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A B S T R A C T  

   

In the realm of multi-axial ratcheting, a step by step mathematical approach is developed for the 
parameter determination of decomposed kinematic hardening rules. For this purpose, key 
characteristics are mathematically derived for these hardening rules under multi-axial loading. Then, 
these characteristics are utilized to develop expressio ns which relate the loading history to the 
accumulated plastic strain. Unlike the calibration techniques available in the literature, this new 
method does not include trail and error analyses to fit the simulation results to the experimental data. 
The proposed method is illustrated through a numerical example. The results not only demonstrate the 
effectiveness of the approach, but also indicate that simple hardening rules, if calibrated accordingly, 
can be much more efficient than what has been shown before. 
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NOMENCLATURE   

σ  Stress tensor 2J  Second deviatoric stress invariant 

s  Deviatoric stress tensor oR  Radius of yield surface 

α  Backstress tensor yσ
 Yield stress 

a  Deviatoric backstress tensor dλ  Plastic multiplier 

pdε  Plastic strain increment tensor ,  B γ  Kinematic hardening parameters 

pde  Deviatoric plastic strain increment tensor δ  Multi-axial hardening parameter 

dp  Effective plastic strain increment d  Distance of deviatoric stress path to the origin 

()f  Yield function ad  Distance of deviatoric backstress path to the origin 

sd  Distance between the deviatoric stress and deviatoric backstress paths   

 
1. INTRODUCTION1  
 
The accumulation of plastic strain during loading cycles 
is referred to as ratcheting. Major experimental effort 
has been made to gain a better understanding of this 
phenomenon. Experiments conducted by Moyar and 
Sinclair [1], Benham [2], Freudenthal and Ronay [3], 
                                                        
* Corresponding Author Email: mrpajand@yahoo.com (M. Rezaiee-
Pajand) 

Ruiz [4], Yoshida et al. [5], Benallal et al. [6], Hassan et 
al. [7], Hassan and Kyriakides [8-10], Yoshida [11], 
Delobelle et al. [12], Corona et al. [13], Portier et al. 
[14], Bocher et al. [15], Aubin et al. [16], Kang et al. 
[17] and Hassan et al. [18] demonstrate the ratcheting 
characteristics in various circumstances. 

Experiments can be categorized as uniaxial or 
biaxial. Uniaxial experiments are either stress or strain 
controlled while biaxial experiments usually incorporate 
stress in one direction (axial tension or internal 
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pressure) and strain in another direction (shear strain or 
axial strain). The rate at which plastic strain is 
accumulated can be correlated to the parameters of the 
loading history. In uniaxial loading the rate of ratcheting 
will only depend on the peak magnitudes of the mean 
and amplitude stresses and strains [8]. However, in 
biaxial loading the situation is more complex, since the 
loading path also becomes pertinent to the matter. An 
extensive set of biaxial experiments was conducted by 
Hassan and Kyriakides [10], where they investigated the 
effect of different mean and amplitude stresses on the 
rate of ratcheting. Aubin et al. [16] also carried out 
biaxial experiments. However, their idea was to keep 
constant values of equivalent mean and amplitude 
stresses while altering the loading path. Later on, 
Hassan et al. [18] pursued the same idea where they 
discussed the effect of non-propotional loading on 
biaxial ratcheting. 

Parallel to experiments, extensive efforts have also 
been made in the analytical field to simulate the cyclic 
response of materials. Prager [19] introduced the linear 
kinematic hardening rule which could model the 
Bauscinger effect but failed to predict ratcheting. 
Afterwards, two main modifications were made to this 
hardening rule. Besseling [20] and Mroz [21] suggested 
the concept of a multisurface model where each surface 
evolved according to a linear hardening rule. This idea 
was further pursued by Dafalias and Popov [22-24] and 
Krieg [25] which introduced a two-surface model and 
later by the bounding surface theory of Dafalias [26]. 
These hardening rules are referred to as multilinear 
models, since they all resemble a piece-wise linear 
stress-strain curve. Although the multilinear models 
were an improvement to Prager’s linear hardening rule, 
but they still failed to simulate ratcheting, since they 
produced closed hysteresis curves during cyclic loading. 

Adding the so called “recovery term” was the other 
modification made to Prager's linear hardening rule. 
This added term is meant to take the fading memory of 
the plastic strain path into account. Therefore, by 
producing a nonlinear evolution law, make plastic strain 
accumulation possible. Armstrong and Frederick [27] 
were first to use a recovery term in their model. Then, a 
wide range of kinematic hardening rules have been 
presented using the idea of a strain hardening and a 
recovery term in the evolution law. Another major 
improvement made to nonlinear kinematic hardening 
rules was introduced by Chaboche and his co-workers 
[28, 29]. They decomposed the backstress into several 
components, where each of the components individually 
evolved according to an AF hardening rule. The concept 
of decomposing the backstress gave the advantage of 
reproducing the cyclic stress-strain curve more 
accurately. Afterwards, many researchers have proposed 
more complex kinematic hardening rules using the idea 
of a decomposed backstress and various forms of the 
recovery term. Chaboche [30] and Ohno and Wang [31] 

used a modified version of the original AF equation in 
their decomposed models. Furthermore, in order to 
improve the high cycle and multiaxial ratcheting 
simulation, modifications have been made to the 
Chaboche and Ohno-Wang models by McDowell [32], 
Jiang and Sehitoglu [33], Voyiadjis and 
Basuroychowdhury [34],  AbdelKarim and Ohno [35], 
Bari and Hassan [36], Chen and Jiao [37], Chen et al. 
[38] and others. A detailed review of various plasticity 
models used for ratcheting simulation can be found in 
[39]. 

An important problem regarding ratcheting 
simulation is to effectively determine the material 
parameters of the hardening rule. Bari and Hassan [40] 
determined a number of the material constants by 
dividing the uniaxial strain controlled hysteresis curve 
into segments and using the properties of each segment. 
However, in order to produce a good fit to the uniaxial 
hysteresis curve, some of the parameters were 
eventually determined by trial and error. Koo and Lee 
[41] also used a similar approach in their work. Chen 
and Jiao [37] determined some of the material constants 
by utilizing the properties of the monotonic uniaxial 
tensile curve, while the other parameters were obtained 
by a trial and error approach. Hassan et al. [18] 
evaluated the parameters using four different 
experiments. However, a trial and error method was 
eventually used to fit the numerical simulation to the 
experimental data. The problem of a trial and error 
solution is that its time consuming. Numerous analyses 
have to be carried out in order to determine reasonable 
results. Bearing this in mind, Rezaiee-Pajand and Sinaie 
[42] managed to develop a complete systematic 
approach to effectively determine the material constants 
of Chaboche's hardening rule. Their work did not 
involve any trial and error. In addition, their work 
indicated that if the hardening parameters are effectively 
obtained by direct use of ratcheting data, the hardening 
rule of Chaboche can be much more effective than what 
had been demonstrated before. 

It has been shown that if the parameters of a model 
are determined using a specific type of experiment, the 
model will fail to effectively simulate other 
experiments. Moreover, many models are basically 
developed by uniaxial hysteresis loops, while others are 
based on biaxial behavior. According to Bari and 
Hassan [36] and Chen et al. [38], no model is yet 
general enough to simulate both uniaxial and multiaxial 
ratcheting responses effectively. Despite this argument, 
Bari and Hassan [36] used the idea of Delobelle et al. 
[12] to introduce a unique hardening parameter into 
their model. The significance of this parameter is that its 
value has no effect on the uniaxial response of the 
model. Therefore, it can be independently calibrated for 
multiaxial ratcheting simulation. Ever since, many 
researchers have introduced this multiaxial ratcheting 
parameter into their hardening models. For example, 
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Chen and Jiao [37] used an evolutionary form of this 
parameter. No mathematical procedure of evaluating 
this parameter is presented in the literature and current 
works solely rely on trial and error. In order to 
overcome the time consuming process of trial and error 
analyses, an effective approach of obtaining this 
parameter is developed here. In this paper, the 
calibration process developed in [42] is followed to 
obtain this systematic approach 
 
 
2. EXPERIMENTAL DATA 
 
The biaxial experimental data of [7] and [13] conducted 
on CS 1026  are used to confirm the validity of the 
proposed methods in this paper. The loading histories 
are illustrated in Figure 1, while the loading values for 
each loading history are given in Tables 1 and 2. It 
should be mentioned here that the calibration process 
will be developed according to the second set of loading 
values for the axial strain cycle with constant internal 
pressure loading history (test-2), while the bow-tie 
loading history is used to evaluate the accuracy of the 
results. 
 
 
3. DESCRIPTION OF HARDENING PLASTICITY 
MODELS 
 
The von Mises yield surface can be written as: 

2( ) ( )( ) 2 of J R= − − = ⋅ = =s s a s a s s  (1) 

where s  and a  are the deviatoric stress and backstress 
tensors, respectively. In addition, −s a  is denoted by s  
for mathematical convenience, whereby 

22J = ⋅s s . The 
value of oR  indicates the radius of the yield surface in 
the deviatoric plane. Therefore, if only kinematic 
hardening is implemented, its value will be constant and 
equal to 2 / 3o yR σ= . In addition, the following will also 
be valid for the gradient of the yield surface: 

22 o

f f
RJ

∂ ∂
= = =

∂ ∂
s s

s s

 
(2) 

Since the value of 
22J  is constant during plastic flow 

(equal to 2
oR ), the following can be obtained by 

differentiation: 
 
 

  
(a) (b) 

Figure 1. Biaxial loading histories. (a) axial strain cycle with 
constant internal pressure (b) bow-tie cycle. 

 

TABLE 1. Loading values for the axial strain cycle with 
constant internal pressure loading history (case I) 
Test No. 1 2 3 4 5 6 

1mσ ( MPa ) 66.5 66.5 66.5 33.6 50.5 100.3 

2cε ( % ) 0.40 0.50 0.65 0.50 0.50 0.50 

 
 
 
TABLE 2. Loading values for the bow-tie loading history 
(case II) 

Test No. 7 8 

1mσ  ( MPa ) 66.5 100.3 

 1aσ  ( MPa ) 16.3 16.3 

2cε  ( % ) 0.50 0.50 

 
 
 

2(2 ) ( ) ( ) 0d J d d d d= ⋅ = ⋅ = ⋅ − =s s s s s s a  (3) 

This result can also be obtained by utilizing the 
consistency condition, which ensures that the stress state 
will always remain on the yield surface during plastic 
flow. 

An associated flow rule is assumed for the model, 
which indicates that the direction of the plastic strain 
increment is in the direction of the gradient of the yield 
surface: 

p

o

fd d d
R

λ λ
∂

= =
∂

se
s

 
(4) 

The evolution of the backstress is governed by a 
kinematic hardening rule. Various forms of the 
hardening rule exist in the literature [39]. However, only 
the ones concerning the development of the present 
work will be presented here. Although these hardening 
rules are usually described in the general stress and 
strain spaces, but, since a von Mises yield surface is 
used, all of the relations can also be rewritten in terms 
of deviatoric components. 
 
3. 1. The Armstrong-Frederick Nonlinear 
Kinematic Hardening Rule    Armstrong and 
Frederick [27] proposed their nonlinear rule in the 
following form: 

2
3

2 2
3 3

p

p p

d Bd dp

dp d d d

γ

λ

= −

= =

α ε α

ε ε

 
(6) 

It can be seen that a combination of s  and a  is used to 
define the direction of the backstress increment. 
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3. 2. The Burlet-Cailletaud Nonlinear Hardening 
Rule      Burlet and Cailletaud [43] changed the 
recovery term of the AF hardening rule and proposed 
their rule in the form of: 

2 ( )
3

/
/

2 2
3 3

p

o

p p

d Bd dp

f
f R

dp d d d

γ

λ

= − ⋅

∂ ∂
= =
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= =

α ε α n n

σ sn
σ

ε ε

 

(7) 

where, n  is in the direction of the gradient of the yield 
surface. Since an associated flow rule is assumed for the 
model, pdε  and n  will attain the same direction and 
therefore, the backstress will evolve in the direction of 
s . 
 
3. 3. The Nonlinear Hardening Rule Presented By 
Bari and Hassan     Bari and Hassan [36] used a linear 
combination of the Armstrong-Frederick and the Burlet-
Cailletaud recovery terms to propose the following 
evolution law: 

∑= idd αα  

[ ]dpdBd iiii
p

ii nnααεα ))(1(
3
2 ⋅−+−= δδγ  (9) 

where, δ  is a proportionality coefficient designating the 
influence of each recovery term. 
 
 
4. STABILIZATION OF HARDENING RULES 
 
The term stabilized is used hereafter to define the state 
which the hardening rule reaches, and which afterwards, 
the backstress tends to translate on a fixed direction. 
The stabilizing characteristics of hardening rules will 
play an important role in the calibration process which 
will be discussed later on. 

For a von Mises plasticity model with hardening, a 
proportional loading path is assumed in the following 
form: 

1 2 3 1 1 2 2 3 3( , , ) ( , , )At C A t C A t Cσ σ σ = + + +  (10) 

Translating this loading path into deviatoric 
components, it can be rewritten in the form: 

),,(),,( 332211321 EtDEtDEtDsss +++=  
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(11) 

It can be proven that for a single component 
hardening rule of Armstrong-Frederick or Burlet-
Cailletaud, with any given state of stress and backstress, 
if deviatoric stress components evolve according to 

Equation (11), the backstress will tend to evolve in the 
same direction. Therefore, the following will be valid: 

1 2 3lim ( , , )
t

d d D D D dt
→∞

= =a s  
(12) 

Proof to this relation is given in the appendix. The 
significance of the proof is that it is independent of the 
initial state of stress and backstress. Therefore, it will be 
effectively valid during load reversals, as long as the 
stress variation remains on the same path. 

In order to gain more insight into the stabilization 
characteristic of single component hardening rules, the 
loading history of Figure 1a with the loading values of 
test-2 is considered. It should be noted that while the 
loading in one direction is a constant stress, it is a 
varying strain in the other direction. Applying this strain 
would imply the presence of an induced stress which 
varies through time. 

The response of different hardening rules is 
presented in the deviatoric plane (Figure 2). This figure 
illustrates the trace of the backstress during the first few 
cycles of this loading history. As can be seen in this 
figure, both Armstrong-Frederick and Burlet-Cailletaud 
hardening rules become stabilized during these cycles. 
However, it takes more cycles for the BC model to 
stabilize than the AF model. It should be noted that the 
following hardening parameters are used for both 
models: 

62,750 MPa , 552.5B γ= =  

In addition, given in this figure, it is the response of 
a single component hardening rule in the form of 
Equation (9), where the same hardening parameters are 
used and the proportionality coefficient is set to 0.5δ = . 
It can be seen that this hardening rule does not 
completely stabilize. However, its variation is bound 
between the other two hardening rules. In order to take 
advantage of these observations, the linear equation of 
the stress and stabilized backstress paths are required. 
For this purpose, a rectangular coordinate system ( , )ξ ζ  
is attached to the origin of the deviatoric plane 
coordinate system 1 2 3( , , )s s s′ ′ ′  of Figure 2 and the 
translating relations are acquired. This new coordinate 
system is illustrated in Figure 3. 
 
 

 
Figure 2. Stabilization of hardening rules and traces of the 
backstress. 
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Figure 3. The ( , )ξ ζ  coordinate system in the deviatoric 
plane 
 
 

 
Figure 4. Stress and backstress states and stabilization 
parameters. 
 
 

Knowing that the 1 2 3( , , )s s s′ ′ ′  axes are actually the 
projections of the 1 2 3( , , )s s s  axes onto the deviatoric 
plane, one can write 2 / 3i is s′ = . Furthermore, by 
calculating the ( , )ξ ζ  components of 

1 2 3( , , )s s s′ ′ ′  and using 
Equation (11), the following relations are obtained: 

[ ]

1 1 1

3 2 2 3 2 3

3 3 ( )
2 2
2 2( ) ( ) ( )

2 2

s D t E

s s D D t E E

ξ

ζ


= = +


 = − = + + +

 
(13) 

At this point, the distance between the origin and the 
stress path can be calculated (Figure 3). This distance 
will be denoted by d  in the succeeding text. Referring 
to the general hardening rule of Equation (9), one can 
say that the direction which the backstress translates is a 
combination of the vectors s  (or pde ) and a . 
Therefore, the following relation will be valid: 

[ ]1 1 2( )d G G G
dλ

′= − ⋅ −
a s a s a  (14) 

where, 

1 1 22

2 2 (1 ) 2,  ,  ( )
3 3 3o o

BG G G
R R

δ γ
δ γ

−′= = =
 

(15) 

The vectors s  and a  are depicted in Figure 4 for an 
arbitrary point. Furthermore, demonstrated in this figure 

is the stress path, the backstress path and the vector sn  
which is a unit vector, normal to the stress path. 

Equation (12) has only been proven for a hardening 
rule which is in the form of Equations (6) or (7) and is 
not valid for the combination of these hardening rules 
defined by Equation (9). However, the numerical results 
for a symmetrical strain-controlled cyclic loading imply 
that for the hardening rule of Equation (9), two 
assumptions can be made: 

− Assumption 1. The trace of the backstress is a 
straight line parallel to the stress path. 

− Assumption 2. The effective value of ( )⋅s a  is equal 
to 0.5 2 / 3( / )a s od d B Rγ + 

. 

where, ad  is the distance between the stabilized 
backstress path and the origin, and sd  is the distance 
between the stress path and the backstress path. The 
reason to the first assumption is evident from Figure 2. 
However, the second assumption is a conclusion to the 
first one and its rationale is provided in the appendix. 
While these assumptions are introduced to simplify 
future mathematical manipulations, numerical examples 
have shown that they are reasonable and yield good 
results. 

Using the abovementioned assumptions and the fact 
that sn  is normal to the stress path, the following 
relations will be valid after stabilization: 

( )

( ) 0)/(3/2)(5.0

)(
0])/(3/25.0

[
0

0

1

21

1

21

=+−′−

−−→
=+′−

−⋅→
=⋅→

=⋅

osss

ss

osa

s

s

s

RBddddG

ddGdG
RBddG

GG
d

d

γ

γ s

asn
an

sn

 

(16) 

where, 
a s sd d d= + = ⋅n s  is the distance between the 

stress path and the origin, 
a sd = ⋅n a  is the distance 

between the stabilized path of the backstress and the 
origin, and 

s sd = ⋅n s  is the distance between the stress 
path and the stabilized backstress path (Figure 4). 

Another property noticed from these results is that 
after the backstress stabilizes, the direction of the vector 
s  remains the same. This will be true until the loading 
is reversed, which from that point, the direction of s  
will be fixed in another direction (the direction of s  
during reversed loadings is symmetrical with respect to 

sn ). This is an important fact, since the plastic strain 
increment ( pdε ) is in the direction of s  and therefore, 
its direction will also be fixed. In order to find the 
direction of s  after stabilization, the vector sn  is used. 
Knowing that 

22 oJ R= =s , the following equation can 
be used: 
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cos

cos

s s s s

s a
s

o o

d
d d d
R R

θ

θ

⋅ = =

−
→ = =

n s n s
 (17) 

where, sθ  would be the angle between s  and sn . The 
above equation will give two opposite values for sθ , 
which indicate the symmetry of s  with respect to sn , 
during reversed loadings. After calculating the angle 

pθ , 
between the stress path and the ξ  axis (or actually the 

1s′  axis) using Equation (13), the following relations can 
be obtained for the angle of s  with each of the 
deviatoric plane axes 1 2 3( , , )s s s′ ′ ′ : 

1 1

2 3

1

2

3

3tan

( )
2

( )
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s p

D
D D
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π
θ θ θ
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θ θ θ

π
θ θ θ

−=
+

 = − −
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 = − −

 = − −

 

(18) 

By introducing a single component of Equation (9) 
into Equation (3) and taking advantage of Equation (4), 
the following can be obtained for dλ : 

2 2( )
3 3o

dd
BR

λ
γ

⋅
=

− ⋅

s s

s α

 

(19) 

Knowing that sn  is normal to ds , the angle between 
s  and ds  is reckoned to be equal to / 2 sπ θ− , therefore: 

cos
2

2 2( )
3 3

s

o

d
d

BR

π θ
λ

γ

 ⋅ − 
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− ⋅

s s

s α

 
(20) 

Finally, using Equation (11), the above equation can 
be rewritten as: 

2 2 2
1 2 3 sin

2 ( ) 2
3 3

s

o

D D D
d dt

B
R

θ
λ

γ

+ +
=

⋅
−

s α

 

(21) 

For a strain controlled cyclic loading, this equation 
cannot be directly used, since it’s based on knowing the 
variations of stress rather than strain. However, due to 
the fact that the loading is cyclic and symmetrical, 
Equation (21) has a significant outcome. While the 
second assumption made before states that the effective 
value of ( )⋅s a  is equal to 0.5 2 / 3( / )a s od d B Rγ + 

, 

referring to the proof provided for it in the appendix, it 
can be shown that the average value of ( )⋅s a  during a 
complete cycle of loading is equal to a sd d . Therefore, 
after integration of Equation (21), the following can be 
written: 

2 2 2
1 2 3 sin

2 2
3 3

s

t a s

o

D D D
d t

d dB
R

θ
λ λ

γ∆

+ +
∆ = ≈ ∆

−
∫

 

(22) 

For commonly used values of B  and γ  and 
reasonable loading histories, the second term in the 
denominator of the above equation will be small 
compared to the first term. Therefore, Equation (22) can 
be approximated with: 

2 2 2
1 2 33 sin

2
sD D D

t
B

θ
λ

+ +
∆ ≈ ∆  (23) 

This estimation has proven to be quite accurate. The 
equation indicates that λ∆  has a linear relation with 
sin sθ , and that it will also attain the same value for the 
positive and negative phases of a cycle. 
 
 
5. CALIBRATION OF δ  FOR A SINGLE 
COMPONENT HARDENING RULE 
 
The process of calibrating the constant δ  will be 
discussed in this section. This method will be based on 
the loading history illustrated in Figure 1a, where a 
constant stress is present in one direction ( 1σ ) and a 
symmetrical cyclic axial strain ( 2cε ) is applied in the 
other direction. This loading history is the simplest 
biaxial loading history that can be carried out in 
experimental studies. Therefore, it will be a good case 
for the calibration of the hardening parameters. 
Experimental results regarding this loading case 
conducted on various materials can be found in the 
literature. The well-known experimental data reported 
in [7] and [13] on the biaxial behavior of CS1026  will 
be used in the present work. It should also be mentioned 
that in the proceeding text, it is assumed that the values 
of B  and γ  have already been calibrated for uniaxial 
ratcheting. 

Since the accumulated plastic strain in the direction 
of the constant stress is reported for each cycle, the first 
principle component of pε  will be needed. Referring to 
Equation (4), the following equation can be written: 

1
1 1 1cosp p

o

sd de d d
R

ε λ λ θ= = =  
(24) 

where, 1θ  is the angle between s  and the 1s′  axis. Based 
on Equation (18), the above equation will take the 
following form: 

1 1 cos ( )
2

      sin( )

p p
s p

s p

d de d

d

π
ε λ θ θ

λ θ θ

 = = − −  
= +

 
(25) 

After introducing Equation (23) into the above 
equation and then integrating for the positive and 
negative phases of loading, the following equation will 
be obtained: 
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(26) 

By adding the plastic strain increment of the two 
phases and performing some mathematical 
manipulation, the total plastic strain increment of one 
cycle is obtained as follows: 

2 2 2
1 2 3

1

3
sin( ) sin(2 )

2
p

p s

D D D
e t

B
θ θ

+ +
∆ = ∆  (27) 

This equation cannot be directly used for a strain-
controlled loading. However, it implies that the plastic 
strain increment has a linear relation with 
sin( )sin(2 )p sθ θ , which will be used for the calibration 
process. Equations (15) and (16) indicate that for a 
Burlet-Cailletaud hardening rule where 0δ = , the value 
of sd  will be equal to zero. Introducing this into 
Equation (17) will lead to / 2sθ π= ± . Therefore, by 
utilizing Equation (27), it can be shown that for 0δ = , 
the total plastic strain increment during one cycle is 

1( ) 0p
BCe∆ = . For the Armstrong-Frederick hardening 

rule ( 1δ = ), by knowing the values of B  and γ , the 
value of 

1( )p
AFe∆  can be numerically determined. 

Considering these values for 
1( )p

BCe∆  and 
1( )p

AFe∆ , and 
making use of Equations (17) and (27), the following 
relation can be written for an arbitrary value of 0 1δ< < : 

1 1

sin(2 ) sin(2 )

p p

s sAF

e e

δ
θ θ

   ∆ ∆
=   

   

 
(28) 

In this equation, ( )s AFθ  is evaluated using Equations 
(16) and (17), 

1( )p
AFe∆  is numerically determined from a 

single cycle plastic analysis and 
1( )pe δ∆  is extracted from 

experimental data. Knowing these values, Equation (28) 
can be used to obtain ( )s δθ . Introducing this value into 
Equation (17), the value of ( )sd δ

 can be determined. 
Finally, using Equations (15) and (16), δ  will be 
attainable. Based on this process, a step by step 
approach to the calibration procedure is presented 
below. As an example for this section, a single 
component hardening rule in the form of Equation (9) 
will be calibrated using the biaxial response of CS1026  
reported in [7]. The mathematical process will be 
according to the abovementioned algorithm. Six 
different sets of 

1 2( , )m cσ ε  for the loading history of 
Figure 1a which are covered in the experiments are 
given in Table 1. The calibrating process will be carried 
out for Test-2. It is also assumed that the values of  B  
and  γ   have   already   been   calibrated   for  uniaxial  
 

TABLE 3. Step by step procedure for the calibration process. 

1. Obtain B  and γ  for a single-component AF hardening rule.  

2. Solve Equation (16) with 1δ =  for ( )s AFd . 

3. Calculate ( )s AFθ  using Equation (17) 

4. Calculate 1( )p
AFe∆  numerically. 

5. Evaluate 1( )pe δ∆  from experimental data. 

6. Calculate ( )s δθ  using Equation (28). 

7. Calculate ( )sd δ
 using Equation (17). 

8. Solve Equations (15) and (16) for δ . 

 
 
ratcheting simulation, using the method proposed in 
[42] for an Armstrong-Frederick model. Since this has 
already been done in the mentioned article for CS1026 , 
the process will not be repeated here and the result, 
which is the following values, will be used. 

=181,300 MPa , 0.302 , 186.2 MPa
62,750 MPa , 552.5

yE
B

ν σ
γ

= =
= =

 

For the loading history of Test-2 the values of iD  
and iE  defined in Equation (11) are determined as 
below: 

1 1

2 2

3 3

0.333 (MPa/s) , 44.333 (MPa)
0.667 , 22.167
0.333 , 22.167

D E
D E
D E

= − = +
= + = −
= − = −

 

Using these values, the distance of the deviatoric stress 
path from the origin is calculated to be 47.0 MPad = . 
For a single component AF hardening rule with the 
abovementioned values for the hardening parameters, 
the values of 1( )p

AFε∆ , ( )s AFd  and ( )s AFθ  are determined 
after stabilization, leading to: 

1( ) 0.229 (%)
( ) 29.4 (MPa)

( ) 78.86 1.376 (rad)

p
AF

s AF

s AF

d
ε

θ

∆ =
=

= =o

 

In addition, from the results given by Hassan et al. 
(1992), the overall value of the plastic strain increment 
during one cycle of this loading history is evaluated to 
be equal to 

1 0.055 (%)pε∆ = . This will be the value of 
plastic strain increment that δ  should be determined 
according to. 

The abovementioned results obtained from the AF 
hardening rule and the value of 1( ) 0.06 (%)p

δε∆ =  are 
introduced into Equation (28) and the equation is solved 
for ( )s δθ . The result is introduced into Equation (17) to 
obtain ( )sd δ

. Finally, by introducing this value of ( )sd δ
 

into Equation (16) and using Equation (15), the 
resulting equation  
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Figure 5. Ratcheting predictions using different values of δ  
 
 

 
(a) 
 

 
(b) 

 

 
(c) 

Figure 6. Comparison of ratcheting predictions using the 
single-component hardening model with experimental data 
from [7] and [13]. (a,b) axial strain cycle with constant 
internal pressure. (c) bow-tie cycle. 

can be solved to determine δ . The results of this 
procedure are presented below: 
( ) 87.18 1.522 (rad)
( ) 7.47 (MPa)

0.060

s

sd
δ

δ

θ

δ

= =
=

=

o

 

Figure 5 illustrates the results obtained for a single 
component hardening rule using three values of δ . The 
analysis is based on the loading history of Figure 1a 
with the loading values of test-2 depicted in Table 1. 
This figure shows the effect of δ  on the ratcheting 
response of the model. 

Figures 6a and 6b illustrate the response of a single 
component hardening rule with 0.06δ = , compared to 
the experimental data resulting from the axial strain 
cycle with constant internal pressure loading history 
given in Figure 1a. Figure 6c compares the analytical 
results of the bow-tie loading history (Figure 1b) to 
experimental data. 
 
 
6. CALIBRATION OF δ  FOR A MULTI-
COMPONENT HARDENING RULE 
 
The calibration procedure developed in [42] is based on 
a sequential method of adding backstress components to 
the hardening rule and determining the hardening 
parameters in such a way that the new model improves 
the previous one. Therefore, constructing a multi-
component hardening rule (N3-L1) based on their 
procedure will not affect the main characteristics of the 
previous single component model (AF), but will only 
eliminate its deficiencies (mainly in the uniaxial 
response). According to this, it would be reasonable to 
apply the same value of δ  obtained in the previous 
section, to the multi-component model as well. Since 
the parameters of a four-component hardening rule have 
already been determined for CS1026  in [42], the 
process will not be repeated here and the following 
values, adopted from their results, will be used: 

1 1

2 2

3 3

4

=181,300 MPa , 0.302 , 186.2 MPa
56,330 MPa , 680.9
8710 MPa , 841.7
1100 MPa , 35.5
1100 MPa

with 0.06

yE
B
B
B
B

ν σ
γ
γ
γ

δ

= =
= =
= =
= =
=

=

 

Figures 7a and b illustrate the response of the multi-
component hardening rule with 0.06δ = , compared to 
the experimental data resulting from the axial strain 
cycle with constant internal pressure loading history 
given in Figure 1a. Figures 7c and d show the 
predictions obtained in [36] for comparison. They also 
used a four-component hardening rule to simulate the 
same experiments. Figure 8a compares the analytical 
results of the bow-tie loading history (Figure 1b) to 
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experimental data using the hardening parameters 
obtained in the present work. Figure 8b shows the 
predictions obtained by Bari and Hassan (2002) for the 
same experiment, using a four-component hardening 
rule. 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Comparison of ratcheting predictions using a four-
component hardening model with experimental data from [7]. 
(a, b) Simulation using the hardening parameters obtained in 
this paper. (c, d) Simulation using the hardening parameters 
obtained in [36]. 

 

 
(a) 

 
(b) 

Figure 8. Comparison of ratcheting predictions using a four-
component hardening model with experimental data from 
[13]. (a, b) Simulation using the hardening parameters 
obtained in this paper. 
 
 
7. CONCLUSION 
 
A systematic approach is developed to determine the 
multi-axial hardening parameter δ  used in multi-axial 
ratcheting simulation. This is achieved by taking 
advantage of key characteristics of kinematic hardening 
models during cyclic loading. Mathematical proof is 
provided for these characteristics. While simplifying 
assumptions are made to lay out the mathematical 
groundwork of the method, numerical analyses have 
shown that the assumptions do not affect the efficiency 
of the solution.  

The present work is completely consistent with the 
calibration technique previously presented by the 
authors [42] for uniaxial ratcheting simulation. Put 
together, these methods provide a clear-cut and effective 
algorithm to calibrate hardening parameters for multi-
axial ratcheting. The significance of this algorithm is 
that unlike current parameter determination techniques, 
it does not involve trial and error to produce acceptable 
results. Numerical examples have been carried out using 
the experimental data of [7] and [13]. The results are 
compared to the ones obtained by Bari and Hassan [36] 
which also used a four-component hardening rule to 
simulate the same experiments. These examples 
demonstrate the effectiveness of the method. In 
addition, the results indicate that multi-component 
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hardening rules can be much more efficient in multi-
axial ratcheting prediction that what has been shown 
before, if they are calibrated using this technique. 
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APPENDIX A 
 
 
A. 1. Proof to Equation (12) 
 
In the following sections, mathematical proof is 
provided for Equation (12). This is achieved 
independently for the Burlet-Cailletaud model 
(Equation (7)) and the Armstrong-Frederick model 
(Equation (6)). 
 
A. 1. 1. Stabilization of the Burlet-Cailletaud 
Hardening Rule   Using the general relation given in 
Equation (3), the following can be obtained: 
( ) ( ) ( ) 0d d d d⋅ − ⋅ = ⋅ − ⋅ =s s s a s s s s s a s  (A.1) 

For the Burlet-Cailletaud hardening rule (or even 
Prager’s hardening rule) where the backstress evolves in 
the direction of the plastic strain increment, the vectors 

of da  and s  will be in the same direction. Therefore, 
( ) ( )d d⋅ = ⋅s a s s s a . Hence, Equation (A.1) can be 
rewritten as: 

2

( ) ( ) 0
( )

d d
dd

⋅ − ⋅ =
⋅→ =

s s s s s a
s s sa

s

 
(A.2) 

which gives the direction of the backstress evolution. 
Considering Figure 4, the following can be written for 
the angle between the vectors of ds  and s : 

( ) cos df
d

θ
⋅

= =
s ss
s s

 
(A.3) 

where,  denotes the magnitude of a vector. Since the 
direction of the deviatoric stress increments is assumed 
to be constant (Equation (11)), this angle will only be a 
function of s . Reminding that the size of yield surface 
is assumed to be constant, s  will not change in 
magnitude but only in direction. A differential change in 
s  will result in: 

( )( ) ( )

( )               ( ) ( )

ff d f d

d d d d df f
d d

∂
+ = +

∂
⋅ − ⋅

= + = +

ss s s s
s

s s s a ss s
s s s s

 
(A.4) 

By introducing the relation given for da  in Equation 
(A.2) into the above equation, the following can be 
obtained: 

3

2 2

3

2

( )( ) ( )

( ) ( )( )               ( )

( cos )
               ( )

               ( ) (1 cos )

d d df d f
d

d d d df
d

d d
f

d

d
f

θ

θ

− ⋅+ = +

⋅ − ⋅ ⋅
= +

−
= +

= + −

s a ss s s
s s

s s s s s ss
s s

s s s
s

s s
s

s
s

 

(A.5) 

which indicates that the value of ( )f s  will increase due 
to the changes of s . This implies the fact that for any 
given state of stress and backstress, the angle between 
ds  and s  will decrease, when the deviatoric stress state 
varies according to Equation (11). Since for the Burlet-
Cailletaud hardening rule, da  is in the direction of s , as 
the angle between ds  and s  approaches zero, the 
following can be deduced: 

1 2 3lim 0 lim ( , , )
t t

d d D D D dtθ
→∞ →∞

= → = =a s  (A.6) 

 
 
A. 1. 2. Stabilization of the Armstrong-Frederick 
Hardening Rule     The proof of Equation (12) for the 
Armstrong-Frederick hardening rule is quite different 
than for the Burlet-Cailletaud hardening rule. Using the 
associated flow rule assumption of Equation (4), it can 
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be shown that 2 / 3dp dλ= . Therefore, Equation (6) 
will reduce to: 

2 2
3 3o

d B d
R

γ λ
 

= −  
 

sa a
 

(A.7) 

After introducing the above equation into Equation (3), 
one can write: 

2 2( ) 0
3 3o

d d d B d
R

γ λ
  

⋅ − = ⋅ − − =      

ss s a s s a  
(A.8) 

With further mathematical manipulation, the above 
equation can be solved for dλ , leading to the following 
equation: 

2 2( )
3 3o

dd
BR

λ
γ

⋅=
− ⋅

s s

s α

 

(A.9) 

Replacing dλ  in Equation (A.7) with the above 
equation results in: 

2 2( )
3 3

2 2( )
3 3

o

o

d B
R

da
BR

γ

γ

 
⋅ − 

 =
− ⋅

ss s α

s α

 
(A.10) 

Replacing a  with s - s  leads to: 

2

2 2( ) ( )
3 3

2 2( )
3 3

o

o o

d B
R

da
BR R

γ

γ

 
⋅ − − 

 =
− ⋅ −

ss s s s

s s

 
(A.11) 

Knowing that s  is a tensor with a limited magnitude, if 
the components of the deviatoric stress tensor ( s ) tend 
to increase according to Equation (11), the following 
can be obtained: 

1 2 3 1 2 3

( )lim lim
( )

lim ( , , ) ( , , )

t t

t

dd

D t D t D t D D D t

→∞ →∞

→∞

⋅
=

⋅
= =

s s sa
s s

s

 
(A.12) 

Which using 1 2 3( , , )d D D D dt=s , the following can be 
written: 

[ ]
[ ]

1 2 3

1 2 3

1 2 3

( , , )
lim lim lim

( , , )
          ( , , )

t t t

D D D dt
d dt

D D D t t
D D D dt d

→∞ →∞ →∞

⋅  = =  ⋅  
= =

s s sa
s

s

 
(A.13) 

 
A. 2. Rationale to the Second Assumption   
Considering a single component hardening rule in the 
form of Equation (9), it can be understood that when 

0d =a , the vectors s  and a  will be in the same 
direction. The vector n  defined in Equation (9) will be 
used to denote this direction. Therefore: 

λγ

λδγγδ

δγδ

dB

dB

dpdpBdd p
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(A.14) 

For the magnitude of da  to become equal to zero, the 
term inside the bracket must be equal to zero (during 
plastic flow, 0dλ ≠ ). This leads to the limiting 
magnitude of a , as follows: 

m ax

2
3

B
γ

=a  (A.15) 

After the hardening rule becomes stabilized, the 
minimum value of ( )⋅a s  will correspond to the state 
indicated in Figure A1 and will be equal to s ad d . On the 
other hand, the maximum value of ( )⋅a s  will 
correspond to the other state indicated in the figure, and 
will be equal to 

maxs a . If an effective value is to be 
assumed between these two states, the following 
equation will be reasonable: 

[ ]min max
1( ) ( ) ( )
2
1 2                 
2 3

effective

s a o
Bd d R
γ

⋅ = ⋅ + ⋅

 
= + 

 

a s a s a s  
(A.16) 

However, it should be also mentioned that for a 
symmetrical cyclic loading, the average (not the 
effective) value of ( )⋅a s  will be equal to s ad d . This is 
due to the fact that the components of a  and s , which 
are parallel to the stress path, change directions in 
different phases of a cycle. This leads to positive and 
negative values of their product, which cancel each 
other during the cycle. Hence, the only components that 
produce an average value, will be the ones normal to the 
stress path, which their product is always equal to s ad d . 
 
 

 
Figure A 1. Minimum and maximum states of ( )⋅a s . 
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 چکیده
 

  

شـوندگی   سـخت  ون هـاي هاي قـان  عامل یافتنگام به گام براي ه ي یک شیو ،اي چند محوري سازي چرخه با هدف شبیه
، سپس .پرداخته خواهد شدشوندگی  سختهاي ن وهاي قان ویژگی نخست، به ،براي رسیدن به این هدف. پیشنهاد می شود

بر . می آیند دسته ب مومسانبارگذاري و میزان کرنش  ه يهاي صریحی بین تاریخچ رابطه می روند و کاره ب ها این ویژگی
مثـال عـددي   اه کارنو با حـل  کارآمدي این ر. خطا نداردبه فرآیند آزمون وپیشنهادي نیازي  نف عمول،هاي م خلاف روش

 ،شوندگی به طور کارآمدي انتخاب شوند سختهاي  گویاي این است که اگر عاملیجه هاي عددي نت. می شودنشان داده 
  .اي چند محوري خواهند داشت سازي خزش چرخه براي شبیه زیاديشوندگی ساده نیز توانایی  سخت ون هايقان
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