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Abstract Pulsatile motion of blood in a circular tube of varying cross-section has been developed
by considering slip flow at the tube wall and the blood to be a non- Newtonian biviscous
incompressible fluid. The tube wall is supposed to be permeable and the fluid exchange across the
wall is accounted for by prescribing the normal velocity of the fluid at the tube wall. The tangential
velocity of the fluid at the tube wall is also accounted in the present investigation. A perturbation
technique has been carried out for low Reynolds number flow and for small amplitude of oscillation.
The effects of slip parameter, leakage parameter, Reynolds number and apparent viscosity coefficient
on the streamlines, wall shear stress and pressure drop have been discussed and shown graphically for
suction and injection respectively.
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1. INTRODUCTION

The study of pulsatile flow over boundaries with
deformation has been attracted by researchers
because of its importance in understanding the
fluid mechanical aspects of blood flow. The
pulsatility of blood flow is one of the most
important factors in Biofluid mechanics. The
rhythmic action of the heart causes this pulsatile
nature in blood, which is influenced by some
properties of blood and blood vessels. Womersley
[1, 2] considered the oscillatory flow in a
cylindrical tube with uniform cross-section. Lee
and Fung [3] studied the flow of blood through an
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artery with an axisymmetric stenosis taking blood
as a Newtonian fluid. Bitoun and Bellet [6] studied
pulsatile flow of blood with reference to stenosis in
microcirculation. Pulsatile flow through circular
tubes with varying cross-section has been
investigated by Rao and Devanathan [4] and also
by Schneck and Ostrach [5]. In these studies the
tube wall is taken to be impermeable. However, in
the case of small blood vessels, the permeability of
the walls becomes important. Low Reynolds
number flow in slowly varying axisymmetric tubes
has  been analysed by  Manton [7].
Radhakrishnamacharya et al. [8] and Prasad et al.
[9] studied the pulsatile flow of blood in circular

Vol. 25, No. 1, February 2012 - 9



tubes of  varying cross-section with
suction/injection. But the non- Newtonian property
is not taken into consideration in these studies. As
blood shows the remarkable non- Newtonian
property in low shear rate and the shear rate is low
in the downstream side of the stenosis, it is
considered that the analysis of the flow pattern
near stenosis should include the non- Newtonian
property of blood. It is a mixture of plasma and
blood cells and this suspension of blood has
recently become the object of scientific research of
Chow [10], Hill and Bedford [11], Srivastava and
Agarwal [12]. Nakayama and Sawada [13] studied
the flow of a non- Newtonian fluid through an
axisymmetric stenosis numerically. The pulsatile
flow of a non- Newtonian biviscous fluid through a
tube with varying cross-section and non-
permeable walls in presence of external magnetic
field has been analysed by Elnaby et al. [14].
Sanyal et al. [15] investigated the pulsatile flow of
biviscous fluid through a tube of varying cross-
section with suction/injection. But they considered
no effect of slip velocity at the wall of the tube and
so the effect of slip velocity has been neglected.
Raoufpanah et al. [16] studied the effect of slip
condition on the characteristic of flow in ice
melting process. Recently, Das [17] discussed the
heat transfer peristaltic transport with slip
condition in an asymmetric porous channel.

Here, our main object is to study the pulsatile
motion of blood in a circular tube of permeable
wall and varying cross-section in presence of slip
velocity at the tube wall. In this analysis, we
assume that blood is a non- Newtonian biviscous
fluid and the blood vessel is a straight, rigid
circular tube of varying cross-section. The
analytical expressions for the streamlines, wall
shear stress and pressure drop are obtained. The
influence of slip parameter (due to slip velocity),
leakage parameter (due to suction/injection
velocity), biviscosity coefficient and Reynolds
number (i.e. low Reynolds number only) on the
streamlines, wall shear stress and pressure drop are
also shown graphically.

2. MATHEMATICAL FORMULATION
The pulsatile motion of an incompressible non-

Newtonian biviscous fluid in an axisymmetric rigid
circular tube of varying cross-section and

10 - Vol. 25, No. 1, February 2012

permeable wall with slip flow is considered. We
consider cylindrical polar coordinate system (r, o,
z) such that e = 0 represents the axisymmetry for
the tube. Then, the radius of the tube r = R (2) is
given by

R(z)=R0{1+sS (;—Zj} withS (0)=1 (1)

0

where, ¢ = Ry/L(<<1) is the tube wall slope
parameter, L is the characteristic length of the tube
and R, is the tube radius at Z = 0. It can be noted
that € = 0 gives the case of tube with uniform
radius. Again, we assume that the radius of the
tube varies slowly along the axial direction so that
the velocity depends on r and z only. Now the
equations, which govern the pulsatile flow of an
incompressible non- Newtonian fluid obeying
biviscosity model, in an axisymmetric circular tube
can be written as follows:

Continuity equation:

10 ow
-z = -0 2
rar(m)Jr 0z @

Momentum equation:
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where (u, o, w) are the velocities components in (r,
e, z) directions, t is the time, P is the pressure, vg is
the kinematic coefficient of viscosity, p is the fluid
density and b is the upper limit of the apparent
viscosity coefficient.

To consider the permeability effect of the tube
wall, we prescribe the suction/injection velocity of
the fluid at the tube wall to consist of a steady part
and an oscillatory part. Thus, the normal
component of the fluid velocity at the tube wall is
given by:
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dR o dR
u——w =v, (1+8e ){1 +(dz j } 5)

at r=R(z),

where, vy is the steady state suction/injection
velocity, o is the ratio of the amplitudes of the
oscillatory and steady parts of the
suction/injection velocity and n is the frequency of
the oscillation.

The slip equation on the boundary is:

dR
W+Eu:uO atr=R(z) (6)

i.e., the tangential velocity is non-zero at the wall,
where U, is the slip parameter.
The axisymmetry of the flow gives:

@:0 andu=0atr=0 @)
r

Again, the flux at the initial cross-section (i.e., z =
0) is assumed to be in phase with the
suction/injection velocity and is taken as

Q=Q,(1+8™) atz=0, (8)

where, Qs is the steady state flux at the initial
cross-section.
We introduce stream function y(r, z) by:

u=—l— and W:la—w.
r oz r or

9

Eliminating P (i.e. pressure) from (3) and (4) and

using (9), we get:
7
(10)

Q {aw a( a
or oz or

(1 +b™! { ( )}
i(la_\vj+i(la_\l’j (11)
or\ror) az\raoz)

The boundary Equations (6) and (7) in terms of y
can be written as follows:

N
oz
Lo
Tor

7’

where, Q=
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a—\V—d—Ra—\"—ru atr=R(z)

or dz oz (12)
Y= ,la_\ll =0, 3(16—"’}0 asr—0
r oz or\r or

The equation of continuity (2) along with the
Equations (5) and (8) for axisymmetric flow gives:

W =i(l+6€im)

Z drY |2
x Qs—2nvs.([R(§){l (daj} dg (13)
atr=R(z).

For convenience, the following dimensionless
variables

z =;—Z, r':RL, t =nt, w':—znw,
0 0 . Qs (14)
2nR,’P
0=2mR 2 = 2R
Qs pUBQs
and the dimensionless parameters is introduced.
nR> . 2nR/
QMR 2R g
2mogR, Vg eQ,

Equations (10), (11), (12) and (13) can be written
(after dropping the primes) in non-dimensional
form as

ot ror 0z o0z or

(16)
2 2
:(1+b’1) 82820+8_c20+16_m_22 ,
0z or ror r
2 2
o=V _1ov 0V (17)
r{ or r or 0z
a—\V—z-:zd—sa—\v:ruo,
or dz oz

. atr=5(z) (18)
w=(1+8ei“t)[l—vSIG (g)d g}
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v =0 a—W:O Etla—wjzo as r—=0, (19)

oz or\ror

where, Re is the Reynolds number of entrance
flow, o is Womersle's parameter, v, is the leakage
parameter and

G(z)=S(z){1+g2 (j—i)z} :

In equation (18), it can be noted that 6=0 and v=0
indicates the steady flow and the impermeability of
the tube wall respectively.

N | =

3. SOLUTIONS

We assume that the pulsatile flow consists of the
steady part and the oscillatory part of small
amplitude of oscillation & such that the terms of the
order 8” can be neglected (i.e. §<<1)

Therefore, we seek the solutions of (16) to (19)
in the following form:

o= (cooo + 36", ) + 8(0)10 +3e"w,, ) +0 (82, 82),}

Y= (\Voo +8e"y,, ) + S(Wlo +0e"y,, ) +0 (82’ 82)
(20)
Here we restrict the analysis for low Reynolds
number flows because the exchange of fluid takes
place only in the blood capillaries where the
Reynolds number of blood is very low (0.02 - 12).
Thus, using the perturbation scheme (20) for ® and
v in equations (16) to (19) and then collecting the
coefficients of e" and of equal power of €, we get
the following equations and boundary conditions:

(1) Zeroth order steady part:

D, =0, (21a)

:i(l%) (21b)
“ orlr or )

5;!;)0 =TUy, Yo =1-V,F(2) atr=5(z), (lo)

Wy =0, %:o, %G%j:o as r—>0, (21d)
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where,

0= 10 1 iR (2)=[s(e)de

ot ror 0

(i1) Zeroth order oscillatory part:

D’w,, = 0,° 0y, (22a)
_ 01wy j (22b)
o or [ ror )

a;/m =0, yy =1-V,F(z) atr=5(z), (220
.

v =0, Moo ﬁ(l%j:o% r 50, (22d)
oz or\r or

i’

where, o, = W
+

(iii)  First order steady part:

R 2(%}}, (23a)

D w.. = {l Yy Oy,
1o = Re,

r or oz oz or\_r
0 ( 10y,
oL , 23b
10 ar(r or (235)
awlo _0 _0 —
=0, y,,=0atr=5(z), (23¢)
or
vy =0, Mo _g E(E%]:o% ¢ -0, (23d)
0z or\r or
where, R, = Re .
" 1+b™

(iv) First order oscillatory part:

Dzmll _a’lzm]] = Rel |:1{6W00 8(001 i a\vm 8(000

rior oz or oz } (24a)

_ %i{%}%i{&j
oz or\r oz or\'r
i(l%j, (24b)

0, =
or\r or
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%20, v, =0atr=5(z), (24c)
;

oy o (1oy
=0, Wi _g Zf 2N |_a5 1 0. (24d
Vi oz 6r(r or j e (240

The Equations (21a, b) and (22a, b) are solved
along with the corresponding boundary conditions
to give the zeroth order of ® and v as:

8

gy = —y{l—vsF (2)}r, (25)

1 2 2
WOOZF{I_VSF(Z)}{zr (S +g0uo) (26)
—r*-287gu,|

20 f1- EECUN

@, = 20, {1 VSF(Z)}szlz(als)’ (27)
Vo ={1-V,F (2)}[ o1y (@, )21, (o) ]

r (28)

“ 0,871, (o,8)”
where

gozﬁl(z)} and 1, (x). 1, (), 1, (x)

are modified Bessel functions of order 0, 1, 2
respectively.

Using Equations (25) to (28), we solve
Equations (23) and (24) for the first order
components of ® and y. Then the results are
obtained as follows:

Re
®,=— S—ig‘{l—vsF(z)}(g1 +49,)

x{(sz +%gou0jr82 ~2(87+gyu, )1’ +§r5},
1R,
368"

{(48 P 4+9gu, )ris? —9(5 2 J%gouojr“s . (30)

(29)

Yo {I_VSF(Z)}(91+492)X

+6(S7 + gy, )ré—r® —%gouos 6}
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R
- % fvF
O afs"lz(als){ W)
x{Trly (o, 1) =Tyrl, (o, 1) =Tyl (o) GD

+T,r*1 (o, r)-8Tr+ T, 1, (1)},

R
v flvF
\Vll al459|2(als){ Vs (Z)}
AT, (a,r)=Tor'l (o, 1) =Tyr*l, (our) (32)
AT (o) —a Tor' =Torl, (o) =T},

where, I, (m = 3,4) is the modified Bessel
functions, g, g, and T; (i= 1 to 8) are functions of
S(z) and are given by:

g9, =V.S(z),
1 ds
gzzg{l—VSF(Z)}E,
SI (OL S)
T =4a.25°| 1 ool (&
| = a0, |:+g1+ |2(OLIS)_92}’

T, =a183[(4+0(12(82+gouo))91 +2(8+(Sz+gouo))gz},

Sl S
T3 =%01253{791+4{3+—a1 l(al )}92:|7

1,(o,S)

1
T, zza1353(91 +49,),

s
T5=§oc128{591+2{6+a

T,=25%(g,+49,)l,(,S),
1

T, :mﬁl {a,SI,(aS)-21,(a,S)}-ST,

{oS1, (S )21 (a8 )} =S T {0, Sl (e,S) -
20, (08 )} + oS T, (8 )20, (87 + 9 0, )T, |

1
T, zm[lo(als )X{Iz(als )Tl —S|3(0Lls )TZ +
S, (a,S)T, =S, (oS )Ts—a,’ (32 +90U0)T6
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3.1. Wall Shear Stress:
The shear stress

[

@)

where,

oW du oW du
G, = U —+— | and Gy =0y :_2M ~ A
or oz oz or

are calculated at r = R (Z )

Then, using the boundary conditions at r = S(z)
and Equations (9) and (11), we obtain the
dimensionless wall shear stress 1, in the following
form:

A

. 27R,} .
W HQS w
=(0)00 +8€"c001)+8(0010 +Se"co“)

+0(82,82) ar=S(z).

:_S{I—VSF(Z)}{H&%“(OLISII(OLIS)J (33)

S’ 41, (a,S)
(g1+4gz) 2 e
R, |02 (952 p3gy )
’ { Zasr (257 430.) 8c,’S 1, (o,S )

{T51,(0,8)-T,8°1,(,8)-T,S’1,(,S)
TS, (0,8 )=8TS +T,1, (S )} ]} +0(”.8)
3.2. Pressure Drop  Using the Equations (3), (4)

and the non-dimensionalizing Equations (14), (15)
we obtain the non-dimensionalized pressure as:

P = (P +3e" Py ) +&(py, +€"p,, ) +0(e%,57).

Thus, the equations governing  pressure
components can be written as:
0 10
Po _2 2 (ra, ).
oL ror (34)
0 10 >0
&:——(rmm)—a—lﬂ, (35)
oz ror r or

14 - Vol. 25, No. 1, February 2012

0 10
Pro =——(ro,)
oz rer (36)
_& l OV o, 82%0 B Oy
0‘)00 )
r\r or oréz 674
2 R
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oz ror r or r
l Oy 62\4101 . oy, az\VOO (37)
r\ or oroz or oroz
oy oy
— Wy 5201 + @, a_zoo:l
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Py _ Py _ 0Py _ Py _ (38)

or or or or

The Equation (38) indicates that the pressure
components are independent of I; hence,
Equations (34) to (37) are integrated to give the
pressure drop Ap(z) = p (0) — p (z) up to the first
order as follows:

4

{1V F(2))

eEAp = 1{"% dz

+20.,25e™" I (a,S)dz
! 5 S71,(o,9) o(@S)
e fl_v F
~4eR, 17{ V;4(Z)}x{(3gl+4gz)+
0
goU,

e (g, +4g2)><(582 +8g0u0)}dz

A=V F(2))T,
+28e" W

S
0
a,’S

dz

% |io(e28
(9,+49,)|S 1, (eS) (8)

where,
T, =21,(aS)g, +{2I0(0c18 )-

a,Sl,(o,S) T
Sl (a,S )+ —21"1~ s
al 1 (al )+ |2 (G,IS ) }QZ + 4(].128 5
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4. NUMERICAL RESULTS AND
DISCUSSION

In the above mathematical analysis, the
expressions of the flow variables vy, 1, and Ap
depend wupon the following non-dimensional
parameters:

slip parameter ug,leakage parameter v, upper limit
of the apparent viscosity coefficient b, Reynolds
number of entrance flow R..

Due to the presence of complex parameter o,
the results obtained for v, 1, and Ap appear in the
complex form. From the physical point of view, we
consider only the real part of the expressions and
plot the values against z. The results are obtained
by taking:

£=0.1,8=0.1, =1, tzg and
v, =0.2,-0.2 ( for suction/injection )

for the following tube geometries:

@) Sinusoidal tube
ie,S(z)=1+02sin(2nz),
(i1) Locally constricted tube
2-exp{~(2-0.5)'|
2 —exp(-0.25)

ie,S (z) =

The analytical results obtained in this work are
more generalized form of Prasad et al. [9] and can
be taken as a limiting case by taking b—oo and
u0—>0.

Tnormnl velocity
Blood flow
—

v

—*slio flow

Fig. 1. Blood flow through a circular tube of varying
cross-section
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4.1. Streamlines  The real part of dimensionless
streamlines  is plotted for different values of slip
parameter uy, Reynolds number R, and upper limit
of apparent viscosity bin Figures 2 and 3 (for
sinusoidal tube) and Figures 4 and 5 (for locally
constricted tube). It is observed that the deviation
of flow increases with an increase in uy, R, and b
for suction and injection velocity. It means that
either for suction or injection velocity, small values
of up, R, or b give gentle flow whereas higher
values of uy, R. and b give reckless flow. But due
to the presence of suction velocity, the deviation of
flow is less than that for the injection velocity.

4.2. Wall Shear Stress  The characteristic of the
real part of non-dimensional wall shear stress 1y, is
displayed through Figures 6, 7 (for sinusoidal
tube), 8 and 9 (for locally constricted tube).
Figures 6 and 7 show that with an increase in u, R,
and b, the value of t, decreases in the converging
region and increases in the diverging region of the
tube. From Figures 8 and 9, it is seen that the
similar results occur for a locally constricted tube.

4.3. Pressure Drop The effects of different
parameters on the real part of dimensionless
pressure drop Ap are indicated graphically through
Figures 10 and 11 (for sinusoidal tube) and 12, 13
(for locally constricted tube). Figures 10 and 11
show that at any cross-section of the sinusoidal
tube, Ap decreases with an increase in u, and
increases with an increase in b for both suction and

injection velocities. But increase in R, increases Ap

for the cross-section 0<z<0.7 and decreases Ap
for z>0.7. It is shown through Figures 12 and 13
depict that at any cross-section of the locally
constricted tube, the pressure drop Ap decreases
with an increase in uy, R, and b for both suction
and injection velocities.

5. CONCLUSIONS

In the present study, we considered the effect of
slip parameter, leakage parameter (due to
suction/injection velocity at the tube wall),
Reynolds number and upper limit of apparent
viscosity on pulsatile flow of a non-Newtonian
incompressible biviscous fluid in a circular tube
with varying cross-section (e.g. some organs in
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human body). This investigation helps us to note
that the influence of slip parameter in the pressure
drop is much significant and decreases rapidly with
increases in slip parameter. The increase in
pressure drop indicates the rise in systolic pressure
and fall in diastolic pressure, which are very
dangerous for heart. It is also to be noted that this
presentation help us to draw the flow characteristic
of blood and the wall shear stress on the inner wall
of capillaries. It illustrates the small blood vessels
where suction, injection and slip velocities arise
and Reynolds number is very low. So, this
investigation may be helpful in various fields of
medical science.
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