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Abstract     Pulsatile motion of blood in a circular tube of varying cross-section has been developed 
by considering slip flow at the tube wall and the blood to be a non- Newtonian biviscous 
incompressible fluid. The tube wall is supposed to be permeable and the fluid exchange across the 
wall is accounted for by prescribing the normal velocity of the fluid at the tube wall. The tangential 
velocity of the fluid at the tube wall is also accounted in the present investigation. A perturbation 
technique has been carried out for low Reynolds number flow and for small amplitude of oscillation. 
The effects of slip parameter, leakage parameter, Reynolds number and apparent viscosity coefficient 
on the streamlines, wall shear stress and pressure drop have been discussed and shown graphically for 
suction and injection respectively.
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و با فرض خون به عنوان یک سیال تراکم ناپذیر ویسکوز غیر نیوتنی مورد بررسی قرار گرفته  لولهدیواره در 

واره به وسیله تعیین سرعت مقطع عرضی دیدیواره لوله نفوذ پذیر فرض شده است و حرکت سیال در . است

همچنین در تحقیق حاضر سرعت مماسی سیال در دیواره لوله . نرمال سیال در دیواره لوله محاسبه میگردد

. دامنه نوسانات کم بکار گرفته شده استاعداد رینولدز پایین و سیالات با روش اختلال براي. محاسبه میگردد

ضریب وسکوزیته مشخص بر روي خطوط جریان، تنش برشی دیواره  تاثیر پارامتر شتاب، نشتی، عدد رینولدز و

.مورد بحث قرار گرفته و به ترتیب براي مکش و تزریق رسم گردیده اندو افت فشار 

1. INTRODUCTION

The study of pulsatile flow over boundaries with 
deformation has been attracted by researchers 
because of its importance in understanding the 
fluid mechanical aspects of blood flow. The 
pulsatility of blood flow is one of the most 
important factors in Biofluid mechanics. The 
rhythmic action of the heart causes this pulsatile 
nature in blood, which is influenced by some 
properties of blood and blood vessels. Womersley 
[1, 2] considered the oscillatory flow in a 
cylindrical tube with uniform cross-section. Lee 
and Fung [3] studied the flow of blood through an 

artery with an axisymmetric stenosis taking blood 
as a Newtonian fluid. Bitoun and Bellet [6] studied 
pulsatile flow of blood with reference to stenosis in 
microcirculation. Pulsatile flow through circular 
tubes with varying cross-section has been 
investigated by Rao and Devanathan [4] and also 
by Schneck and Ostrach [5]. In these studies the 
tube wall is taken to be impermeable. However, in 
the case of small blood vessels, the permeability of 
the walls becomes important. Low Reynolds 
number flow in slowly varying axisymmetric tubes 
has been analysed by Manton [7]. 
Radhakrishnamacharya et al. [8] and Prasad et al. 
[9] studied the pulsatile flow of blood in circular 
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tubes of varying cross-section with 
suction/injection. But the non- Newtonian property 
is not taken into consideration in these studies. As 
blood shows the remarkable non- Newtonian 
property in low shear rate and the shear rate is low 
in the downstream side of the stenosis, it is 
considered that the analysis of the flow pattern 
near stenosis should include the non- Newtonian 
property of blood. It is a mixture of plasma and 
blood cells and this suspension of blood has 
recently become the object of scientific research of 
Chow [10], Hill and Bedford [11], Srivastava and 
Agarwal [12]. Nakayama and Sawada [13] studied 
the flow of a non- Newtonian fluid through an 
axisymmetric stenosis numerically. The pulsatile 
flow of a non- Newtonian biviscous fluid through a 
tube with varying cross-section and non-
permeable walls in presence of external magnetic 
field has been analysed by Elnaby et al. [14]. 
Sanyal et al. [15] investigated the pulsatile flow of 
biviscous fluid through a tube of varying cross-
section with suction/injection. But they considered 
no effect of slip velocity at the wall of the tube and 
so the effect of slip velocity has been neglected. 
Raoufpanah et al. [16] studied the effect of slip 
condition on the characteristic of flow in ice 
melting process.  Recently, Das [17] discussed the 
heat transfer peristaltic transport with slip 
condition in an asymmetric porous channel.
     Here, our main object is to study the pulsatile 
motion of blood in a circular tube of permeable 
wall and varying cross-section in presence of slip 
velocity at the tube wall. In this analysis, we 
assume that blood is a non- Newtonian biviscous 
fluid and the blood vessel is a straight, rigid 
circular tube of varying cross-section. The 
analytical expressions for the streamlines, wall 
shear stress and pressure drop are obtained. The 
influence of slip parameter (due to slip velocity), 
leakage parameter (due to suction/injection 
velocity), biviscosity coefficient and Reynolds 
number (i.e. low Reynolds number only) on the 
streamlines, wall shear stress and pressure drop are 
also shown graphically.

2. MATHEMATICAL FORMULATION

The pulsatile motion of an incompressible non-
Newtonian biviscous fluid in an axisymmetric rigid 
circular tube of varying cross-section and 

permeable wall with slip flow is considered. We 
consider cylindrical polar coordinate system (r, ө, 
z) such that ө = 0 represents the axisymmetry for 
the tube. Then, the radius of the tube r = R (z) is 
given by

   0
0

1
z

R z R S with S 0 = 1
R

       
   

    (1)

where, є = R0/L(<<1) is the tube wall slope 
parameter, L is the characteristic length of the tube 
and R0 is the tube radius at 0z  . It can be noted 
that є = 0 gives the case of tube with uniform 
radius. Again, we assume that the radius of the 
tube varies slowly along the axial direction so that 
the velocity depends on r and z only. Now the 
equations, which govern the pulsatile flow of an 
incompressible non- Newtonian fluid obeying 
biviscosity model, in an axisymmetric circular tube 
can be written as follows: 

Continuity equation: 
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                         (4)

where (u, o, w) are the velocities components in (r, 
ө, z) directions, t is the time, P is the pressure, υB is 
the kinematic coefficient of viscosity, ρ is the fluid 
density and b is the upper limit of the apparent 
viscosity coefficient.
     To consider the permeability effect of the tube 
wall, we prescribe the suction/injection velocity of 
the fluid at the tube wall to consist of a steady part 
and an oscillatory part. Thus, the normal 
component of the fluid velocity at the tube wall is 
given by:
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          (5)

where, vs is the steady state suction/injection 
velocity, δ is the ratio of the amplitudes of the 
oscillatory  and steady parts of the 
suction/injection velocity and n is the frequency of 
the oscillation.
The slip equation on the boundary is:
                                               

 0   at 
dR

w u u r R z
dz

                                (6)

i.e., the tangential velocity is non-zero at the wall,

where 0u is the slip parameter.

The axisymmetry of the flow gives:  
                                         

0  and 0 at 0
w

u r
r


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
                                 (7)                                   

Again, the flux at the initial cross-section (i.e., z = 
0) is assumed to be in phase with the 
suction/injection velocity and is taken as

 int   at z ,sQ Q 1 e 0                                   (8)                                

where, QS is the steady state flux at the initial 
cross-section.
We introduce stream function ψ(r, z) by:
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                               (9)                             

Eliminating P (i.e. pressure) from (3) and (4) and 
using (9), we get:
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where,    1 1
.
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The boundary Equations (6) and (7) in terms of ψ 
can be written as follows:
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1 1
 =0,   0  as  r 0

dR
ru r R z

r dz z

r z r r r

       
              

      (12)         

The equation of continuity (2) along with the 
Equations (5) and (8) for axisymmetric flow gives:
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For convenience, the following dimensionless 
variables
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and the dimensionless parameters is introduced.
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Equations (10), (11), (12) and (13) can be written 
(after dropping the primes) in non-dimensional 
form as
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1
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where, Re is the Reynolds number of entrance 
flow, α is Womersle`s parameter, νs is the leakage 
parameter and 
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In equation (18), it can be noted that δ=0 and νs=0
indicates the steady flow and the impermeability of 
the tube wall respectively.

3. SOLUTIONS

We assume that the pulsatile flow consists of the 
steady part and the oscillatory part of small 
amplitude of oscillation δ such that the terms of the 
order δ2 can be neglected (i.e. δ<<1)

     Therefore, we seek the solutions of (16) to (19) 
in the following form:
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                                                                           (20)  
Here we restrict the analysis for low Reynolds 
number flows because the exchange of fluid takes 
place only in the blood capillaries where the 
Reynolds number of blood is very low (0.02 - 12). 
Thus, using the perturbation scheme (20) for ω and 
ψ in equations (16) to (19) and then collecting the 
coefficients of eit and of equal power of є, we get 
the following equations and boundary conditions:

(i) Zeroth order steady part:
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(ii) Zeroth order oscillatory part:
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The Equations (21a, b) and (22a, b) are solved 
along with the corresponding boundary conditions 
to give the zeroth order of ω and ψ as:
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are modified Bessel functions of order 0, 1, 2
respectively.
     Using Equations (25) to (28), we solve 
Equations (23) and (24) for the first order 
components of ω and ψ. Then the results are 
obtained as follows:
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where, Im (m = 3,4) is the modified Bessel 
functions, g1, g2 and Ti ( i= 1 to 8) are functions of 
S(z) and are given by:

 

  
 

 

1

2

12 5
1 1 2

2

,

1
1 ,

4 1 ,

s

s

g v S z

dS
g v F z

S dz

SI S
T S g g

I S
 






 

  
     

     3 2 2 2
2 0 0 1 0 0 24 2 8 ,T S S g u g S g u g 

       

 
 
12 3

3 1 2
2

1
7 4 3 ,

3

SI S
T S g g

I S
 




             

 

 
 

   

3 3
4 1 2

12 3
5 1 2

2

3
6 1 2 0

1
4 ,

4

2
5 2 6 ,

3

2 4 ,

T S g g

SI S
T S g g

I S

T S g g I S



 






  

         
    

  

      

      
     

7 1 1 2 2
2

2
2 3 5 3

4 2 2
4 4 4 0 0 6

1
2

2

2 2

T T SI S I S ST
I S

SI S I S S T SI S

I S S T I S S g u T

  
 

    

   

      

       

      

       

     

      

       

8 0 2 1 3 2
2

3 2 2 2
3 4 4 5 0 0 6

2

1 1 1 2 2 2

2
3 4 3 5 6

1

2 4

T I S I S T SI S T
I S

S I S T S I S T S g u T

S
I S I S T SI S T SI

S I S T S I S T ST

  


  

   


   

      

     


       

      



14 - Vol. 25, No. 1, February 2012 IJE Transactions B: Applications        

3.1. Wall Shear Stress:
The shear stress 
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Then, using the boundary conditions at r = S(z) 
and Equations (9) and (11), we obtain the 
dimensionless wall shear stress τw in the following 
form:
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3.2. Pressure Drop     Using the Equations (3), (4) 
and the non-dimensionalizing Equations (14), (15) 
we obtain the non-dimensionalized pressure as:
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Thus, the equations governing pressure 
components can be written as:

        
(34)

(35)

 

1

10

2

00

1

1
,e

p
r

z r r
R

r r r r z z



  

 
 

 
    

      

(36)

                                                                    
  1

2

11

2 2

00 01

1

1

eRp
r

z r r r r r

r r r z r r z

z z

  

   

 

  
   

  
                   

       

                 (37)

with  

0.
p p p p

r r r r
      
   

   
                      (38)

       
The Equation (38) indicates that the pressure 
components are independent of r ; hence,
Equations (34) to (37) are integrated to give the 
pressure drop ∆p(z) = p (0) – p (z) up to the first 
order as follows:
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4. NUMERICAL RESULTS AND 
DISCUSSION

In the above mathematical analysis, the 
expressions of the flow variables ψ, τw, and ∆p 
depend upon the following non-dimensional 
parameters:
slip parameter u0,leakage parameter υs, upper limit 
of the apparent viscosity coefficient b, Reynolds 
number of entrance flow Re.
      Due to the presence of complex parameter α1, 
the results obtained for ψ, τw, and ∆p appear in the 
complex form. From the physical point of view, we 
consider only the real part of the expressions and 
plot the values against z. The results are obtained
by taking:

 

0.1,  0.1, 1,   and
4

0.2, 0.2  for suction/injections
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for the following tube geometries:

(i) Sinusoidal tube 

             i.e.,    
(ii) Locally constricted tube 
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The analytical results obtained in this work are 
more generalized form of Prasad et al. [9] and can 
be taken as a limiting case by taking b→∞ and 
u0→0.

Fig. 1. Blood flow through a circular tube of varying 
cross-section

4.1. Streamlines  The real part of dimensionless 
streamlines  is plotted for different values of slip 
parameter u0, Reynolds number Re and upper limit 
of apparent viscosity b in Figures 2 and 3 (for 
sinusoidal tube) and Figures 4 and 5 (for locally 
constricted tube). It is observed that the deviation 
of flow increases with an increase in u0, Re and b 
for suction and injection velocity. It means that
either for suction or injection velocity, small values 
of u0, Re or b give gentle flow whereas higher 
values of u0, Re and b give reckless flow. But due 
to the presence of suction velocity, the deviation of 
flow is less than that for the injection velocity.

4.2. Wall Shear Stress     The characteristic of the 
real part of non-dimensional wall shear stress τw is 
displayed through Figures 6, 7 (for sinusoidal 
tube), 8 and 9 (for locally constricted tube). 
Figures 6 and 7 show that with an increase in u0, Re

and b, the value of τw decreases in the converging 
region and increases in the diverging region of the 
tube. From Figures 8 and 9, it is seen that the 
similar results occur for a locally constricted tube.

4.3. Pressure Drop    The effects of different 
parameters on the real part of dimensionless 
pressure drop ∆p are indicated graphically through 
Figures 10 and 11 (for sinusoidal tube) and 12, 13
(for locally constricted tube). Figures 10 and 11
show that at any cross-section of the sinusoidal 
tube, ∆p decreases with an increase in u0 and 
increases with an increase in b for both suction and 

injection velocities. But increase in eR increases ∆p 

depict that at any cross-section of the locally 
constricted tube, the pressure drop ∆p decreases 
with an increase in u0, Re and b for both suction 
and injection velocities.

                     5. CONCLUSIONS

In the present study, we considered the effect of 
slip parameter, leakage parameter (due to 
suction/injection velocity at the tube wall), 
Reynolds number and upper limit of apparent 
viscosity on pulsatile flow of a non-Newtonian 
incompressible biviscous fluid in a circular tube 
with varying cross-section (e.g. some organs in 

S z  1 0.2sin 2z ,

for z>0.7. It is shown through Figures 12 and 13
for the cross-section 0≤z<0.7  and decreases ∆p 
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Fig. 2.  vs z for sinusoidal tube with suction at the wall

Fig. 3. vs z for sinusiodal tube with injection at the 
wall

Fig. 4.  vs z for locally constricted tube with suction at 
the wall

Fig. 5.  vs z for locally constricted tube with injection 
at the wall

Fig. 6. w vs z for sinusoidal tube with suction at the 
wall

Fig. 7. w vs z for sinusoidal tube with injection at the 
wall
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Fig. 8. w vs z for locally constrited tube with suction at 
the wall

Fig. 9. w vs z for locally constricted tube with injection 
at the wall

Fig. 10. p vs z for sinusoidal tube with suction at the 
wall

Fig. 11. p vs z for sinusoidal tube with injection at the 
wall

Fig. 12. p vs z for locally constricted tube with suction 
at the wall

Fig. 13. p vs z for locally constricted tube with 
injection at the wall



18 - Vol. 25, No. 1, February 2012 IJE Transactions B: Applications        

human body). This investigation helps us to note
that the influence of slip parameter in the pressure 
drop is much significant and decreases rapidly with 
increases in slip parameter. The increase in 
pressure drop indicates the rise in systolic pressure 
and fall in diastolic pressure, which are very 
dangerous for heart. It is also to be noted that this 
presentation help us to draw the flow characteristic 
of blood and the wall shear stress on the inner wall 
of capillaries. It illustrates the small blood vessels 
where suction, injection and slip velocities arise
and Reynolds number is very low. So, this 
investigation may be helpful in various fields of 
medical science.  
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