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A B S T R A C T  

   

In this paper, we consider the problem of blood vessel segmentation in retinal images. After enhancing 
the retinal image we use green channel of images for segmentation as it provides better discrimination 
between vessels and background. We consider the negative of retinal green channel image as a 
topographical surface and extract ridge points on this surface. The points with this property are located 
on the centerline of vessels. In presence of noise and non-uniform illumination, the extracted ridge 
points appear as separated points which consist parts of vessel centerline. In order to connect separated 
ridge points and extending them for thin vessel extraction, we introduce a bank of directional filters to 
determine proper direction for extending the ridge end points. The ridge end points grow to provide 
link between separated parts of centerline using the introduced procedure. The result of experiment on 
images in the DRIVE database shows the proposed method outperforms the existing methods. 
Performance of the proposed method was evaluated based on accuracy, false positive and false 
negative criteria. 

doi: 10.5829/idosi.ije.2012.25.04b.07 
 

 
1. INTRODUCTION1 
 
Automated blood vessel segmentation in retinal images 
is an applicable task for diagnosing many eye diseases. 
This can help a specialist for fast and accurate analysis 
of vessels from eye image. There are several reasons 
which make the automatic vessel detection in retinal 
images difficult. First, a considerable part of vessel 
network in retinal image is constructed from thin vessels 
with no significant difference between their intensity of 
vessels and background parts of the image.  In the 
presence of imaging noise the segmentation of thin 
vessel is even more difficult. Second, as the background 
of retinal image has a non-uniform illumination, the 
modeling of image background is a challenge. This 
problem becomes more serious at optic disk and fovea 
regions (see Figure 1). The reported methods in the 
literature for the addressed problem can be divided into 
two main categories. The methods based on classifying 
the image pixels in feature space are placed in the first 
category. In [1], a method for extracting features from 
retinal images using Gabor filter was proposed. Using 
four features from the filter bank and the intensity of 
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green channel a feature vector with five features is 
extracted. The probability density function of pixels on 
the vessels and non-vessels in feature space is estimated 
using a Gaussian Mixture Model in the training phase. 
In the test stage, each pixel of the retinal image is 
classified into one of two categories: vessel and non - 
vessel. The classification is performed by a Bayesian 
classifier based on the estimated density functions for 
the two classes [19]. The authors in [2] used two 
features extracted from perpendicular line operators to 
characterize a pixel on the vessel. The green channel 
intensity of the retinal image besides these two features 
pixels on the vessels and background are described. 
Using a set of vessel and non-vessel pixels in training 
stage a Support Vector Machine (SVM) classifier is set. 
In the same manner for each pixel of retinal test image 
the feature vector is constructed and used for 
classification. The methods in the second category 
attempt to model vessels in fundus images. Using image 
processing tools, the retinal image is analyzed to find 
regions which properly match the model of vessel.  

In this paper, we present an algorithm for retinal 
blood vessel segmentation using topographic model of 
vessels. Our method has the following three main 
phases: 1) image enhancement to increase the contrast 
of retinal image specially for thin vessels and also in 
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optic disk and fovea regions;  2) extraction of vessels 
centerline; 3) construction of vessels using multiscale 
morphological filtering and region growing approach. 

The main problem in previous segmentation 
methods is capability of detection of thin vessels and 
vessels in low contrast regions. As stated by other 
researchers except for [3], preprocessing has an 
important role in vessel segmentation. We propose to 
enhance retinal image using following three steps. In the 
first step a Power Law transformation, known as 
Gamma transformation, is used to stretch low intensity 
levels [17]. Then, we use Gabor filter bank to highlight 
patterns with vascular structure. At the end, a nonlinear 
transformation is used to intensify thin vessel values 
respect to its neighbors' values. This process is based on 
modification of the extracted Wavelet coefficients from 
retinal image [7]. 

Considering 2D retinal image as a topographic 
surface, ridges are natural indicators of vessels. By 
linking detected ridge points, the centerline of vessels 
where the image intensity is maxima can be detected. 
Points on the extracted centerlines are used as seed 
points for an iterative region growing process. On each 
step, the algorithm uses one level of the multiscale 
representation of the vascular structure based on 
morphological approach with variable sized structuring 
elements in order to reconstruction of vessel's width. 
Figure 2 illustrates a block diagram of our proposed 
scheme. 
 
 

 
Figure 1. Disk and Fovea regions 

 
 

 
Figure 2. Block diagram of the proposed vessels 
segmentation method. 

The rest of the paper organized as follows. In section 
II, the proposed method is described. In Section III, the 
experimental results are presented and the performance 
of proposed method is compared to a number of recent 
methods. We finally draw the paper to conclusion in 
Section IV. 
 
 
2. PROPOSED METHOD 
 
2. 1. Selection of the Monochromatic Image 
Representation     In [3], the use of different color 
systems for segmenting vessels in retinal images has 
been reported. The green component of the original 
RGB image, the luminance channel of NTSC color 
space, and the ∗a component of the **baL∗  system [11] 
are compared.  In this comparison [3], it has been stated 
that the green component shows a higher 
vessel/background contrast than the luminance channel 
for both DRIVE [13] and STARE [14] databases. The 
vessels in the component derived from the 

**baL∗ representation clearly stand out from the 
background in STARE but for DRIVE did not present 
enough quality for a vascular segmentation task. Based 
on this result in this work the inverted green channel is 
selected for vessel segmentation process. The inversion 
of the green channel results observing vessels brighter 
than background. 

 
2. 2. Image Preprocessing    Preprocessing is an 
important step in vessel segmentation, mainly of the 
closeness of the intensity of image for thin vessels and 
background. Our endeavor is to achieve a significant 
distinction between vessels and non-vessels using 
several stages.  

In order to enhance the contrast of 
vessel/background in the thin blood vessel, first a 
gamma correction is applied on the inverted green 
channel of the retinal image [17], [4]. Considering the 
inverted green channel of the retinal image as fG  
correction for pixel ),( ji  is performed as follows: 

r
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where, MINfG  and MAXfG  are minimum and maximum 
intensity of image, fG and r is correction parameter. The 
intensified image is denoted by fC . 

Since retinal blood vessels can appear in any 
direction, a directional filter has been chosen to extract 
vessel patterns. 2-D Gabor wavelet has directional 
selectiveness capability of detecting oriented features 
and fine tuning to specific frequencies [5, 6]. This latter 
property is especially important to filter out the 
background noise of the fundus image. The 2-D Gabor 
wavelet is defined as: 
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elongation in any desired direction. The Gabor wavelet 
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where, 0k
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complex exponential. The Continuous wavelet 
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where, θ,bψ,,ψC
v

 and a denote the normalizing 

constant, analyzing wavelet, the displacement vector, 
the rotation angle, and the dilation parameter (also 
known as scale), respectively. ∗ψ denotes the complex 
conjugate ofψ . The wavelet transform can be easily 
implemented using the fast Fourier transform algorithm 
and the equivalent Fourier definition of the wavelet 
transform [5]. 
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where, the hat denotes a Fourier transform. 
The maximum modulus of the wavelet transform 

over all angles, from °0 up to °179 at step of °10 , for one 
scale is taken. The enhanced image GI is determined 
based on the direction θ  which provides the maximum 
Gabor response. 

),,(max abTI G θψθ

v
=  (5)

As the contrast at retinal border is very strong, the 
response of gabor wavelet produce a false edge. 

 
 

To reduce this effect before applying wavelet 
transform, we pad the background pixels at the 
neighborhood of retinal border with a gray value equal 
to average of neighboring retinal pixels. For this task, 
we have used an iterative algorithm as proposed in [1]. 
This algorithm would help to remove the strong contrast 
between the retinal fundus and the region outside the 
aperture. Hence, the output of the wavelet transform 
doesn’t provide strong edge at retinal borders. 

As the contrast of thin vessels from the background 
is low, segmentation of thin vessels even after wavelet 
analysis is imperfect. We used the method [7] to modify 
wavelet coefficients in such a way that improve the 
contrast. Equation (6) shows the relation between 
wavelet coefficients before and after this 
transformation. x is the intensity value of pixel in GI  
image and ( )xyc is its value after transformation. p  is a 
parameter which determines the degree of nonlinearity 
( 10 << p ) and s  introduces dynamic range compression. 
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Using a nonzero s  enhances the faintest edges and 
softens the strongest edges at the same time. c  is a 
normalization parameter and σ is the standard deviation 
of the background noise. The m is the intensity value 
under which output intensity values are amplified. This 
value depends obviously on the pixel values inside the 
image. A proper value for m  can be derived from 
percentage of maximum Gabor output, and standard 
noise deviation: σcMkm c −= . Figure 3 shows the colored 
image, the inverted of green channel, gamma corrected 
and padded image. 

   
Figure 3. a) Colored image b) inverted of green channel c) gamma corrected and padded image. 
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2. 3. Topographic Features and Ridge Detection      
Considering a 2D image as a topographic surface, each 
pixel of image based on geometrical property of surface 
at the pixel  takes one of twelve topographic labels:  
peak, peat, saddle, ridge, ravine, ridge saddle, ravine 
saddle, slop upward, slop downward, convex saddle hill, 
concave saddle hill and flat [8]. 

The image pixels on retinal vessels have ridge 
topographic property. Ridges are invariant to affine 
transformations and can be detected in different image 
modalities. Roughly speaking, ridges are defined as 
points where the image has an extremum in the 
direction of the largest surface curvature. Strictly 
speaking, a ridge occurs where there is a local 
maximum in one direction. By connecting ridge points a 
ridge line is obtained which indicates the centerline of 
vessels. For a continuous surface defined by the 
equation ),( yxfz =  let f∇ be the gradient vector of the 
function and f∇  be the gradient magnitude. Hessian 
matrix can be defined as: 

Hessian matrix can be defined as: 
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where, 1u  and 2u are the unit eigenvectors of H and 
21, λλ are corresponding eigenvalues. A point is called a 

ridge if and only if it satisfies one of the following three 
sets of conditions. 

0.,0,0 11 =∇<≠∇ uff λ  (8) 

0.,0,0 22 =∇<≠∇ uff λ  (9) 

0,0,0 21 =<=∇ λλf  (10) 

In order to extract ridge points in a digital image, the 
first and second partial derivative need to be estimated. 
We use the discrete Chebyshev polynomials up to the 
third degree (N=3) to estimate derivatives of a digital 
image.  The thqp ),(  partial derivative at ),( yx , ( p  along 
the x  axis and q  along the y  axis) is approximated as:  
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where, ),( yxf  is the grayscale image, and ),( pih and 
),( qjh are unweighted smoothing differentiation filters 

based on discrete Chebyshev polynomials [9]: 
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By this definition, hessian matrix can be written in 
form of: 
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Usually, an interesting topographic label will not 
occur precisely at the center of pixel. If we assign to 
pixel label which is belong to the pixel's center point, a 
misclassification would occur. We used Wang et al. [8] 
method to solve this problem. The eigenvectors 1u and 

2u at the center of each pixel are estimated using two 
orthogonal vectors which are closest to two of the four 
natural directions orientations ooo 45,45,0 − and o90 . 

The explained ridge extraction method yields ridge 
points which are good candidates for centerline of 
retinal vessels. 

 
2. 4. Noise Reduction     By applying the ridge 
extraction algorithm to the enhanced input image GI , a 
binary image with points on vessel centerlines is 
produced. As the width for extracted vessel centerlines 
is more than one pixel, we use morphological thinning 
to obtain an image on which vessel centerlines have one 
pixel width. The result image is denoted by RI . 

RI contains considerable false positives, that is, the 
pixels which belong to the background but labeled as 
ridge centerlines. We need to filter out the false ridge 
points as much as possible.  

We have developed an algorithm to achieve this aim. 
The proposed method has two major steps. First 
determining eight-adjacency connected components of 
the extracted ridge image, RI . The components with 
more than a predefined number of pixels ( l ) are 
confirmed as vessel centerlines. Let us denote the image 
of remaining components by RSI . The components in 
this image need to be rechecked for filtering out false 
ridge points. We first determine four-adjacency 
connected components of RSI . For each component of 
the resulting image, the validation process is performed 
as follows: 

a. Determine position of the middle pixel. 
b. Consider an LL × window centered at the 

middle pixel on the negative green channel of 
retina, GmI . 

c. Convert the extracted window into a binary 
image using a threshold equal to geometric 
mean between the average and maximum 
values pixels in the window. 
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Figure 4. a) initial ridge points, b) thinned ridges, c) long strings, d) ridge points need to be validated, e) final ridge points 

 
d. Perform an AND operation between the binary 

window and the corresponding window from the 
ridge points.  

e. Remove the under consideration component if 
the number of pixels with value one in the result 
window is less than half of number of pixels for 
the component. 

 
The final denoised image RdI  formed by long ridge 
strigns and verified ridge points/lines. Figure 4 
illustrates results in applying mentioned algorithm. 
Comparing Figures 4-c and 4-e, during the proposed 
process, same points on thin vessels are confirmed as 
ridge points. They will be completed in the next stages. 
 
 
2. 5. Linking and Extending the Ridge Points    The 
extracted ridge points are a set of strings which needs to 
be completed for two reasons.  First broken strings 
which are parts of a centerline need to be linked 
together using a grouping process. Second the extracted 
centerlines need to be extended to detect thin vessels. 

We propose a grouping algorithm which starts with 
finding end-points of extracted strings. End-points are 
used as the starting points for this algorithm. This 
process is an iterative algorithm which detects endpoints 
using the morphological Hit-or-Miss transform [17] as 
follows: 

( )∪
8

1=

⊗=−
k

k
R BfptsEnd  (16) 

where, the kB are the structure elements used in this 
process shown in Figure 5. 

At each extracted end point, we investigate if there 
is a chance for extension of the end point. For this 
purpose, a set of directional masks so called Directional 
Mask Bank (DMB) is designed. The DMB is made up 
of eight masks with size 1515×  pixels, as shown in 
Figure 6. 

The most probable region which ridges can be 
extended is determined using these masks. 

Each filter of DMB is placed on the binary formed 
with the detected ridges at an end-point location, the 
result of an AND operation between the filter and the 
ridge point image is a number of pixels. with the ridge 
point image. That filter determines roughly the direction 
for extension of the end-point.  

Figure 7 demonstrates the responses over eight 
masks.  

In order to refine direction for extending each end 
points another filtering procedure is proposed. Consider 
a filter bank where each filter is a L pixel line in a 
( ) ( )1212 −×− LL  window. Each filter line ( L  pixels) starts 
from the center of window and ends at a pixel on 
circumference of the window. Figure 8 shows two filter 
lines  with 8=L in 1515 × window at 0 and 45 degree
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Figure 5. Directional Mask Bank (DMB), eight masks with size 1515× pixels in different orientation 

 

 
Figure 6. The end-point detectors[17] 

 
 

 
Figure 7. DMB response 

 
 

 
Figure 8. Two line filters in a 1515× window. 

 
Figure 9. Average value of lines in extension region 

 
 
One of the eight filters provides the maximum 

number of pixels as the result of AND operation.  After 
determining rough direction of possible extension of 
ridge points in the previous stage, only few number of 
line filters falls within the determined sector. Along 
each line filter, the average intensity of pixels from the 
original retinal image (negative green channel) is 
evaluated. The line filter with largest average is selected 
as the most probable direction which vessel can be 
extended. Figure 9 shows the average intensity along 
line filters at the end point. 

Figure 10 shows a selected window of ridge image 
4-e and the intermediate and final process of linking 
stage.The statistics for average of intensity along line 
filters can be used as to accept extension of ridge string 
along the candidate direction or refuse to continue. Let 
consider σ  and μ  as the standard deviation and the 
mean for the average intensity of line filters at an end 
point. We use the ratio σ μ as a criterion to accept 
extension of a ridge string under consideration end 
point. If this ration is more than a predefined value, it 
shows that along the candidate line filter there is a 
vessel.  
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Figure 10. a) Ridge point, b) Vessel centerlines 

 
 

 
(a) (b) (c) (d) 

Figure 11. (a) A selected window of ridge image for 
extension and (b, c) Intermediate process (d) After 
complete linkage. 

 
 

TABLE 1. Values of the parameters used for retinal image 
enhancement 

Parameter r  m  c  σ  p  ck  

Value 1.5 3 3 6 0.8 0.3 

 
 
In contrast, low value for σ μ  means we have a 

noisy region and extension of end point must be quitted. 
If the extension of ridge string is confirmed, we extend 
the current end point along the candidate line filter and 
the new end point is defined the end of line filter. This 
process is iteratively run until all image end points 
terminated.  

Figure 11 shows initial ridge points and the extended 
vessel centerlines for a retinal image. 
 
 
3. EXPERIMENTAL RESULTS 
 
We tested our method on retinal images in the DRIVE 
database. The database is publicly available with 
manual segmentation [13]. The DRIVE database 
consists of 40 images where seven of which present 
pathology, along with manual segmentations of the 
vessels. The images are captured in digital form from a 
Canon CR5 nonmydriatic 3CCD camera at o45 field of 
view (FOV). The images are of size 584768 × pixels, 

eight bits per color channel and have a FOV of 
approximately 540 pixels in diameter. The images are in 
compressed JPEG format, which is unfortunate for 
image processing but is commonly used in screening 
practice. The 40 images have been divided into training 
and test set, each set containing 20 images. For each 
image in the training set, there are three images with 
pathology. They have been manually segmented by 
ophthalmologists. The images in the training set were 
segmented once, while images in the test set were 
segmented twice, resulting in sets A and B. The 
observers of sets A and B produced similar 
segmentations. In set A, 12.7% of pixels where marked 
as vessel, against 12.3% vessel for set B. We 
implemented the proposed method using the following 
settings. In Gabor filter bank we set ε  parameter to 2 
and [ ]5.25.00 =k

v
. This setting empirically has been 

selected to yield the best discrimination between the 
blood vessels from background. We have imperially 
chosen proper values for the enhancement method as 
reported in Table 1. 

The vessel segmentation using the proposed method 
was performed on the DRIVE database. The 
segmentation result of the method was compared 
against the human observer reference provided in the 
database.  

Accordingly, the performance of the proposed 
method is evaluated using accuracy,  sensitivity and 
specificity  criterions. The accuracy is defined as the 
ratio of the total number of correctly classified pixels by 
the total number of pixels in the image. Other important 
measures are sensitivity and specificity. The true 
positive fraction (TPF), also called "sensitivity”, is 
determined by dividing the number of pixels correctly 
classified as vessel pixels (TP) by the total number of 
vessel pixels: 

ysensitivit
FNTP

TP
P

TPTPF =
+

==  (17) 
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TABLE 2. Performance of vessel segmentation methods (DRIVE database) 

Segmentation Method 
Average accuracy 

(standard deviation) 
True Positive Fraction 

(sensitivity) 

False Positive Fraction 
( yspecificit−1 ) 

Proposed 0.9464(0.0063) 0.7690 0.0259 

Staal et al.[18] 0.9442(0.0065) 0.7194 0.0227 

Niemeijer [15] 0.9417(0.0065) 0.6898 0.0304 

Soares et al. [1] 0.9460(0.0060) 0.7344 0.0226 

Mendonça et al. [3] 0.9452(0.0062) 0.7344 0.0236 

Ricci et al. [2] 0.9428(0.0073) 0.6957 0.0198 

2nd Human observer [13] 0.9473(0.0048) 0.7761 0.0275 

 
 

 

Figure 12. The left column: two samples of retinal images of DRIVE database. The next column: the extracted centerline. 
The third column from the left: the final result after region growing. The last column: the expert groundtruth. 
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where, FN is the number of pixels incorrectly 
classified as non-vessel pixels. The false positive 
fraction (FPF) is the number of pixels incorrectly 
classified as vessel pixels (FP) divided by the total 
number of non-vessel pixels: 

yspecificit
TNFP

FP
N

FPFPF −=
+

== 1  (18) 

Here, TN is the number of pixels correctly classified 
as non-vessel pixels. The axes of the plot are rescaled so 
the true positives and false positives vary between 0 and 
1. 

The accuracy (ACC) for one image is the fraction of 
pixels correctly classified: 

TNFPFNTP
TNTP

PN
TPFPACC

+++
+

=
+
+

=  (19) 

The maximum average accuracy (MAA) will be the 
average value of the accuracy for all images. 

Table 2 presents the result of experiment on DRIVE 
database. This table shows the maximum average 
accuracy, standard deviation, True Positive Fraction and 
False Positive Fraction calculated with our method. We 
compare the performance of our algorithm to that of 
Mendonça et al. [3], Staal et al.[18] and Niemeijer[15]  
using their publicly available results. To compare our 
method with the methods of Soares et al. [1] and Ricci 
et al. [2], we implemented those  methods except that 
for Soares et al. [1]. we used 700,000 instead of one 
million pixel samples. 

The first row of the table is the result for the 
proposed method which is compared against other 
methods and manually segmentation of the human 
observer. As the table shows from the accuracy point of 
view the proposed method outperforms other methods. 
However, the performance of the method is slightly 
below the manually segmentation provided by the 
human observer.  In contrast to two earlier criterions, 
the false positive for a segmentation method is desired 
to be as small as possible. From the false positive point 
of view, the proposed method outperforms the method 
of Niemeijer [5] but it is slightly below the other 
methods. 

In Figure 12, the final result of vessel segmentation 
on two retinal images from DRIVE database have been 
shown. 

The retinal images have been shown on the first 
column from the left. The second and third columns 
show the result of vessel centerline extraction (the 
proposed method) and the result of thickening on the 
extracted centerlines  respectively. First column from 
the right shows the manual segmentation provided by an 
expert. 
 
 
4. CONCLUSION 
 
The problem of extracting vessel centerline from retinal 
image was addressed. In presence of noise and 

imperfect illumination condition, we enhance the 
negative green channel of retinal image as input for the 
proposed system. Using topographical features, we 
extract ridge points as candidate for vessel centerlines. 
The separate extracted points were linked to construct 
vessel using introduced directional filters. This filters 
measure possibility for presence of a vessel in each 
direction at an end point on each extracted ridge string. 
Based on this procedure ridge strings are linked together 
and extended to extract thin vessels. The result of 
experiments showed the proposed method provides 
better accuracy in compare with other methods. 
 
 
5. REFERENCES 
 
1. Soares, J.V.B., Leandro, J.J.G., Cesar, R.M., Jelinek, H.F. and 

Cree, M.J., “Retinal vessel segmentation using the 2D Gabor 
wavelet and supervise classification”, IEEE Transactions on 
Medical Imaging, Vol. 25, No. 9, (2006), 1214–1222. 

2. Ricci E. and Perfetti, R., “Retinal blood vessel segmentation 
using line operators and support vector classification”, IEEE 
Transactions on Medical Imaging, Vol. 26, No. 10, (2007). 

3. Mendonça, A. M. and Campilho, A., “Segmentation of Retinal 
Blood Vessels by Combining the Detection of Centerlines and 
Morphological Reconstruction”, IEEE Transactions On 
Medical Imaging, Vol. 25, No. 9, (2006). 

4. Chang, C.-C., Lin, C.-Ch., Pai, P.-Y. and Chen. Y.-Ch., “A 
Novel Retinal Blood Vessel Segmentation Method Based on 
Line Operator and Edge Detector”, Fifth International 
Conference on Intelligent Information Hiding and Multimedia 
Signal Processing, (2009). 

5. Antoine, J.-P., Carette, P., Murenzi, R. and Piette, B., “Image 
analysis with two-dimensional continuous wavelet transform”, 
Signal Process, Vol. 31, (1993), 241–272. 

6. Arnéodo, A., Decoster, N. and Roux, S. G., “A wavelet-based 
method for multifractal image analysis. I. Methodology and test 
applicationsnon isotropic and anisotropic random rough 
surfaces”, European. Physical Journal- Applied physics, Vol. 
15, (2000), 567–600. 

7. Starck, J.L., Murtagh, F., Candès, E. J. and Donoho, D. L., 
“Gray and Color Image Contrast Enhancement by the Curvelet 
Transform”, IEEE Transactions On Image Processing, Vol. 
12, No. 6, (2003). 

8. Wang L. and Pavlidis, T., “Direct Gray-Scale Extraction of 
Features for Character Recognition”, IEEE Transactions On 
Pa'itern Analysis And Machine Intelligence, Vol. 15, NO. 10, 
(1993). 

9. Meer, P. and Weiss, I., “Smoothed differentiation filters for 
images”, Center for Automatic Research University of 
Maryland, (1989). 

10. Zwiggelaar, R., Astley, S.M., Boggis, C. R. M. and Taylor, C. J., 
“Linear structures in mammographic images: Detection and 
classification”, IEEE Transactions On Medical Imaging, Vol. 
23, No. 9, (2004), 1077–1086. 

11. Pratt, W.K., “Digital Image Processing”, 3rd ed. New York, 
Wiley, (2001). 

12. Theodoridis, S. and Koutroumbas, K., “Pattern Recognition”, 1st 
ed., Burlington, MA, Academic, (1999). 

13. Niemeijer, M. and van Ginneken, B., (2002), [Online] Available: 
Available:http://www.isi.uu.nl/Reseach/Databases/DRIVE/result
s.php 

14. Hoover, A., STARE database [Online] Available: Available: 
http://www.ces.clemson.edu/~ahoover/stare 

http://www.isi.uu.nl/Reseach/Databases/DRIVE/result
http://www.ces.clemson.edu/~ahoover/stare


R. Kharghanian and A. R. Ahmadyfard / IJE TRANSACTIONS B: Applications  Vol. 25, No. 4, (November 2012) 315-324            324 
 

 

15. Niemeijer, M., Staal, J., van Ginneken, B., Loog, M. and 
Abràmoff, M.D., “Comparative study of retinal vessel 
segmentation methods on a new publicly available database”, in 
Proceeding of SPIE Medical Imaging, M. Fitzpatrick and M. 
Sonka, Eds., Vol. 5370, (2004), 648–656. 

16. Hoover, A., Kouznetsova, V. and Goldbaum, M., “Locating 
blood vessels in retinal images by piecewise threshold probing 
of a matched filter response”, IEEE Transactions On Medical 
Imaging, Vol. 19, No. 3, (2000), 203–211. 

17. Gonzalez, R.C. and Woods, R.E., Digital Image Processing, 3rd 
ed., Prentice hall, (2008). 

18. Staal, J., Abramoff, M. D., Niemeijer, M., Viergever, M. A. and 
Ginneken, B.V., “Ridge-based vessel segmentation in color 
images of the retina”, IEEE Transactions On Medical Imaging, 
Vol. 23, No. 4, (2004), 501–509. 

19. Duda, R. O., Hart, P. E. and Stork, D. G., “Pattern 
Classification”, 2nd ed., New York, Wiley, (2001). 

 
 
 
 
Extracting Vessel Centerlines From Retinal Images Using Topographical Properties 
and Directional Filters 
 
R. Kharghanian, A. R. Ahmadyfard  
 
Department of Electrical and Robotic Engineering, shahrood university of technology, Shahrood, Iran 

 
 

P A P E R  I N F O   
 

 

Paper history: 
Received 3 January 2012 
Received in revised form 27 April 2012 
Accepted 30 Agust 2012 

 
 

Keywords:   
Retinal Image 
Blood Vessel Segmentation 
Topographic Properties  
Grouping 

 
 
 
 
 
 

 

  چکیده
   

از آنجایی که کانال سبز تصویر . ایم هاي شبکیه چشم را از تصویر شبکیه مورد مطالعه قرار داده در این مقاله مسئله استخراج رگ
قاء تصویر پس از ارت. ایم ها استفاده کرده بهترین کنتراست بین رگ و غیر رگ را داراست، از این کانال براي جداسازي رگ

این . کنیم معکوس کانال سبز، آن را به صورت یک رویه توپوگرافیکی در نظر گرفته و نقاط ناودانی بیرون را از آن استخراج می
ها  زمینه و توزیع غیریکنواخت روشنایی در تصویر برداري، مراکز رگ در حضور نویز پیش. ها قرار دارند نقاط بر روي مرکز رگ

باشند و تنها بخشی از خط مرکزي رگ را تشکیل  نقاط استخراج شده جدا از یکدیگر می. شوند نمیبه درستی استخراج 
در این . هاي باریک روش جدیدي پیشنهاد شده است با هدف استخراج رگ ها آنبراي اتصال نقاط مجزا و گسترش . دهند می

به کمک . زند رشد خط مرکزي رگ را تخمین می ایم که جهت مناسب براي دار طراحی نموده هاي جهت روش بانکی از فیلتر
هاي پیوسته گسترش  رشته به صورتها  شوند تا خطوط مرکزي رگ این روش نقاط انتهایی رشته خطوط ناودانی رشد داده می

هاي  نشان دهنده برتري روش پیشنهاد شده نسبت به روش DRIVEنتایج حاصل از آزمایشات بر روي پایگاه داده  .یابند
  .است این برتري با معیار صحت، میزان عدم اشتراك و حساسیت سنجیده شده. موجود است
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