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A B S T R A C T  

   

This paper deals with new implicit multi time step integration for numerical dynamic analysis in 
constant time step. The proposed method tries to improve the main difficulties of the multi time step 
integrations i.e. high calculations and also high required memory. For this purpose, several previous 
velocity and acceleration vectors are used to integrate the displacement and velocity of the current time 
step, respectively. It could be shown that only one set of weighted factors appears in the proposed 
technique so that the computational efforts and the required memory reduce compared with the similar 
multi time step integrations which use several groups of weighted factors for controlling the stability 
and the accuracy. Therefore, simplicity, lower computational tasks and lower required memory are the 
main advantages of the new integration which made this method suitable for nonlinear dynamic 
analysis of large systems. Here, the Taylor series expansion and the Routh-Hurwitz criterion are 
utilized to calculate the weighted factors and determine the stability domain of the proposed 
integration, respectively. For numerical verification, some dynamic systems i.e. the nonlinear 
vibration, the portal frame and the elastic pendulum are analyzed to clarify the ability and the 
efficiency of the new method. Results show that by a similar time step, the proposed time integration is 
more accurate and more rapid compared with the common approaches such as the Wilson-θ, the 
Newmark-β and some other multi time step schemes. 
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NOMENCLATURE   

[ ] 1n
C

+ Damping matrix in n+1th time step  [ ] mmZ ×
 Coefficient matrix for integration’s order m 

{ } 1n
D

+ Displacement vector in n+1th time step Greek Symbols 

{ } 1n
D

+& Velocity vector in n+1th time step ξ  Displacement weighted factor for IHOA 

{ } 1n
D

+&& Acceleration vector in n+1th time step η  Velocity weighted factor for IHOA 

{ }0D Initial displacement vector  α  Displacement weighted factor for N-IHOA 

{ }0D& Initial velocity vector  γ  Velocity weighted factor for N-IHOA 

{ } 1n
ExactD

+ Exact displacement vector in n+1th time step Δt  Time step 

{ } 1n
ExactD

+& Exact velocity vector in n+1th time step 
cr

Δt  Critical time step 

{ } 1n
f

+

 Internal force vector in n+1th time step λ  
Eigenvalue 

[ ] 1n
M

+

 Mass matrix in n+1th time step Ω  Circular frequency 

{ } 1n
EQ

P + Equivalent external force vector in n+1th time step ω  Natural frequency 
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{ } 1n
DR

+ Displacement residual vector in n+1th time step Superscripts 

{ } 1n
VR

+
 Velocity residual vector in n+1th time step n Time step 

[ ] 1n
EQS + Equivalent stiffness matrix in n+1th time step m Integration’s order 

 
1. INTRODUCTION 
 
Numerical methods which are widely used in dynamic 
analyses try to obtain the answer of a second order time 
differential equation with some initial conditions as 
follows: 

{ } { }
n 1 n 1n 1n 1 n 1 n 1M D C D f(D ) P(t )

+ +++     + +            
+ + =&& &

{ } { } { } { }00 D(0)D,DD(0) && == 
(1) 

Here, [ ] 1nM + , [ ] 1nC + , { })f(D 1n+  and { })P(t 1n+  are mass 
matrix, damping matrix, internal and external forces 
vectors, respectively. In addition, { } 1nD + is the nodal 
displacement vector and super dots denotes differential 
with respect to the time. All of these quantities are 
calculated at time 1nt + , called the current time step. 
Here, { }0D and { }0D& are displacement and velocity 
vectors at t=0, respectively. Numerical schemes are 
classified in three general groups: Implicit, Explicit and 
predictor-corrector. In each step of implicit methods, the 
dynamic equation is transformed to the equivalent static 
system. High accuracy and more stable analysis are the 
main advantages of the implicit integrations especially 
in nonlinear dynamics. However, the cost and the 
computational time may dramatically increase for large 
scale structures with huge number of degrees of 
freedom. The Newmark-β method, Wilson-θ procedure, 
generalized-α method [1], HHT-α [2], WBZ-α [3], the 
Newmark multi time step approach [4], the third order 
time step integration [5], the Newmark complex time 
step [6], the time weighted function procedure [7], the 
generalized single step integration [8], the Nørsett time 
integration [9], the composite time integration [10], the 
higher order acceleration function [11], the implicit 
integration based on the conserving energy and 
momentum [12], the Green function approach [13, 14], 
the precise integration methods [15], the implicit higher 
order time integration [16] and the backward Euler 
time-integration method [17] are some well known 
implicit integrations.  

In the explicit methods, displacement and velocity 
of the current time step are calculated by only vector 
operations based on the previous time step data. Then, 
the acceleration vector will be obtained by solving a 
linear system of equations formulated from the dynamic 
equation of motion [18-21]. These methods are quite 

simple; however there are serious concerns about their 
accuracy and stability.  

Combining the implicit and the explicit techniques 
leads to an interesting approach called predictor-
corrector algorithms. In such methods, the explicit 
procedures are used to obtain an estimation of the 
answer. This estimation is corrected by the implicit 
relationships. As a result, calculations are in vector form 
and because of using implicit equations; the numerical 
instability will be limited [22, 23]. These specifications 
cause that the predictor-corrector methods are utilized 
for different analyses such as structural control [24]. 

In this paper, a new multi-time step integration 
which belongs to the implicit methods is presented for 
dynamic analysis. Here, the current displacement and 
velocity vectors are proposed to be functions of the 
velocity and acceleration vectors of several previous 
time steps, respectively. The unknown parameters are 
calculated in the manner that the suggested time 
integration has maximum accuracy. Moreover, studying 
the stability conditions of this integration leads to the 
acceptable zone for choosing time step. To verify the 
numerical ability of the proposed method, some 
dynamic systems are analyzed. 

 
 

2. NEW IMPLICIT HIGHER ORDER ACCURACY (N-
IHOA) TIME INTEGRATION 
 
Numerical dynamic analysis methods could be 
formulated as single or multi time step integrations. In 
single step methods, the results of previous time 
increment are only utilized to integrate the equations of 
motion. Despite of simplicity, the efficiency of these 
procedures is less than the multi time step schemes 
which use results of several previous steps. The reason 
for this subject is that the continuity of the higher order 
derivatives may not be satisfied in single step 
integrations. However, the computational efforts of 
multi time step methods are higher than single step 
procedures. Based on the above discussion, this paper 
tries to propose an effective multi time step method so 
that both higher order derivatives continuity and lower 
computational tasks are achieved simultaneously. For 
this purpose, a new version of the implicit higher order 
accuracy (IHOA) method is presented here. It should be 
noted that the IHOA integration utilizes the 
accelerations of some previous time steps with 
following fundamental equations [16]. 
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{ } { }
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i
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+    
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=
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n 1 n n n 1m -1
0i

i 0
m -1 n i

i
i 1

D D (1 η ) Δ t D η Δ t D

Δ t η D

+ +
       
       
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=
− 

 
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=

= + − +∑

+ ∑

& & && &&

&&

 
(3) 

where, { } inD −&&  is the acceleration vector at n-i th time 
station. This quantity is available from the previous 
steps. Furthermore, iξ  and iη  are weighted factors 
which control the stability and accuracy of time 
integration. These factors have been calculated for 
maximum accuracy [16]. In addition, time step (Δt ) has 
been limited by the stability domain of the integration 
[16].  

For purposing a new version of the IHOA method, 
the displacement and velocity vectors of the current 
time step are assumed to be functions of the velocities 
and accelerations of several previous steps, respectively, 
as follows: 

{ } { } { }

{ }

nm 1 n 1n 1 n
Di

i 1
m 1 n i

i
i 1

D

D D Δt(1 ) D Δt

Δt

α α α

α

++  
 
 

=
−

=

−

−

′ ′= + − − + +∑

∑

&

&

&
  

(4) 

{ } { }

{ }

n 1 n m n n 1
D Di

i 1
m n i

i
i 1

1

1
D

D D Δt(1 ) Δt

Δt

γ γ γ

γ

+ +   
   
   

=
−

=

−

−

′ ′= + − − + +∑

∑

&& &&

&&

& &
 

(5) 

Here, α  and γ  are weighted factors of new integration. 
Equations (4) and (5) present the fundamental equations 
of the proposed time integration which uses the 
velocities and accelerations of several previous time 
steps. To formulate the solution algorithm of the new 
method, the current velocity vector i.e. { } 1nD +&  is 
obtained from Equation (4): 

{ } { }

{ } { }

n 1

m 1 m 1n n i
(1 ) D Δt Di ii 1 i 1D

n 1 nD D
Δt

α α α

α

α

+
 
 
 

− − −
′− − +∑ ∑

= ==
′

+ −
−

′

& &
&  

(6) 

By substituting Equation (6) in Equation (5), the current 
acceleration vector i.e. { } 1n

D
+&& obtains; 

{ }
{ } { }

{ } { } { } { }

n 1
D

m 1 m 1n n i
(1 ) D Di ii 1 i 1

Δ t
m 1 n n 1

(1 ) D Dn 1 n iD D i 1
2Δ t

α α

α γ

γ γ γ

γα γ

+

− − −
− +∑ ∑

= == −
′ ′
− +

′ ′− − +∑+ − =−
′′ ′

&&

& &

&& &&

 
(7) 

Finally, an equivalent static system is achieved if 
Equations (6) and (7) are substituted into Equation (1), 

[ ] { } { } 1n
EQ

1n1n
EQ PDS +++ =  (8) 

where, [ ] 1n
EQS +  and { } 1n

EQP + are the equivalent secant 

stiffness matrix and the equivalent load vector, 
respectively. These quantities are formulated as follows, 

n 1 n 1 n 1n 1 0
2EQ

η1S M C SΔtΔt αα γ
+ + ++      

      = + +′′ ′
 (9) 
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(10) 

The displacement vector of the current time step i.e. 
{ } 1nD + is calculated by solving Equation (8) in each time 
step. Then, the current velocity and acceleration vectors 
are obtained from Equations (6) and (7), respectively. 
This procedure is repeated for the next time step until 
the analysis time is completed.  

It should be noted that the explicit Dynamic 
Relaxation (DR) method is utilized here for solving 
Equation (8). As described in the recent papers, the 
Dynamic Relaxation method which can be successfully 
combined with the implicit time integrations causes 
considerable reduction in numerical errors [26]. 
Simplicity, vector operators and higher efficiency in 
nonlinear systems are the other advantages of DR 
method. Therefore, Dynamic Relaxation method is 
employed here to solve the system of simultaneous 
equations i.e. Equation (8). 

The proposed formulation is called the N-IHOA i.e. 
New Implicit Higher Order Accuracy. When m>1, the 
first increment should be performed by m=1. Now, two 
dynamic equilibrium points i.e. n and n-1 will be 
available so that the second increment could be run by 
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m=2. At this stage, three dynamic equilibrium points i.e. 
n, n-1 and n-2 exist so that the next increment could be 
started by m=3. This procedure is repeated until the 
accuracy order of the integration reaches to the selected 
value.  
  
 
3. ACCURACY AND STABILITY 

 
In the previous section, a new time integration called N-
IHOA has been formulated for dynamic analysis. There 
are some weighted factors in the proposed relationships 
which should be determined. If the integration’s order 
be m, there are 2×m un-known parameters in the N-
IHOA relationships. These parameters are calculated so 
that the numerical accuracy is maximized. It should be 
emphasized that the stability condition is verified by 
limiting the time step size.  

In numerical methods, there are two sources of 
error, generally, i.e. the integration’s error and the 
numerical error. The numerical errors belong to the 
computer’s calculations which the values are not saved 
exactly. Because of high number of calculations, these 
errors may increase in dynamic analyses. Using double 
precision variables, these errors could be limited as 
performed here. On the other hand, the integration’s 
errors happen because of non continuity of higher order 
displacement’s derivatives such as third order, forth 
order, fifth order and etc. The reason for this subject 
could be explained as follows. The dynamic equation of 
motion is a second order time differential relationship 
which only uses the first and the second order 
derivatives of the displacement. In the other words, 
higher order derivatives such as third order, forth order 
and etc do not appear directly in the dynamic equation 
of motion. The non continuity of higher order 
derivatives between successive time steps causes the 
integration’s error. The proposed method tries to 
improve this defect by applying the continuity 
conditions for more number of higher order 
displacement’s derivatives.  

For calculating the weighted factors, the error 
functions of the current displacement and velocity 
vectors could be defined as follows: 

{ } { } { } 1n1n1n
ExactD DR D +++ −=  (11) 

{ } { } { } 1n
Exact

1n1n DDVR +++ −= &&  (12) 

where, { } 1n
DR +  and { } 1n

VR +  are the current residual vectors 
of the displacement and velocity, respectively. The 
exact displacement and velocity vectors, i.e. { } 1n

ExactD +  
and { } 1n

ExactD +&  are obtained from the Taylor series 
expansion: 

{ } { } { } { } { }
{ }

n n nn 2 3 3

n4 4

n 1
D Δt D Δt D 0.1667Δt DExact

0.0417Δt D

D 0.5+
+

+ +

= + +& &&

…
 (13) 

{ } { } { } { }

{ }

n n n n2 3 3 4

n4 5

n 1
D Δt D 0.5Δt D 0.1667Δt D

Exact

0.0417Δt D

D
+

  + + + 
 

+ +

= & &&

…

&
 (14) 

here, { }niD  is the ith displacement’s derivative order of 
the nth step. Since the exact solution vectors, i.e. 
Equations (13) and (14) are functions of the 
displacement’s derivatives of the nth increment, the 
current displacement and velocity vectors, i.e. Equations 
(4) and (5) should also be formulated based on the 
displacement’s derivatives. For this purpose, the inverse 
expansions of the velocity and acceleration vectors give 
[16], 

{ }
k k n i 1n i k 1D

k 0
i 1 , 2.. .m

( 1)   Δ t D
k!

− +−  +
 
 

=
=

∞ −= ∑&  (15) 

k kn i n i 1k 2

k 0
i 1, 2...m

( 1)   Δ tD D
k!

− − +   +
   
   

=
=

∞ −= ∑&&  (16) 

Similar relationship could be written for the inverse 
expansion of the jth order of the displacement’s 
derivative, 

{ }
k k n i 1n i j kj

k 0

i 1 , 2 .. .m ,         j 1 , 2 .. .

( 1 )  Δ tD D
k!

− +∞−  +
 
 =

= = ∞

−= ∑  
(17) 

If Equations (15) to (17) are iterated successively, the 
previous velocity and acceleration vectors are 
formulated in the terms of the displacement’s 
derivatives of the nth step. For example, the current 
displacement and velocity vectors for the first and 
second accuracy order i.e. m=1 and m=2 are as follows; 

{ } { } { }

{ }3
1

n nn 1 n
D

n
D

2D D D ( )
1

3(0.5 0.5 )

t t

tα α

α α+  
 
 

′

′= + ∆ + − ∆ +

+ ∆ +

&&&

…

 
m=2 (18) 

{ } { } { }

{ }

3

4
1

n 1 n n
D D D

n
D

2D ( )
1

3(0.5 0.5 )

t t

tγ γ

γ γ
+

 
 
 

′

′= + ∆ + − ∆ +

+ ∆ +

& &&&

…

 
m=2 (19) 

{ } { } { }

{ }

{ }

3
1

4
1
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D

n
D

n
D

2D D D ( 2 )
1 2

3(0.5 0.5 2 )
2

4(0.1667 0.1667 1.3333 )
2

t t

t

t

α α

α α

α α α

α

α

+  
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 

′

′

′= + ∆ + − − ∆

+ + + ∆ +

− − ∆ +

&&&

…

 
m=3 (20) 
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t t

t

t

γ γ γ

γ γ γ

γ γ γ

+   
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&&& &
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m=3 (21) 

By comparing either Equation (18) with Equation 
(19) or Equation (20) with Equation (21), the most 
important specification of the N-IHOA is clarified. It 
means if the integration order is selected as m, the 
coefficients of the weighted factors in both 
displacement and velocity vectors are the same. In the 
other words, the proposed formulation of the N-IHOA 
method leads to the only one set of independent 
weighted factors so that the numerical values of the 
weighted factors in the proposed displacement and the 
velocity vectors (Equations 4 and 5) are the same, i.e. 

γα ′=′  and 1,...2,1 −== miii γα . It should be noted 
that the IHOA method has two set of independent 
weighted factors ( iξ  and iη ) which have different 
values [16]. Consequently, if the integration order be m, 
the N-IHOA and the IHOA have m and 2×m 
independent weighted factors, respectively. Therefore, 
the N-IHOA will be simpler than the IHOA technique; 
because in the IHOA two set of weighted factors ( ξ  and 
η ) should be calculated and saved. Low number of 
weighted factors in the proposed N-IHOA algorithm 
leads to reduction in required memory for the dynamic 
analysis and its programming will be simpler than the 
IHOA. In addition, it is expected that the analysis time 
of the N-IHOA may be less than the IHOA. This subject 
will be verified numerically. Such specifications cause 
that the proposed method has a potential which makes it 
suitable for using in the commercial structural analysis 
software.  

On the other hand, the maximum accuracy will 
occur if the maximum possible number of the 
coefficients in the displacement and the velocity 
residual vectors i.e. { } 1n

DR +  and { } 1n
VR + are zero. To 

explain this procedure, let the accuracy order be 3 
(m=3). Substituting Equations (13) and (20) into (11) 
and Equations (14) and 21 into (12) gives: 
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m=3 (22) 
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t

t
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γ γ γ

γ γ γ

γ γ γ
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′ + + − ∆ +
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m=3 (23) 

The right hand sentences of Equations (22) and (23) 
have the same coefficients which confirm the 
dependency of weighted factors in the N-IHOA method 
i.e. γα ′=′ , 11 γα =  and 22 γα = . From this point of 
view, Equations (22) and (23) are similar. Since there 
are three weighted factors in each residual vector, the 
maximum numerical accuracy is achieved when the 
coefficients of three first sentences in Equation (22) or 
(23) are equal to zero; 

1

2

1 1 2 0.5
0.5 0.5 2 0.1667

0.1667 0.1667 1.3333 0.0417

α
α
α
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=  m=3 (25) 

As expected, the system of Equations (24) and (25) 
are the same. Generally, this procedure leads to the 
following linear systems of equations, if the accuracy 
order be m; 
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(26) 

Here, [ ] mmZ ×  is a m×m constant matrix. For example, 
this matrix has been calculated for some integration’s 
order (m=1, 2, 3, 4and 5) as follows; 
[Z]1×1= [ ]1 , 

[Z]2×2= 



 −

5.05.0
11 , 

[Z]3×3=












−−

−−

3333.11667.01667.0
25.05.0
211

,  

[Z]4×4=

















−−−

−−−

375.36667.00417.00417.0
5.43333.11667.01667.0

5.425.05.0
3211

,    

[Z]5×5=



















−−−−

−−−−

−−−−

5333.8025.22667.0083.0083.
6667.10375.36667.00417.00417.0
6667.105.43333.11667.01667.0
85.425.05.0
43211

 

(27) 

From the Equation (26), one can see that for a 
selective integration order (m), the coefficients of 
weighted factors in displacement and velocity vectors 
are the same. If the first non-zero derivative’s order is 
defined as the mathematical accuracy order, the 
calculated weighted factors present both displacement 
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and velocity by an accuracy order 2mΔt + , respectively. 
In the linear Newmark-β, central finite difference and 
Zhai method, accuracy order related to displacement 
and velocity are 3Δt  and 2Δt , respectively. The least 
integration’s order of the N-IHOA technique is 1. If the 
integration’s order is at least (m=1), the accuracy order 
of both displacement and velocity will be 3Δt . For 
higher order of the proposed integration, the accuracy 
order of both displacement and velocity are higher than 
the well-known existing methods such as linear 
Newmark-β and central finite difference schemes. 
Moreover, comparing the IHOA and N-IHOA show that 
for the same integration’s order, the displacement’s 
accuracy of the IHOA and N-IHOA algorithms is 3mΔt +  
and 2mΔt + , respectively. From the mathematical point 
of view, the displacement’s accuracy of the IHOA is 
one order higher than the N-IHOA. However, both 
methods present the velocity by the same accuracy order 
i.e. 2mΔt + . 

On the other hand, the numerical weighted factors, 
presented here, are unique and they are not dependent 
on the problem’s specification. These linear systems 
have been solved for some accuracy order i.e. 
m=1,2…5, and the numerical values of weighted factors 
have been inserted in Table 1.  

 

 
TABLE 1. Optimum values of weighted factors for the N-
IHOA 

m α ′ 1α 2α 3α 4α 

1 0.5     

2 0.41667 -0.08333    

3 0.375 -0.20833 0.041667   

4 0.34861 -0.36667 0.14722 -0.02639  

5 0.32986 -0.55417 0.33472 -0.12014 0.01875 
 

 
On the other hand, the time step size of dynamic 

analysis is determined so that the stability conditions are 
satisfied. This study is performed for an undamped 
single degree-of-freedom system in free vibration [19]; 

m
s

ω,0DωD 2 ==+&&  (28) 

where, ω  is the natural frequency. Determining the 
acceptable time step size is the most common strategy 
for verifying the numerical stability of the proposed 
integration. Whatever the acceptable time step domain 
is larger, the method will be more stable. For this 
purpose, the weighted factors which calculated 
previously are used. From Table 1, the numerical values 
of these parameters are replaced in Equations (4) and 
(5). First, the fundamental relationship of the N-IHOA 
should be written in the differential form. The 

differential form is a shape that the fundamental 
relationships i.e. Equations (4) and (5) are only 
formulated based on the displacement of several 
successive steps. These formulations are similar to those 
performed for the IHOA [16]. For example, differential 
form of the N-IHOA method for the integration’s order 
1, 2 and 3 will be as follows; 

2 n 2 2 n 1

2 n
(0 .5 0 .1 25Ω )D (0 .125Ω 1)D

0 .5Ω D 0

+ ++ + −
+ =

 
m=1 (29) 

2 n 5 2 n 4

2 n 3 2 n 2

2 n 1 2 n

(0.4167 0.0723Ω )D (0.2364Ω 0.75)D
(0.4167 0.2143Ω )D (0.0346Ω 0.0833)D

0.00088Ω D 0.00006Ω D 0

+ +

+ +

+

+ + − +
+ + −

+ − =

 m=2 (30) 

2 n 8 2 n 7

2 n 6 2 n 5

2 n 4 2 n 3

2 n 2 2 n 1 2 n

(0.375 0.0527Ω )D (0.264Ω 0.5834)D
(0.0001 0.2694Ω )D (0.25 0.0675Ω )D
(0.0417 0.0467Ω )D 0.0292Ω D
0.0078Ω D 0.001Ω D 0.0417Ω D 0

+ +

+ +

+ +

+ +

+ + − +
+ + − −
+ + +

+ − =

 
m=3 (31) 

where, Ω defines as below, 

ωΔtΩ=  (32) 

These differential equations could be transformed to 
the eigenvalue problems; 

2 2 2 2(0.5 0.125Ω ) (0.125Ω 1) 0.5Ω 0λ λ+ + − + =  m=1 (33) 

5 4

3

2 2

2 2 2

2 2

(0.4167 0.0723Ω ) (0.2364Ω 0.75)
(0.4167 0.2143Ω ) (0.0346Ω 0.0833)
0.00088Ω 0.00006Ω 0

λ λ
λ λ

λ

+ + − +
+ + − +

− =

 m=2 (34) 

8 7
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2 2

2 2

2 2

2 2 2 2

(0.375 0.0527Ω ) (0.264Ω 0.5834)
(0.0001 0.2694Ω ) (0.25 0.0675Ω )
(0.0417 0.0467Ω ) 0.0292Ω
0.0078Ω 0.001Ω 0.0417Ω 0

λ λ
λ λ
λ λ

λ λ

+ + − +
+ + − −
+ + +

+ − =

 
m=3 (35) 

The numerical stability is ensured if the eigenvalue 
( λ ) is less or equal to one i.e. 1.0λ ≤ . In the other 
words, these polynomials should be positive definition. 
Here, the Routh-Hurwitz criterion is utilized to control 
the positive definition of these polynomials [25]. As a 
result, acceptable time step can be obtained. The results 
have been shown in Table 2. Here, T is the period of the 
system. Table 2 indicates that the N-IHOA formulation 
is conditionally stable. It should be noted that for a 
common dynamic analysis where time step is usually 
selected in a limited bound i.e. m 0.1TΔt0.001T ≤≤  , the 
N-IHOA method will be stable. For more comparison, 
the critical time step sizes of the IHOA method have 
been also inserted in Table 2 [16]. It is clear that the 
stability bounds of both the N-IHOA and the IHOA are 
approximately the same. The reason for this subject 
could be explained by studying the main concepts of 
these procedures. It should be noted that both methods 
utilizes similar idea i.e. using several previous 
information for integrating the equation of motion in the 
current time step. But, the fundamental relationships 
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and the method of applying the previous information are 
completely different between the IHOA and N-IHOA 
schemes. The proposed N-IHOA method uses both 
velocities and accelerations of the previous steps 
simultaneously, however; the IHOA only utilizes the 
accelerations of the previous increments. 

It should be emphasized that the proposed 
integration has been formulated with constant time step. 
The variable time step may decrease the accuracy and 
stability of the N-IHOA. The reason for this subject is 
that the weighted factors and also the stability domains 
have been studies under the assumption of constant time 
step. Therefore, the concept of using the variable time 
step is an interesting subject in multi time step 
integrations which is the aim of the future researches. 

 
 

TABLE 2. Stability condition for different accuracy order of 
the N-IHOA 

Integration’s order (m) crt∆  

IHOA N-IHOA 

1 0.5513T 0.5196T 
2 0.3899T 0.3052T 
3 0.2832T 0.2605T 
4 0.2586T 0.2568T 
5 0.2564T 0.2407T 
6 0.2682T 0.2416T 

 
 

4. NUMERICAL STUDIES 
 

In two previous sections, the fundamental relationships 
of the N-IHOA followed with the calculations of the 
weighted factors and stability conditions have been 
presented. Here, the N-IHOA algorithm is utilized for 
numerical analysis of some dynamic systems. For this 
propose, a computer program, using Fortran Power 
Station software, has been written by the author. Some 
bench mark problems which their exact solutions are 
available are solved to verify the validity of the 
prepared computer’s program and also the proposed 
numerical method.  

Wide range of dynamic systems such as linear and 
nonlinear, single and multi degree of freedom, damped 
and un-damped, free and forced from finite element and 
finite difference, for different kinds of structures i.e. 
Euler beam and portal frame are used to verify the 
proposed N-IHOA integration in comparison with some 
other existing methods. For this purpose, results of the 
N-IHOA (NI) are compared with some well-known 
schemes such as Newmark linear acceleration approach 
(LA), Wilson-θ (WT) and trapezoidal method (CA). 
Moreover, some problems are utilized to compare the 
ability and efficiency of the proposed method (N-
IHOA) with the IHOA scheme. 

4. 1. The Nonlinear Free Vibration     The nonlinear 
free vibration of a dynamic system with the following 
equation of motion and initial values is going to be 
solved [27], 

5.0(0)D0D(0)

000D01500DD100D 32

==

=+++
&

&&

 
(36) 

The quasi-exact solution is obtained using higher 
order integrations i.e. the Bathe method with small time 
step 0.0005 sec. Two time steps as 0.033 and 0.025 
second are utilized for the numerical dynamic analysis. 
Figures 1 and 2 show the displacement response of this 
vibration between times 9 and 10 second. In both time 
steps, the error of the NI4 and NI5 is less than other 
methods (Newmark and Wilson-θ) so that these 
proposed integrations could present the response of 
nonlinear vibration with less error. In the other words, 
the error of the NI1, NI2 and NI3 algorithms is more 
than the NI4 and NI5. By reducing time step in Figures 
2, these methods come near to the exact solution. It 
should be noted that the proposed NI4 and NI5 time 
integrations have the highest efficiency in this nonlinear 
vibration. 
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Figure 1. Response of the nonlinear free vibration for time 
step 0.033 s 
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Figure 2. Response of the nonlinear free vibration for time 
step 0.025 s 
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4. 2. Portal Frame Under Based Excitation    A 
concrete plane frame with two bays and three stories 
(see Figure 3) is analyzed under El Centro based 
acceleration [28]. This structure has elastic 
geometrically nonlinear behavior and the co-rotational 
finite element formulation is used to model this 
nonlinearity [29]. The cross section and moment of area 
of beams and columns are 0.40 m2, 0.03333 m4, 0.64 m2 
and 0.03413 m4, respectively. The mass matrix is 
consistent [30] and in order to account for typical 
additional masses such as slabs, floors, ceilings and etc., 
material density is assumed to be 1000 times the mass 
density of concrete i.e. ρ=2500000 kg/m3.  

By applying the El Centro ground acceleration (see 
Figure 4) and using two time steps as 0.02 sec and 0.01 
sec, the dynamic response of the structure is calculated 
within duration of 10 seconds. Figures 5 and 6 show the 
horizontal response of top of the frame when time step 
is 0.02 sec and 0.01 sec, respectively. If time step is 
0.02 sec, the NI2 and NI3 procedures are unstable; but 
the NI1, NI4 and NI5 integrations can present the time 
response curve. Figure 5 also shows that the proposed 
NI4 and NI5 schemes are more accurate than the well 
known methods such as Wilson-θ and Newmark-β so 
that the NI4 and NI5 integrations present the quasi-exact 
solution which is obtained by the higher order 
integration i.e. the Bathe method with time step 0.0005 
sec. As a result, the NI4 and NI5 methods have an 
excellent efficiency in the nonlinear dynamic analysis of 
finite element models. By reducing time step to 0.01 
sec, all orders of the proposed method (NI1, 2…7), 
converge to the exact solution and their accuracy is 
higher than the common methods (Figure 6). 
 
4. 3. Elastic Pendulum     Figure 7 shows an elastic 
pendulum which is modeled by a two nodes truss 
element [12]. This structure has large deflection 
nonlinearity. Here, total Lagrange finite element 
approach is utilized to form the nonlinear equilibrium 
equations. The mass matrix is consistent [30] and the 
axial rigidity (AE) and material density per element 
length (ρA) are 104 N and 6.57 kg/m, respectively. 
Using two time steps as 0.05 sec and 0.01 sec, Bathe has 
been analyzed this structure in a small time domain 
between 0 to 5 seconds. Here, the analysis time domain 
is extended to 50 seconds and time step is considered as 
0.05 sec. Figure 8 shows the response of the horizontal 
displacement of the pendulum.  

The exact solution has been obtained by the Bathe 
method with small time step 0.0001 sec. By this time 
step, some methods such as the Wilson-θ, NI2 and NI3 
have many fluctuate and they will be unstable. From 
Figure 8, it is clear that the proposed NI1, NI4 and NI5 
producers are more accurate than the Newmark methods 
so that the NI4 and NI5 integrations present the semi-
exact solution. 

 
Figure 3. Portal frame under based excitation 
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Figure 4. El Centro ground acceleration 
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Figure 5. Response of Horizontal displacement of top of the 
frame for time step 0.02 s 
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Figure 6. Response of Horizontal displacement of top of the 
frame for time step 0.01 s 
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Therefore, the proposed time integration has very 
good efficiency in nonlinear dynamic analysis. 
Moreover, this example is utilized to compare the IHOA 
and NI time integrations. Using time step as 0.05 sec, all 
accuracy order of the IHOA procedure (IHOA-1, 
IHOA-2, IHOA-3, IHOA-4 and IHOA-5) present 
unique response which has been shown in Figure 9.   
 
 

 
Figure 7. Elastic pendulum 
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Figure 8. Response of horizontal displacement of the elastic 
pendulum for time step 0.05 sec 
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Figure 9. Response of horizontal displacement of elastic 
pendulum with IHOA and N-IHOA for time step 0.05 s 

From Figure 9 it is concluded that the proposed NI1, 
NI4 and NI5 procedures have more accuracy than the 
IHOA integrations. It should be noted that by increasing 
time step, i. e. 0.075 sec., the proposed time integrations 
(NI methods) will be unstable, however the IHOA 
procedures are stable and can present the response by 
some few errors. Therefore, the IHOA is more stable 
than the N-IHOA. 
 
4. 4. Euler Beam      Here, the vibration of clamped 
Euler beam is analyzed by the proposed method. The 
governing equation for the Euler beam’s motion is as 
follows [4]; 

)(P
2
D2

EI
2

2

2t

D2
ρA tx,=

∂

∂

∂

∂
+

∂

∂














xx

 
(37) 

The boundary conditions of clamped Euler beam can be 
written in the following form 

( )
2 2

2 2
x 0 x L x L

D D DD 0, t 0,     0,     EI 0,    EI 0
x x x x= = =

 ∂ ∂ ∂ ∂
= = = =  ∂ ∂ ∂ ∂ 

 (38) 

Also the initial conditions are as follows; 

0 0D(x, 0) D (x ),         D(x, 0) D (x)= =& &  (39) 

The length of beam, material density, modulus of 
elasticity, cross section and moment of area are 0.508 
m, 2768 kg/m3, 6.897×1010 N/m2, 6.4516×10-4 m2 and 
3.4686×10-8 m4, respectively. The finite differences 
approach is utilized to obtain the dynamic equilibrium 
equations of Euler beam. Using one dimensional mesh 
and central finite differences, the dynamic equilibrium 
equation for i th node of mesh is as follows; 

( )
ix , t)

2
i i 2 i 1 i i 1 i 2

2 4

D D 4D 6D 4D D
ρA EI P(

t Δx
+ + − −

∂ − + − +
+ =

∂

 
(40) 

Here, x∆  is the distance between mesh nodes which 
is assumed to be constant. Furthermore, a mesh with 
eleven nodes ( 0508.0=∆x  m) is considered. All 
boundary conditions are also expressed by central finite 
differences. As a result, a linear system of dynamic 
equations is obtained. At this stage, numerical time 
integrations are used to calculate the time response of 
beam. This structure is analyzed under a harmonic load 
which is applied to the free end of the beam as follows; 

NtL )30sin(99632.88t),(P =  (41) 

The initial displacement and initial velocities are set 
zero. Figure 10 shows the quasi exact vibration of free 
end displacement of the beam achieved by very small 
time step i.e. 0.00001 second. Since the minimum 
period of beam is 0.002226 second, the analysis is 
started by time step 0.001 second. By this time step, a 
dramatically growth in numerical errors which leads to 
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unstable vibrations has been occurred in all methods. 
Therefore, time step reduces so that each integration 
could present the quasi exact solution. If time step is 
0.0007 second, the NI1, IHOA-1, CA (Newmark 
Constant Acceleration) and LA (Newmark Linear 
Acceleration) methods present the quasi exact solution 
of Figure 10. Regardless the same efficiency, the 
analysis time of the proposed NI1 scheme is less than 
other techniques (as described in the portal frame). 
Furthermore, by reducing time step to 0.0005 second, 
the previous integrations (NI1, IHOA-1, CA and LA); 
the NI5 and IHOA-5 also lead to the quasi exact 
solution. When time step is 0.0004 second, all methods 
can present the quasi exact response except the IHOA-2, 
3 and NI2, 3; however smaller time steps such as 0.0003 
second solve this problem. These analyses show that the 
first, fourth and fifth accuracy order of the proposed 
integration (NI1, NI4 and NI5) have more ability than 
other orders. Undamped vibrations which do not appear 
in real systems cause a few reduction in efficiency of 
the N-IHOA. Moreover, this example shows that the 
proposed time integration can be successfully used for 
dynamic analysis of systems which are modeled by 
finite differences methods. 

Wide range of dynamic analyses performed here 
clearly state that the numerical accuracy is different 
with the mathematical accuracy. From the mathematical 
point of view, it is expected that by increasing the 
accuracy order, the more accurate results are obtained. 
In practice, this behavior does not always happen. For 
example, the second and third order schemes of the 
proposed integration have not suitable efficiency in 
numerical examples compared with the first, forth and 
fifth order methods. Some reasons could be presented 
for this subject such as, the lack of formulations in using 
the Taylor expansion and the inverse expansion which 
are the approximation methods (not exact), the effect of 
numerical errors and etc. 
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Figure 10. Tip displacement of the Euler beam 

5. CONCLUDING REMARKS 
 

The new implicit higher order accuracy method i.e. the 
N-IHOA technique was proposed for numerical 
dynamic analysis under the assumption of constant time 
step. Utilizing both velocity and acceleration vectors of 
previous time steps for integrating the dynamic equation 
of motion is the main originality of the suggested 
method compared with other techniques such as the 
IHOA scheme. These formulations were followed by a 
comprehensive study on the mathematical accuracy 
order and the stability condition of the proposed 
method. From the mathematical point of view, it proves 
that the new multi time step integration is conditionally 
stable and the displacement’s accuracy of the N-IHOA 
scheme is one order less than the displacement 
formulated by the IHOA method. It should be noted that 
both methods present the velocity vector by the same 
mathematical accuracy order. However, simplicity, 
lower computational efforts and lower requirement 
memory are the main advantageous of the proposed 
integration compared with the IHOA method. The 
reason for this subject is that the new method runs with 
only one set of weighted factors; however the IHOA 
technique requires two groups of different values. Wide 
range of numerical dynamic analyses also show that by 
a similar time step, the numerical accuracy of the 
proposed method is higher than the common methods 
such as the Wilson-θ and the Newmark-β schemes. 
Moreover, it is proved numerically that the proposed 
integration with accuracy orders 4 (NI4) and 5 (NI5) 
have the best efficiency in all examples.  
 
 
6. REFERENCES 
 
1. Chung, J. and Hulbert, G., “A time integration method for 

structural dynamics with improved numerical dissipation: the 
generalized α-method”, Journal of Applied Mechanics, Vol. 
30, (1983), 371-384. 

2. Hibler, H.M., Hughes, T.J.R. and Taylor, R.L., “Improver 
numerical dissipation for time integration algorithm in structural 
dynamics”, Earthquake Engineering and Structural 
Dynamics, Vol. 5, (1977), 283-292. 

3. Wood, W.L., Bossak, M. and Zienkiewicz, O.C., “A alpha 
modification of Newmark’s method” International Journal for 
numerical methods in Engineering, Vol. 15, (1981), 1562-
1566. 

4. Kim, S.J., Cho, J.Y. and Kim, W.D., “From the trapezoidal rule 
to higher order accurate and unconditionally stable time-
integration method for structural dynamics”, Computer 
Methods in Applied Mechanics and Engineering, Vol. 149, 
(1997), 73-88. 

5. Fung, T.C., “Third order time-step integration methods with 
controllable numerical dissipation”, Communications in 
Numerical Methods in Engineering, Vol. 13, (1997), 307-315. 

6. Fung, T.C., “Complex-time step newmark methods with 
controllable numerical dissipation”, International Journal for 
numerical methods in Engineering, Vol. 41, (1998), 65-93. 



313                                           J. Alamatian / IJE TRANSACTIONS B: Applications   Vol. 25, No. 4, (November 2012)  303-314 
 

 

7. Tamma, K.K., Zhou, X. and Sha D., “A Theory of development 
and design of generalized integration operators for 
computational structural dynamics”, International Journal for 
numerical methods in Engineering, Vol. 50, (2001), 1619-
1664. 

8. Modak, S. and Sotelino, E., “The generalized method for 
structural dynamic applications”, Advances in Engineering 
Software, Vol. 33, (2002), 565-575. 

9. Mancuso, M. and Ubertini, F., “The Nørsett time integration 
methodology for finite element transient analysis”, Computer 
Methods in Applied Mechanics and Engineering, Vol. 191, 
(2002), 3297-3327. 

10. Bathe, K.J. and Baig, M.M.I., “On a composite implicit time 
integration procedure for nonlinear dynamics”, Computers and 
Structures, Vol. 83, (2005), 2513-2524. 

11. Keierleber, C.W. and Rosson, B.T., “Higher-Order Implicit 
Dynamic Time Integration Method”, Journal of Structural 
Engineering ASCE, Vol. 131-8, (2005), 1267-1276. 

12. Bathe, K.J., “Conserving energy and momentum in nonlinear 
dynamics: A simple implicit time integration scheme”, 
Computers and Structures, Vol. 85, (2007), 437-445. 

13. Soares, D. and Mansur, W.J., “A frequency-domain FEM 
approach based on implicit Green’s functions for non-linear 
dynamic analysis”, International Journal of Solids and 
Structures, Vol. 42-23, (2005), 6003-6014. 

14. Loureiro, F.S. and Mansur, W.J., “A novel time-marching 
scheme using numerical Green’s functions: A comparative 
study for the scalar wave equation”, Computer Methods in 
Applied Mechanics and Engineering, Vol. 199, (2010), 1502-
1512. 

15. Wang, M.F. and Au, F.T.K., “Precise integration methods based 
on Lagrange piecewise interpolation polynomials”, 
International Journal for Numerical Methods in Engineering, 
Vol. 77, (2009), 998-1014. 

16. Rezaiee-Pajand, M. and Alamatian, J., “Implicit higher order 
accuracy method for numerical integration in dynamic 
analysis”, Journal of Structural Engineering, ASCE, Vol. 134-
136, (2008), 973-985. 

17. Liu, T., Zhao, C., Li, Q. and Zhang, L, “An efficient backward 
Euler time-integration method for nonlinear dynamic analysis of 
structures”, Computers and Structures, Vol. 106-107, (2012), 
20-28.  

18. Hulbert, G. and Chung, J., “Explicit time integration algorithm 
for structural dynamics with optimal numerical dissipation”, 
Computer Methods in Applied Mechanics and Engineering, 
Vol. 137, (1996), 175-188. 

 

19. Hoff, C. and Taylor, R.L., “Higher derivative explicit one step 
methods for non-linear dynamic problems. Part I: Design and 
theory”, International Journal for Numerical Methods in 
Engineering, Vol. 29, (1990), 275-290. 

20. Katona, M. and Zienkiewicz, O.C., “A unified set of single step 
algorithms Part 3: The beta-m method, A generalization of the 
Newmark scheme”, International Journal for Numerical 
Methods in Engineering, Vol. 21, (1985), 1345-1359. 

21. Rostami, S., Shojaee, S. and Moeinadini, A., “A parabolic 
acceleration time integration method for structural dynamics 
using quartic B-spline functions”, Applied Mathematical 
Modeling, (2011), in press. 

22. Zhai, W.M., “Two simple fast integration methods for large-
scale dynamic problems in engineering,” International Journal 
for numerical methods in Engineering, Vol. 39, (1996), 4199-
4214. 

23. Rezaiee-Pajand, M. and Alamatian, J., “Numerical time 
integration for dynamic analysis using new higher order 
predictor-corrector method”, Journal of Engineering 
Computations, Vol. 25-26, (2008), 541-568. 

24. Alamatian, J. and Rezaeepazhand, J., “A simple approach for 
etermination of actuator and sensor locations in smart structures 
subjected to the dynamic loads”, International Journal of 
Engineering, Vol. 24, No. 4, (2011), 341-349. 

25. Pena, J.M., “Characterizations and stable tests for the Routh-
Hurwitz conditions and for total positivity”, Linear Algebra 
and its Applications, Vol. 393, (2004), 319-332. 

26. Rezaiee-Pajand, M. and Alamatian, J., “Nonlinear dynamic 
analysis by Dynamic Relaxation method”, Journal of 
Structural Engineering and Mechanics, Vol. 28-5, (2008), pp. 
549-570. 

27. Mickens, R.E., “A numerical integration technique for 
conservative oscillators combining non-standard finite 
differences methods with a Hamilton’s principle”, Journal of 
Sounds and Vibrations, Vol. 285, (2005), 477-482. 

28. Liu, Q., Zhang, J. and Yan, L., “A numerical method of 
calculating first and second derivatives of dynamic response 
based on Gauss precise time step integration method”, 
European Journal of Mechanics A/Solids, Vol. 29, (2010), 
370-377. 

29. Felippa, C.A., “Nonlinear Finite Element Methods”, <http:// 
www.colorado.edu /courses.d /nfemd/> (Feb. 10 2002). 

30. Paz, M., “Structural Dynamics: Theory and Computation”, 
McGraw Hill, New York, (1979). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.colorado.edu


                                 J. Alamatian / IJE TRANSACTIONS B: Applications   Vol. 25, No. 4, (November 2012)  303-314                                    314 
 

 

  

A Modified Multi Time Step Integration for Dynamic Analysis 
 
J. Alamatian  
 
Civil Engineering Department, Mashhad Branch, Islamic Azad University, Mashhad, Iran, 91735-413 

 
 

P A P E R  I N F O   
 

 

Paper history: 
Received 7 June 2012 
Received in revised form 18 July 2012 
Accepted 30 August 2012 

 
 

Keywords:   
Dynamic Analysis 
Implicit Multi Time Step 
Higher Order Integration 
 
 
 

 
 

  چکیده
   

با این روش می . این مقاله، به یک تابع اولیه ضمنی چند گامی جدید براي تحلیل دینامیکی با گام زمانی ثابت، می پردازد
 براي. توان مهمترین کاستیهاي روشهاي چند گامی یعنی، حجم بالاي محاسبات و زیاد بودن حافظه مورد نیاز را بهبود داد

این منظور، بردارهاي سرعت و شتاب چندین گام زمانی گذشته به ترتیب، براي تابع اولیه گیري بردارهاي تغییرمکان و 
می توان نشان داد، چنین فرایندي تنها یک دسته عامل وزنی را در رابطه ها . سرعت گام زمانی جاري استفاده می شوند

فظه مورد نیاز تابع اولیه پیشنهادي، در مقایسه با روشهاي چند گامی وارد می کند؛ به گونه اي که حجم محاسبات و حا
بنابراین، ویژگیهایی . مشابه که از چندین گروه عامل وزنی براي سنجش پایداري و دقت استفاده می کنند، کمتر می باشد

خطی سامانه ل دینامیکی غیرمانند سادگی، محاسبات کم و حافظه اندك مورد نیاز، کارایی تابع اولیه پیشنهادي را درتحلی
هارویتز، به ترتیب براي محاسبه عاملهاي وزنی و تعیین -در اینجا، بسط تیلور و معیار روت. هاي بزرگ افزایش می دهد

براي بررسی کارایی عددي رابطه سازي جدید، چند سامانه دینامیکی شامل . محدوده پایداري تابع اولیه به کار می روند
نتایج نشان می دهند، با یک گام زمانی یکسان، دقت و سرعت . ویلر تحلیل می شوندنوسان غیرخطی، قاب پرتال و تیر ا

تتا و پاره اي از روشهاي چندگامی دیگر -بتا، ویلسون- روش پیشنهادي بیشتر از روشهاي متداول مانند شیوه هاي نیومارك
 .می باشد
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