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A B S T R A C T  

   

The purpose of this rersearch is to analyze the effective application of particular earth orbits in 
dynamical modeling of relative motion problem between two spacecraft. One challenge in 
implementing these motions is maintaining the relations as it experiences orbital perturbations (zonal 
harmonics J2 and J3), notably due to the Earth’s oblateness. Certain aspects of the orbital geometry can 
remain virtually fixed over extended periods of time due to a natural phenomenon called a frozen orbit. 
Specifically, the elements of the orbital geometry that can remain fixed are the argument of perigee (ω) 
and eccentricity (e). Simulation results show that, using frozen orbits phenomenon results in 
considerable propellant saving and performance duration a relative orbital mission is preferable. In this 
regard, an method is developed that determines if the relative orbit conditions will be met given the 
initial differences in frozen orbit elements (argument of perigee and eccentricity) for each of two 
spacecraft. Using the frozen conditions in relative motion dynamics can be reduced the amount of 
required propellant for orbit correction manoeuvres due to the harmonic perturbations over the course 
of a year. 
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1. INTRODUCTION1 
 
The first application where a frozen orbit was used is 
the TOPEX mission that treated with target of 
topography experiment in the 1986. In this mission, 
frozen orbits are characterized by almost no long-term 
change in eccentricity or argument of perigee [1]. The 
standard method of frozen orbit prediction is shown to 
be inadequate for TOPEX inclinations due to the effect 
of higher degree zonal harmonic gravity terms. This 
method is described from which long-term motion in 
mean eccentricity, argument of perigee, and inclination 
can be predicted without numerical integration and is 
used to locate frozen orbits. Frauenholz, Bhat, and 
Shapiro discuss the observed behavior over three years 
of the semi-major axis, inclination and the frozen 
eccentricity vector in this mission. The precision orbit 
determination used on this project produced a radial 
accuracy of about 4 cm. The osculating to mean element 
conversion technique was a method developed by Guinn 
[2]. Here, the mean orbital elements remove all central 
and third-body perturbations acting over ten days. The 
predicted decay of the semi-major axis was almost 
entirely due to drag [3].  
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As estimation observed, other forces influencing the 
semi-major axis include solar radiation and thermal 
gradients. These body-fixed forces either increase or 
decrease the orbit, depending on the orientation of the 
satellite. As for the inclination, the observed variations 
in inclination corresponded very well to the predictions. 
The primary perturbing factors were the third-body 
forces of lunar and solar gravity. Next, Chao and et al. 
[4] describe a formation that uses a frozen orbit as the 
reference orbit of the centersat. This strategy also uses 
differential GPS measurements, MEMS and auto-
feedback control.  Station-keeping maneuvers are 
necessary to keep it in a frozen orbit. Formation-
keeping maneuvers are required to have each subsat 
follow its reference orbit. The results of the analysis 
show only 10 to 30 m/s per year per satellite in ΔV are 
required to control a 1 km radius cluster for LEO orbit 
[5]. Basis researches show that the eccentricity frozen 
orbit was first described for SEASAT, but it has been 
studied for the Earth-orbiting missions of the 
atmospheric explorer, the heat capacity mapping 
mission, LANDSAT, GEOSAT, and TOPEX and for 
Martian and Lunar orbiters [6]. In another paper, 
Shapiro [7] states in his abstract perspective: "frozen 
orbits arise from bifurcations or singularities in the 
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relevant system of differential equations obtained via 
the appropriate Hamiltonian or Lagrangian 
formulation". He gives equations for de/dt and dω/dt 
where all harmonics can be included. 
     Zhou et al. [8] also discuss frozen orbits. They say 
that the effects of solar radiation and atmospheric drag 
greatly affect the oscillation pattern, while the 
gravitational effects of the Sun and Moon only slightly 
affect this pattern and the forces correction maneuvers 
to maintain the frozen orbit [8]. 
     Therefore, by considering the above-noted, the 
objective of this paper is description and application of 
this particular earth orbits in dynamical modeling of 
relative motion between two spacecraft. In simulation of 
spacecraft relative motion equations, using this frozen 
orbit phenomenon results in considerable propellant 
saving and spacecraft performance. Also, an algorithm 
is developed that determines if the relative orbit 
conditions will be met given the initial differences in 
particular orbit elements for two spacecraft. 
 
 
2. EQUATIONS OF MOTION ANALYSIS 
 
The following subsections will discuss the linearized 
relative motion and frozen orbit equations for using this 
set of equations in development of dynamical modeling 
and next, obtaining simulation results.  
 
2. 1. Relative Motion (Hill’s) Equations   One 
technology that makes satellite relative motion feasible 
is Clohessy-Wiltshire-Hill’s orbits equations which 
have historically been used in Rendezvous and Docking 
missions. The full development of these equations can 
be found in multiple texts including Vallado and 
McClain, as followed here. The derivation begins with 
the orbital two-body equation of motion of the reference 
satellite [9]: 

3
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    Here, r
refr is the position vector from centre of the 

earth to the reference satellite, refr is the magnitude of 
this vector and µ is the gravitational coefficient. The 
orbital two-body equation of motion of the chaser 
satellite is similar, but with the addition of a force for 
Rendezvous problem, thrustF : 
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     So, r
chr is the position vector from centre of the earth 

to the chaser satellite, chr is the magnitude of this vector. 
Next, define the relative vector as the difference 
between the chaser and the reference satellite [9]. 

rel ch refr r r= −
r r r  (3) 

     Differentiate this equation twice, so Equations (1) 
and (2) can be substituted in. The equations are 
rearranged and linearized about the reference orbit. The 
Hill’s equations are then expressed in terms of 
Cartesian, respectively: 
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     Since the orbits are circular, n is the mean motion 
and is given by: 

3
refn rµ=  (5) 

     To solve Hill’s equations for coasting or unforced 
motion, given the initial relative difference in position 
between the two satellites 0 0 0( , , )x y z , the initial relative 
difference in velocity 

0 0 0( , , )& & &x y z , the mean motion of 
the reference satellite (n), and the time interval of 
interest, these equations give the relative motion 
described as following [10]: 

0 0 0
0 0

0 0 0
0 0

0 0

0
0

2 2
( ) sin( ) (3 ) cos( ) (4 )

4 2 2( ) (6 ) sin( ) cos( ) ( )

           (6 3 )

( ) cos( ) sin( )

x y yx t nt x nt x
n n n

y x xy t x nt nt y
n n n

nx y t
zz t z nt nt
n

 = − + + +

 = + + + −

 − +

 = +

& & &

& & &

&
&

 

(6) 

   The corresponding rates are then, 
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2. 2. Frozen Orbits Equations   Chobotov in his text 
book describes a frozen orbit as one for which the mean 
elements chosen to produce constant values of 
eccentricity (e) and argument of perigee (ω) with time 
[11]. This property stops the rotation of perigee. The 
eccentricity of the frozen orbit will remain constant for 
years if the solar radiation pressure and the atmospheric 
drag are not too influential. The variation rate equations 
for eccentricity and argument of perigee that incorporate 
only zonal harmonics J2 and J3 are as follows: 

3
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      Here, RE is the Earth’s mean equatorial radius, a is 
Semi-major axis and i is orbit inclination. At the critical 
inclination of i=63.4° or 116.6°, the term becomes zero 
in both Equations (8) and (9), resulting in solutions with 
nearly constant values of eccentricity and argument of 
perigee. The Russian Molniya orbits are near the critical 
inclination of 63.4°and had this characteristic [11]. 
     The eccentricity rate de/dt is zero if i=0 or the critical 
inclination, or if ω=90 or 270 degrees. Since most 
missions do not fly in the equatorial plane or at critical 
inclination, ω must be one of above-noted values for 
this condition to occur. The argument of perigee rate 
expression dω/dt is zero at the critical inclination or 
when the square bracketed term in Equation (9) is equal 
to zero. By setting this term equal to zero, for a given 
value of a and i, the mean "frozen eccentricity" can thus 
be found. For ω=90°, the frozen eccentricity is [11]: 
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     This eccentricity is of the order of 10-3 because J3 is 
three orders of magnitude less than J2. Chobotov also 
states that, "For initial conditions that are near, but not 
at, the frozen point, e and ω will move counter 
clockwise in closed contours. For inclinations less than 
63.435 deg or greater than 116.565 deg, the motion is 
clockwise". For conditions farther from the frozen point, 
the contours do not close [11]. Figure 1 shows an 
example of the closed contours about the frozen 
conditions for the TOPEX mission [1]. 
 
2.3. Development of Difference Equations   In 
order to directly find the time history of the differences 
in eccentricity and argument of perigee between the 
satellites about discussion of relative motion conditions, 
expressions for d(Δe)/dt and d(Δω)/dt are needed that 
Δω is the difference in argument of perigee and Δe is 
the difference in eccentricity between the satellites.  
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Figure 1. Closed contours about the frozen orbit conditions. 

As developed previously, the equations for the 
change in eccentricity and argument of perigee with 
time are defined [11]. Using the delta functions above 
with Equations (8) and (9), it follows that: 
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     Remember that:  
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     In the above equations, ei is indexed the eccentricity 
and ωi is argument of perigee of satellite and n is mean 
angular rate of circular reference orbit. Then, as follows: 
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     In order to simplify Equations (15) and (16), one 
might want to make a few assumptions using small 
angle approximations. 
 
2. 4. Application of Developed Equations to Hill’s 
Problem   In the analysis discussed so far, the orbital 
elements have been used to describe the orbits motion 
of either satellite. For understanding the general 
behavior of these orbits, Hill’s equations are used. To 
study of relative motion under these particular orbits, a 
translation between the orbital elements and the Hill’s 
initial conditions is desired. Therefore, an algorithm is 
developed for this translation that derived by Vallado 
and McClain [9]. The resulting radius and velocity 
vectors are in the PQW coordinate system. These 
coordinates are transformed to IJK coordinates, then, 
these IJK coordinates are transformed to RSW 
coordinates. The relative RSW coordinates are used to 
determine the Hill’s initial conditions [9]. This 
algorithm is defined as follows: 
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     Here, p is the semi-parameter and ν is the true 
anomaly. The transfer matrixes of described systems are 
available in some articles [9]. Next, the relative distance 
between the chaser and reference satellites in the IJK 
system can now be found: 

, , ,rel IJK ch IJK ref IJKr r r= −
r r r  (19) 

     These IJK vectors must be converted to the RSW 
system. The relative radius vector in the RSW 
coordinate system is as follows: 
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2. 5. Orbit Correction Manoeuvres   Since satellite 
relative motions are utilized smaller satellites with little 
or no propellant capability, the amount of propellant 
required to maintain a relation is of primary concern. An 
analysis was performed in order to understand the 
annual propellant requirements for orbits at frozen 
conditions. This initial study quantifies the amount of 
propellant needed to correct the orbital perturbations 
over the course of a year. As discussed previously, the 
orbital perturbations of interest are quantified by the 
equations that describe the change in eccentricity and 
argument of perigee difference with time [3]. These 
equations for d(∆e)/dt and d(∆ω)/dt are Equations (15) 
and (16), respectively. These values are then multiplied 
by the time interval of one year to get an approximation 
for the yearly deviation in eccentricity and argument of 
perigee. The resulting values will be referred to as δe 
and δω, the deviations in the eccentricity and argument 
of perigee difference. The amount of propellant (ΔV) 
calculated is the amount needed to correct these δe and 
δω values. This is only a snapshot in time of a cyclic 
motion, but for comparison the same snapshot in time is 
made for a range of initial settings in eccentricity and 
argument of perigee near by the frozen condition [5]. A 
purely tangential thrust is assumed, since this type of 
thrust is the most efficient in altering the eccentricity. 
The amount of propellant needed can be obtained as 
following approximate expression [12]: 

2 2 21 ( ) ( )
2 CV V e eδ δω∆ ≅ +  (21) 

     That, VC is the velocity of a circular orbit that is 
obtained the following respect to: 

CV rµ=  (22) 

     Figures 2 and 3 show the simple of simulation results 
of this survey. As obtained results show, the lowest ΔV 
value is at the frozen condition, as expected. The 
argument of perigee value requiring for the least 

propellant is ω=90 deg, Since the cos(ω) term in the 
Equation (8) is zero. Resulting in a de/dt   value of zero, 
this means that the eccentricity value remains fixed even 
if the eccentricity is not the "frozen" value. Simulation 
results are interesting to note that the amount of 
propellant required is not linearly symmetric about the 
frozen condition. So, with eccentricity values increase, 
the amount of propellant needed for orbit corrections 
also increases. Moreover, obtained results show with 
inclination changes, the general shape of the resulting 
contours remains the same. 
 
 

 
Figure 2a. ΔV values on eccentricity and argument of perigee 
(i= 90°). 
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Figure 2b. ΔV contours on e and ω (i= 90°). 

 

 
Figure 3a. ΔV values on eccentricity and argument of perigee 
(i= 25°) 
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Figure 3b. ΔV contours on e and ω (i= 25°). 

  
 
TABLE 1. Consideration and Simulation Initial Conditions. 

Problem 
No. 

Eccentricity  
SAT I 

Eccentricity  
SAT II 

A/Perigee 
(ω),  

SAT I 

A/Perigee 
(ω), 

 SAT II 

(a) 9.61e-4 9.71e-4 90 90 

(b) 1.0e-4 1.1e-4 90 90 

(c) 1.0e-4 1.1e-4 60 120 

 
 
3. SIMULATION RESULTS AND DISCUSSION 
 
For effects evaluation and analysis of these particular 
orbits in the relative motion dynamics, first is required 
to define the initial conditions for presented problem. 
Simulation results are obtained to use the following 
inputs (Table 1). 
     The first problem has one satellite at the frozen 
eccentricity value and other satellite with an eccentricity 
10-5 greater than this value. In the second problem have 
two satellites in frozen conditions, with the different 
eccentricity. Similar to previous conditions, the third 
problem has the same eccentricity values, but with 
different argument of perigee. The value of the semi 
major axis (a) is assumed 7711.92 km that is obtained 
of TOPEX mission. The inclination is set at 90 degrees, 
since a polar orbit is being used. The gravitational 
parameter and perturbations are given in Ref [9]. When 
trying to simulation for finding Δe and Δω, e and ω 
cannot remain constant, since these values are changing 
with time. Due to the very small numbers used in this 
analysis, subtracting or adding combinations of 
independent states resulted in numerical errors. The 
results are obtained for a two-year time duration. 
Figures 4 show the closed contours that occur when the 
eccentricity is plotted against the argument of perigee 
near to the frozen condition. The results for first 
problem are closer to the frozen conditions and circular-
type contours, while other are farther from the frozen 
conditions, and pear-shaped contours. 
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Figure 4. Variations of eccentricity vs. argument of perigee 
 
 

      The differences in eccentricity between Satellites I 
and II are shown in following plots (Figures 5). Similar 
to previous conditions, the plots repeat periodically to 
the same magnitudes. The magnitudes for problem (a) 
and (b) are varied between ± Δe0, the initial eccentricity 
difference. However, for problem (c), the magnitude of 
this variation is an order of magnitude larger than the 
initial difference in eccentricity. Also, in this problem 
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the difference in eccentricity rises sharply from the 
minimum eccentricity difference to the maximum 
eccentricity difference. 
     The value differences in argument of perigee 
between Satellites I and II are shown in Figures 6. 
Similar to previous conditions, the plots repeat 
periodically to the same magnitudes. Moreover, for the 
problem (c), even though the maximum difference in 
argument of perigee is two orders of magnitude larger 
than the other cases, this maximum magnitude is passed 
through very quickly. This means that for the majority 
of the time, the two satellites have similar argument of 
perigee values, when are near to frozen conditions. 
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Figure 5. Eccentricity difference vs. time.   
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Figure 6. Argument of perigee difference vs. time 

 
4. CONCLUSION 
 
In this research, effects of application the particular 
earth orbits in dynamical modeling problem of 
spacecraft relative motion are analyzed. One challenge 
in implementing these motions is maintaining the 
relations as it experiences orbital perturbations (zonal 
harmonics J2 and J3), most notably due to the non-
spherical Earth. A natural phenomenon exists called a 
frozen orbit, for which the orbital elements of argument 
of perigee and eccentricity remain virtually fixed over 
extended periods of time. Simulation results show that, 
using frozen orbits conditions in relative motion 
dynamics results can be reduced the amount of required 
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propellant for orbit correction maneuvers. This result is 
due to the perturbations over the course of a year and 
can extended the duration in orbital mission. 
 
 
5. FURTHER WORKS 
 
In the future, first the effects of other perturbations, 
such as atmospheric drag, solar radiation pressure, and 
lunar and solar gravity on the frozen orbit results could 
be studied. In addition, the effects of higher-level zonal 
harmonic perturbations and nonlinear models to 
elliptical reference orbits about relative motion 
dynamics could be investigated. 
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  چکیده
   

سازي مسئله دینامیک نسبی بین دو فضاپیما و نقش  اي زمینی خاص در مدلهدف این تحقیق، تحلیل کاربرد مؤثر مداره
ها در  یکی از چالش. باشد آنها در کاهش محسوس مانورهاي تصحیح مدار در مدت زمان یک ماموریت مداري نسبی می

ر اغتشاشات سازي این حرکات، حفظ شرایط نسبی بین دو وسیله بوده که بیشتر به علت ناهمگن بودن زمین دچا پیاده
تواند عملا در بازه وسیعی از زمان ثابت  هاي معینی از شکل هندسی مدار می جنبه. گردد می ) J3و  J2اي  هارمونیک منطقه(

هاي مداري ثابت در این پدیده  از جمله المان. باشد اي طبیعی تحت عنوان مدار منجمد می بمانند که این ناشی از پدیده
نتایج شبیه سازي صورت گرفته، اهمیت . اشاره نمود) e(و خروج از مرکز ) ω(ضیض توان به نرخ آرگومان ح می

سازي دینامیک نسبی، نقش مؤثر آن در کاهش خطاي موقعیت نسبی و  بکارگیري شرایط مدارهاي منجمد در بحث مدل
سازد که آیا شرایط  یدر همین راستا، متدي عرضه شده، که مشخص م. نماید بالطبع افزایش عملکرد سیستم را بازگو می

با . هاي اولیه در میزان خروج از مرکز و آرگومان حضیض براي دو فضاپیما رعایت خواهد شد مدار هیل با توجه به تفاوت
، میزان پیشران موردنیاز فضاپیما جهت مانورهاي تصحیح مدار ناشی از بکارگیري شرایط منجمد در دینامیک حرکت نسبی

 .اغتشاشات هارمونیک در طی یک دوره مداري یکساله میتواند بطور محسوس کاهش داده شود
 

doi: 10.5829/idosi.ije.2012.25.04a.01 
 

 


