 
 
3. 2. GLT/R Chart     In this method, the general linear 
test is used to monitor the coefficients of the 
transformed polynomial regression model. At first, a 
sample of size n (n>4) is collected from process 
periodically at time j and the regression parameters 

0 1 2 k(A ,A ,A ,...,A )  are estimated by the least squares 
method. Then, the F-statistic given in Equation (6) is 
employed in order to monitor the coefficients: 

( )

( )

( )

1 22
0 1 2

1

1
2

0 1 2
1

1
2

0 1 2
1

1
1

1
1

*
j

n
k

ij i i k i
i
n

k
ij i i k i

i

n
k

ij i i k i
i

F

Y A A X A X ... A X

k ˆ ˆ ˆ ˆY A A X A X ... A X

ˆ ˆ ˆ ˆY A A X A X ... A X
n k

−

=

−

=

−

=

=

 ′ ′ ′ ′ ′ ′ ′ ′− − − − − − 
  ÷
 +

′ ′ ′ ′ ′ ′ ′ ′− − − − − 
 

 ′ ′ ′ ′ ′ ′ ′ ′− − − − − − −  

∑

∑

∑

 
(6) 

All the coefficients of the polynomial profile in 
Equation (5) are simultaneously in-control when 

 ( )1 R F Fj j j

*
j ; d f d f ; d f

F F
α− −

<
, 

where  j jF Rdf  and df  are the degrees of freedom for the 
jth full and reduced (under the null hypothesis that the 
profile is in-control) models, respectively. 

Note that by the aforementioned approach only the 
process mean is monitored. Therefore, an R-chart may 
be used simultaneously in order to detect shifts in the 
error variance. The R control chart statistic denoted by  

Rj is calculated by Rj=max(eij)-min(eij), in which the 
residuals of the transformed model (eij) is obtained by: 

( )2
0 1 2 2 3k

ij ij i i k ie y A AX A X ... A X ; i , ,...,n′ ′ ′ ′ ′ ′ ′ ′= − + + + + =  (7) 

The lower and upper control limits for the R control 
chart are: 

( ) ( )2 3 2 3andLCL d Ld UCL d Ldσ σ= − = +
 (8) 

respectively, where L(>0) is chosen to give a specified 
in-control ARL, d2 and d3 are constants that depend on 
the sample size. 

 
 

4. EXISTING MONITORING SCHEMES 
 

In order to compare the performances of the proposed 
monitoring scheme, in this section, three existing 
approaches including T2, T2

residual, and EWMA/R control 
chart are extended to monitor the transformed 
polynomial profile. 

 
4. 1. T2 Chart     The first method is a modified version 
of the T2 control chart proposed by Kang and Albin [2]. 
To reduce the effect of existing autocorrelation between 
the error terms in each profile, all the parameters of the 

original model, ( )0 1 2 kA , A ,A ,..., A , are replaced by their 
transformed ones. This method is used when the number 
of parameters (k) is not very large. The modified T2 
statistic is obtained by: 

( ) ( )
( ) ( )

2 1
1 2 1 2

1 2 1 2

T

j oj j j kj oj j j kj

oj j j kj oj j j kj

ˆ ˆ ˆ ˆT A ,A , A ,...,A A ,A , A ,...,A

ˆ ˆ ˆ ˆA , A , A ,..., A A , A ,A ,..., A

Σ − ′ ′ ′ ′ ′ ′ ′ ′= − 
 ′ ′ ′ ′ ′ ′ ′ ′− 

 (9) 

where 

( ) 12 TX XΣ σ
− =     (10) 

 
4. 2. Residual-based T2 Chart    In the second 
method, the residuals of the transformed model is used, 
where the residuals are obtained as: 

( )2
0 1 2 2 3k

ij ij i i k ie y A AX A X ... A X ; i , ,...,n′ ′ ′ ′ ′ ′ ′ ′= − + + + + =  (11) 

The T2 statistics and the upper control limit for the 
residual-based T2 control chart, T2

residual thereafter, are 
determined using the following equations, respectively: 

( ) ( )12 0 0
j

T

j j je
T e eΣ −= − −  (12) 

2
1; nU C L αχ −=  (13) 

where, 
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 ( )2 3

T

j j j n je e ,e , ..., e= , 
2

je
IΣ σ= , 

 I, is the identity matrix, 0 is the zero vector, n is the 

number of x values and 
2

1; nαχ −  is the 100(1-α) 
percentile of the chi-square distribution with n-1 
degrees of freedom. 

 
4. 3. EWMA/R Chart       An EWMA control chart in 
combination with an R-chart is employed as a third 
method to monitor not only the average value of the 
residuals, but also to detect shifts in the process 
variance. These charts are the same as the ones 
proposed by Kang and Albin [2], where the residuals are 
obtained using Equation (11) and the average value of 
the residuals for the jth profile are obtained by: 

( )
2

1
n

j ij
i

e e n
=

= −∑  

The EWMA control chart statistic, denoted by zj for 
1 2j , ,...,=    is given by 

( ) 11j j jz e zθ θ −= + −  (14) 

where ( )0 1, ,θ θ< ≤  is a smoothing constant and 0 0z = . 
The lower and the upper control limits for the EWMA 
control chart are: 

( ) ( )
( ) ( )

2 1

2 1

LCL L n

UCL L n

σ θ θ

σ θ θ

= − − −

= − −
 (15) 

respectively, where L(>0)  is selected to give a specified 
in-control ARL. The R control chart statistic in this 
method is similar to the statistic introduced in the 
GLT/R method. 

 

 
 

5. CHANGE POINT ESTIMATOR 
 
Following an out-of-control signal from each of the 
proposed control charts, process engineers initiate a 
search to identify the root causes of variation. 
Knowledge on the exact time of the change would 
simplify the search to identify and remove the root 
causes. Therefore, in this section, we develop a change 
point estimator to determine the location of a step 
change in phase II monitoring of autocorrelated 
polynomial profiles. The logarithm of the likelihood 
function for in-control process is: 

( )

( )

0
0

22
0 0 1 0 2 0 0

2
1 2 0

11
2

1
2 = =

 
= −  

 
 

′ ′ ′ ′ ′ ′ ′ ′− − − − −
− ∑ ∑

kS n ij i i k i

j i

l S n ln

y A A X A X ... A X

σ π

σ

 
(16) 

Assuming a change occurring at time t with a signal 
receiving at time S, the logarithm of the likelihood 
function will be: 

( )
( )

( )( )
( )

22
00 10 20 0

2
0 01 2

22
01 11 21 1

2
1 11 2

1 11
22

1 11
22

kt n ij i i k i
a

j i

kS n ij i i k i

j t i

y A A X A X ... A X
l t n ln

y A A X A X ... A X
S t n ln

σ π σ

σ π σ

= =

= + =

′ ′ ′ ′ ′ ′ ′ ′− − − − − 
= − −  

 

′ ′ ′ ′ ′ ′ ′ ′− − − − − 
+ − − −   

∑∑

∑ ∑

 
(17) 

where ( )01 11 21 k1A ,A ,A ,...,A   and 
2

1σ  are unknown out-of-
control parameters of the process and should be 
estimated. The maximum likelihood estimator of these 
parameters is given in the following equations: 

( ) 1
1 t ,S t ,S t ,S t ,S

ˆ ' '
−

=A X X X Y  (18) 

( )
( )( )

22
01 11 21 1

1 22
1 1

S n
k

ij i i k i
j t i

y A A X A X ... A X
ˆ

S t n
σ = + =

′ ′ ′ ′ ′ ′ ′ ′− − − − −

=
− −

∑ ∑
 

(19) 

in which t ,SX  and t ,SY  are ( ) ( ) ( )1 1S t n k− − × +  and 
( )( )1 1S t n− − ×  matrices, respectively. Now, the likelihood 
ratio statistic is: 

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

0

0 1

22
00 10 20 0

2
1 2 0

2 1

1 12 1 2 1
2 2

= + =

= − − = − − −

   
− − − + − −   

  
  

′ ′ ′ ′ ′ ′ ′ ′− − − − −
+ ∑ ∑

t ,S a

kS n
ij i i k i

j t i

lr l l S t n

S t n ln S t n ln

y A A X A X ... A X

σ π σ π

σ

 

(20) 

Finally, the estimator is calculated based on the 
following equation: 

( ) 1t ,St̂ arg max lr ; t S= ≤ <  (21) 

The performances of the proposed control charts and 
the change point estimator are evaluated in the 
following sections. 

 
 

6. SIMULATION EXPERIMENTS 
 
In this section, the performance of the GLT/R control 
chart for monitoring polynomial profiles when within-
profile autocorrelation is present and the proposed 
transformation method is not utilized, is first evaluated. 
Then, applying the proposed transformation technique 
in order to eliminate within profile autocorrelations, the 
performance of the GLT/R control chart is compared to 
the performance of the T2, T2

residual , EWMA/R methods 
under both weak and strong autocorrelation coefficients 
of 0.1 and 0.9, respectively. The following example 
used by Kazemzadeh et al. [17, 22, 24] is used in this 
study: 

2

1

3 2i j i i i j

ij ( i ) j ij

y x x
a

ε

ε Φ ε −

= + + +

= +  (22) 
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where i ja  follows a normal distribution with mean 
zero and variance one and x-values are 1, 2, 3, 4, 5, 6, 7, 
8, 9 and 10. In the simulation experiments, the effect of 
different autocorrelation coefficients Φ on the 
performances of the GLT/R control chart under 
different shifts in the intercept λ, in the second 
parameter β , in the third parameter δ  and in error 
standard deviation γ  based on the in-control ARL 
criterion is studied. The results of 10,000 simulation 
runs are summarized in Table 1. In this table, , ,λ β δ  
and γ   are measured in multiples and the in-control 
ARL is considered 200. 

As shown in Table 1, when the transformation 
technique is not used, the in-control ARLs of the GLT/R 
control chart decrease in the presence of autocorrelation 
within profiles, leading to its poor performance. 
Moreover, this effect is more considerable when the 
autocorrelation coefficient gets larger. 

When the proposed transformation method is used 
however, the performances of T2, T2

residual , EWMA/R 
and GLT/R methods are then compared employing the 
same example introduced earlier in Equation (22). Two 
autocorrelation coefficients Φ=0.1  (weak) and Φ=0.9   
(strong) are considered where all control-charting 
methods are designed to have an overall in-control ARL 
of 200. To achieve this, the smoothing constant θ  in the 
EWMA control chart is set 0.2. Furthermore, in the 
EWMA/R and GLT/R control chart, we set the values of 
L equal to 2.973 and 3.08, respectively for both Φ=0.1  
and Φ=0.9 autocorrelation coefficients. For T2 and 
T2

residual charts, UCLs are set 12.84 and 23.59, 
respectively. Finally, for GLT/R chart UCL is set 
12.916. We used 10,000 simulation runs to study the 
out-of-control ARL under different shifts in the 
intercept, in the second, and in the third parameters 
along with the error standard deviation. The results are 
summarized in Tables 2  to 5. 

The results in Table 2 show that under the intercept 
shifts from A0 to A0+λα in both weak and strong 
autocorrelations (Φ=0.1 and Φ=0.9), while the 
EWMA/R chart uniformly performs better than the 
other three, the T2

residual chart has the worst performance. 
Further, it can be seen that the out-of-control ARLs for 
the strong autocorrelation are larger than the ones in the 
weak autocorrelation. 

The results in Table 3 show that under the shifts in 
the second parameter from A1   to A1+βσ , the GLT/R 
chart performs uniformly better than the other three 
charts in weak  autocorrelation case, while for strong 
autocorrelation, EWMA/R performs better than the 
other methods. However, the T2 chart has the worst 
performance. 

As shown in Table 4, under the weak 
autocorrelation, GLT/R and EWMA/R methods are 

roughly the same. However, under the strong 
autocorrelation, EWMA/R method performs uniformly 
better than the other methods. T2 method dose not 
perform well in this situation either. 

    
Finally, the results in Table 5 show that under the 

standard deviation shifts from σ to σγ in both weak and 
strong autocorrelation situations, the T2

residual control 
chart performs uniformly better than the other three 
charts. In addition, similar performances are obtained 
for both weak and strong autocorrelations. This means 
that the autocorrelation coefficient does not affect the 
out-of-control ARL under a standard deviation shift. 

 
 

7. PERFORMANCE EVALUATION 
 
The model in Equation (22) is used once more to 
evaluate the performance of the proposed method to 
estimate a step-change point in the parameters of the 
model. Applying the EWMA/R control chart to monitor 
the process and to detect a shift, the true change point is 
simulated to occur at t = 25. When a shift is detected by 
the control chart, the estimator in Equation (21) is used 
to estimate the change point. The averages (AVE) and 
the standard deviations (STD) of the estimates of a step 
change in the second parameter and the standard 
deviation of the model are summarized in Table 6, 
based on 10,000 simulation runs. Also, the precision 
performances of the estimated change points are 
reported in Table 6, where the probabilities 

  ( )ˆ 0− =P t t ,  ( )ˆ 1− ≤P t t , ( )ˆ 2− ≤P t t  ,  ( )ˆ 3− ≤P t t , 
( )ˆ 4− ≤P t t   and ( )ˆ 5− ≤P t t   are denoted by P0, P1, P2, 

P3, P4 and P5, respectively. 
According to the results in Table 6, the proposed 

change point estimator accurately and precisely 
estimates the change point for different values of shifts 
in the parameters of the model. However, the 
performance of the proposed change point estimator 
deteriorates as the value of the autocorrelation 
coefficient increases. In other words, the estimator 
displays a better performance for weak rather than 
strong autocorrelation. 

 
 

8.  A CASE STUDY 
 
In this section, the application of the proposed method is 
illustrated by a real data example adopted from Amiri et 
al. [25]. In this example, the relationship between torque 
produced by an automobile engine and its speed is a key 
quality characteristic which should be monitored over 
time. According to Amiri et al. [25], this relationship 
can be modeled by a second order polynomial profile in 
which there is an AR(1) autocorrelation structure within 
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each profile. Considering a total of 26 engines, each 
engine is first run at different speed values of 1500, 
2000, 2500, 2660, 2800, 2940, 3500, 4000, 4500, 5000, 
5225, 5500, 5775, and 6000 revolutions per minute 

(PRM) and then the corresponding torque values for 
each engine are measured. 
  

 
 
 
TABLE 1. The effect of autocorrelation coefficient on in-control ARL of  GLT/R control chart under different shifts in intercept, 
second parameter, third parameter and error standard deviation without utilizing the proposed transformation method 

λ  (Shift in the intercept) 

Autocorrelation  

coefficients (Φ ) 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 200.1 197.6 185.2 159.2 124.7 95.6 69.2 48.5 34.7 24.3 18.0 

0.1  181.3 178.8 150.6 123.9 95.9 72.5 51.2 36.5 26.3 19.1 14.1 

0.3 81.3 75.4 66.7 53.1 41.3 32.9 23.8 18.3 13.7 10.7 8.6 

0.5 24.5 23.9 21.9 18.6 15.7 13.3 11.1 9.1 7.4 6.2 5.1 

0.7 7.2 7.1 6.7 6.4 5.8 5.5 4.9 4.5 4.1 3.6 3.3 

0.9 2.6 2.5 2.6 2.5 2.5 2.3 2.3 2.2 2.1 2.1 2.0 

β  (Shift in the second parameter) 

Autocorrelation  

coefficients (Φ ) 

  0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 

0 200  195.4 191.8 190.9 170.2 149.3 130.4 107.6 89.3 71.5 57.9 

0.1 182.3 178.2 171.2 161.1 140.4 121.1 101.2 83.7 67.0 53.8 43.6 

0.3 79.8 80.8 74.2 68.2 60.1 52.4 45.1 38.6 31.9 26.9 22.1 

0.5 24.6 24.3 23.6 22.4 20.6 18.6 16.8 14.9 13.1 11.7 10.2 

0.7 7.1 7.0 7.0 6.7 6.5 6.3 5.8 5.5 5.2 4.9 4.5 

0.9 2.6  2.6 2.5 2.4 2.4 2.3 2.3 2.2 2.2 2.1 2.1 

 δ (shift in the third parameter) 

Autocorrelation  

coefficients (Φ ) 

  0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0  200.5 199.2 188.4 166.1 135.7 108.3 79.9 58.1 41.5 30.5 21.9 

0.1 185.1 177.2 156.8 136.3 111.1 83.2 60.9 44.1 32.2 23.4 17.3 

0.3 81.5 78.6 69.1 58.7 48.1 37.4 29.3 22.7 17.1 13.2 10.5 

0.5 24.6 24.4 22.5 20.1 17.3 14.8 12.7 10.5 8.7 7.2 5.9 

0.7 7.2 7.1 6.9 6.5 6.2 5.6 5.2 4.6 4.2 3.7 3.3 

0.9 2.6 2.6 2.5 2.5 2.4 2.4 2.3 2.2 2.1 2.1 1.9 

γ  (shift in the standard deviation) 

Autocorrelation  

coefficients (Φ ) 

  1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

0 200.7 95.3 40.0 19.5 10.7 4.7 3.5 2.8 2.3 2.3 2.1 

0.1 186.7 108.1 50.2 24.3 13.2 8.1 5.6 4.1 3.2 2.5 2.1 

0.3 80.1 71.4 47.8 28.2 16.6 10.4 6.9 5.1 3.8 3.1 2.5 

0.5 24.0 23.7 22.2 18.1 13.8 9.8 7.4 5.4 4.3 3.4 2.8 

0.7 7.1 7.1 6.9 6.7 6.2 5.5 4.8 4.1 3.5 3.1 2.6 

0.9 2.7 2.6 2.6 2.6 2.5 2.5 2.3 2.3 2.1 2.1 1.9 
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TABLE 2. Out-of-control ARL comparisons under shifts from 0A to 0A λσ+  with 0 1.Φ =  and 0 9.Φ =  

0 1.Φ =  λ   

Methods 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
2

residualT   198.5 188.5 152.9 112.8 78.5 53.2 34.7 23.1 14.9 10.3 6.9 

2T  200 173.7 122.3 76.2 44.6 26.9 16.6 10.4 7.8 4.7  3.5 

EWMA/R  200 112.8 38.7 17.4 10.1 6.9 5.2 4.2 3.6 3.1 2.7 
GLT/R 199.4 162.3 102.4 56.8 29.7 16.2 9.5 6.1 3.8 2.8 2.2 

0 9.Φ =  λ  

Methods 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
2

residualT  199.8 197.6 199.3 197.6 198.6 196.6 195.1 190.2 188.4 186.5 184.1 

2T  200.1 198.4 196.7 196.2 195.2 193.0 187.3 183.0 180.6 172.2 169.8 

EWMA/R 200 200 192.1 187.1 179.2 164.5 152.0 137.6 125.2 112.5 102.1 
GLT/R 200.5 192.2 199.2 200.5 191.4 191.7 186.8 173.7 163.6 160.8 157.6 
 
 
 

TABLE 3. Out-of-control ARL comparisons under shifts from 1A to 1A βσ+  with 0 1.Φ = and 0 9.Φ =  
0 1.Φ =   β   

Methods 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 

 2
residualT  200.3  164.1 103.1 53.4 26.7 13.2 7.1 4.2 2.6 1.8 1.4 

 2T   200.1 190.6 158.9 122.2 90.4 64.1 45.5 32.2 22.8 16.7 12.4 

EWMA/R  200.7  63.4 16.7 7.9 5.1 3.8 3.0 2.5 2.5 2.0 1.8 
GLT/R 198.4 137.2 65.1 27.4 12.7 6.5 3.7 2.4 1.7 1.3 1.1 

 0 9.Φ =  β  

Methods 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 

 2
residualT   197.8 197.1 186.7 179.6 165.2 149.3 131.8 114.3 99.4 86.3 73.1 

 2T   198.4 196.5 192.2 180.4 169.5 152.9 141.1 126.8 112.8 98.5 85.1 

EWMA/R  197.3 181.90 133.8 85.3 55.1 35.7 25.1 18.5 14.1 11.3 9.4 
GLT/R 198.2 192.2 181.2 168.9 148.4 127.9 106.2 94.8 74.3 58.9 52.4 
 
 

TABLE 4. Out-of-control ARL comparisons under shifts from 2A to 2A δσ+  with 0 1.Φ = and 0 9.Φ =  
0 1.Φ =   δ   

Methods 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

 2
residualT   200.7 43.6 5.2 1.5 1.1 1.1 1.0 1.0 1.0 1.0 1.0 

 2T   199.2 174.6 127.5 80.1 49.7 29.4 18.5 11.9 7.7 5.4 3.9 

EWMA/R   200.3 8.4 3.1 2.1 1.5 1.1 1.1 1.0 1.0 1.0 1.0 
GLT/R 198.9 28.1 3.7 1.3 1.1 1.0 1.0 1.0 1.0 1.0 1.0 

 0 9.Φ =  δ  

Methods 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

 2
residualT   197.1 159.1 92.7 45.2 20.8 10.1 5.3 3.1 2.1 1.5 1.2 

 2T   200.4 191.6 167.8 138.4 109.7 84.2 63.6 47.6 35.7 27.4  20.3  

EWMA/R  200.2 60.6 15.7 7.5 4.9 3.6 2.9 2.4 2.1 1.9 1.8 
GLT/R 197.4 155.8 71.9 33.5 16.5 8.8 4.9 3.1 2.1 1.6 1.3 
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TABLE 5. Out-of-control ARL comparisons under standard deviation shifts from σ to γσ  with 0 1.Φ =  and 0 9.Φ =  
0 1.Φ =   γ   

Methods 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 
 
T2

residual
 200.5  47.2 16.6 8.1 4.7 3.2 2.4 1.9 1.6 1.4 1.3 

 2T  197.4  72.1 32.4 17.9 11.5 8.0 5.9 4.6 3.7 3.2 2.7 

EWMA/R   199.3 61.7 24.7 12.4 7.2 4.7 3.4 2.6 2.1 1.8 1.6 
GLT/R 196.6 175.2 125.2 76.1 41.1 23.7 14.2 9.3 6.7 4.9 3.9 

 0 9.Φ =  γ  

Methods 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

T2
residual

   199.3 47.1 17.2 7.9 4.6 3.1 2.3 1.9 1.6 1.4 1.3 

 2T   200.6 70.4 32.8 18.1 11.3 7.9 5.8 4.6 3.7 3.2 2.7 

EWMA/R  199.4 61.2 24.8 7.1 4.7 3.4 2.6 2.2 2.2 1.8 1.6 
GLT/R 198.3 174.2 125.5 75.3 41.2 23.6 14.4 9.4 6.7 5.1 3.9 
 
 
TABLE 6. The average, standard deviation and precision performances of the change point estimator under shifts in the second 
parameter and standard deviation of the model with 0 1.Φ =  and 0 9.Φ =  
shifts from 

2A to δσ+2A  with 0 1.Φ =  

δ  AVE STD P0 P1 P2 P3 P4 P5 

0.01 24.9 3.9 0.38 0.61 0.73 0.81 0.86 0.89 

0.02 24.9 1.2 0.78 0.93 0.97 0.98 0.99 0.99 

0.04 25.0 0.1 0.98 0.99 1.00 1.00 1.00 1.00 

0.06 25.0 0.02 0.99 1.00 1.00 1.00 1.00 1.00 

0.08 25.0 0.01 0.99 1.00 1.00 1.00 1.00 1.00 

shifts from 
2A to δσ+2A  with 0 9.Φ =  

δ  AVE STD P0 P1 P2 P3 P4 P5 

0.01 35.9 21.9 0.06 0.14 0.21 0.26 0.31 0.36 

0.02 26.2 6.9 0.19 0.38 0.49 0.58 0.65 0.71 

0.04 24.7 2.9 0.52 0.76 0.86 0.91 0.94 0.96 

0.06 24.8 1.4 0.77 0.93 0.97 0.98 0.99 0.99 

0.08 24.9 0.7 0.90 0.98 0.99 0.99 1.00 1.00 

shifts from σ to γσ  with 0 1.Φ =  

γ  AVE STD P0 P1 P2 P3 P4 P5 

1.2 27.6 9.1 0.15 0.31 0.42 0.51 0.57 0.63 

1.4 24.9 4.2 0.37 0.61 0.74 0.82 0.86 0.89 

1.6 24.6 3.1 0.55 0.78 0.87 0.92 0.94 0.95 

1.8 24.6 2.5 0.67 0.87 0.93 0.95 0.96 0.97 

2 24.6 2.5 0.76 0.91 0.95 0.96 0.97 0.98 

shifts from σ to γσ  with 0 9.Φ =  

γ  AVE STD P0 P1 P2 P3 P4 P5 

1.2 27.6 9.1 0.15 0.31 0.41 0.50 0.57 0.62 

1.4 25.1 3.9 0.38 0.62 0.75 0.82 0.87 0.90 

1.6 24.6 3.2 0.55 0.78 0.87 0.91 0.94 0.95 

1.8 24.6 2.7 0.68 0.87 0.92 0.95 0.96 0.97 

2 24.7 2.2 0.76 0.91 0.95 0.96 0.97 0.98 
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Figure 1. GLT control chart for real data example 

 

 
Figure 2. R control chart for real data example 

 
 
Based on a retrospective analysis of a set of 16 

profiles as historical data, the following model is 
obtained for relationship between the response and 
explanatory variable: 

2111 1977 0 006115 0 0000049ij i i ijy . . x . x ε= − − +  (23) 

in which the standard deviation and correlation 
coefficient are 2.184 and 0.75, respectively. Applying 
the proposed transformation technique, this model can 
be used to construct the GLT/R control chart for phase 
ΙΙ studies. Based on 10,000 simulation runs, the 
parameter of the R-chart and UCL of the GLT chart are 
set equal to L=15.4 and UCL=8.0807 under Φ=0.75 in 
order to obtain an overall in-control ARL of 200. The 
values of d2 and d3  are 3.407 and 0.763, respectively. 
Now, the remaining 10 profiles are used to monitor the 
underlying process in phase II. The results are shown in 
Figures 1 and 2. 
 
 
9. CONCLUSION 
 
In this paper, the effect of within-profile autocorrelation 
on the performance of a GLT/R chart designed to 
monitor polynomial profiles under independency of the 
error terms was first investigated. The results showed 
that autocorrelation leads to poor performance of the 
chart. Then, a transformation technique was employed 

for polynomial profiles. Finally, the performances of T2, 
T2

residual , EWMA/R and GLT/R control charts using the 
transformation technique were compared in terms of 
out-of-control ARL. The results showed that the GLT/R 
scheme performs better than the other charts under the 
shifts in the second regression parameter. However, the 
T2

residual method had better performance in comparison 
with the other three methods under the shifts in the 
standard deviation. Furthermore, a change point 
estimator was proposed to estimate the location of a step 
change in the parameters of autocorrelated polynomial 
profiles. The results of a performance evaluation study 
showed that the proposed method estimates the change 
point accurately and precisely for various values of 
shifts. In addition, a real data example was used to 
illustrate the applicability of the proposed method . 

Applying the linear mixed model (LMM) and 
comparing it with the transformation method proposed 
in this paper would be an interesting subject which is 
recommended for future research. 
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 چکیده
 

  

پایش پروفایلهاي چند جمله اي پیشنهاد می شود که ارتباط  2در این مقاله، ابتدا روشی براي حذف اثر خودهمبستگی در فاز 
سپس یک نمودار کنترل بر اساس آزمون عمومی خطی . بیان می شود AR(1)بین عناصر خطا در هر پروفایل توسط یک مدل 

آنگاه، عملکرد نمودار . براي پایش واریانس خطا پیشنهاد می شود Rبراي پایش ضرایب پروفایل به همراه یک نمودار 
شبیه سازي باقیمانده ها بر اساس متوسط طول دنباله به طریق  T2، و T2 ،EWMA/Rپیشنهادي با عملکرد روشهاي مطرح 

در پایان، یک تخمینگر نسبت درستنمایی براي تخمین نقطۀ تغییر در پارامترهاي پروفایهاي خود همبسته به . مقایسه می شود
در پایان، کاربردي بودن روش . نتایج یک مطالعۀ شبیه سازي حاکی از عملکرد خوب تخمینگر پیشنهادي است. دست می آید

 اي واقعی نشان داده می شودپیشنهادي با استفاده از داده ه
  

doi: 10.5829/idosi.ije.2013.26.09c.01 
 

 
 

 


