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Abstract In this paper, the nonlinear free and forced axisymmetric vibration of athin circular plate
made of functionally graded material (FGM) with rigid core has been studied. This plateis formul ated
in terms of von-Karman's dynamic equation. In this study a semi-analytical approach is devel oped.
For harmonic vibrations, by using assumed-time-mode method and Kantorovich time averaging
technique, the governing equations are solved. This problem is solved usng MATLAB code. FGM
properties vary through the thickness of the plate. FGMs are spatial composites in which materia
properties vary continuously as well as non-homogeneity. The mass of the core respect to the mass of
plate is negligible. For verification, a coreless FGM circular plate has been solved using this code.
The results show a good approximation. The results reveal that the vibration amplitude and volume
fraction have sgnificant effects on the resultant stresses in large amplitude vibration of the
functionally graded plate with rigid core.

Keywords Stress, Vibration, FGM, Circular plate, Rigid Core
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1. INTRODUCTION thickness h and rigid core, Materia of the plate is
FGM. The present paper considers the vibration of
Consider a thin circular plate with uniform a circular plate with a finite, axisymmetric, rigid
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core attached. This case is an annular with a
clamped interior edge. However, for rigid core
without mass, the boundary conditions at the
connection rigid core to the plate have been
considered. Thin circular and annular plates are
used in many engineering applications. They are
often subjected to severe dynamic loading
conditions, and can exhibit large amplitude
vibrations of the order of the plate thickness. In
this case, a significant geometrical nonlinearity is
induced. Hence, the linear model would not be
sufficient to predict the behavior of the plate.
Therefore, the dynamic analog of the von-Karman
equations, as the nonlinear equations of motion for
thin plates have been used widely, especialy for
space vehicles and automobil es.

Functionally graded materids (FGMs) are
inhomogeneous composite materials and are made
from different phases of materials such as ceramics
and metals. FGMs have different applications in
defense industries, eectronics, and biomedical
sectors. Properties of FGMs vary continuously
from one interface to the other. Thisis achieved by
gradually varying volume fraction of constituent
materials.

Reddy and Cheng [2] studied the harmonic
vibration problem of functionally graded plates by
means of a three-dimensional asymptatic theory
formulated in terms of transfer matrix.

Allahverdizadeh and Naei [3] studied Nonlinear
free and forced vibration analysis of thin circular
functionally graded plates and investigated the
amplitude and thermal effects on the nonlinear
behavior of those plates. They also studied the
effects of large vibration amplitudes on the stresses
of thin circular functionally graded plates.

Chen [4] analyzed the nonlinear vibration of a
shear deformable functionally graded plate by
using the equations that include the effects of
transverse shear deformable and rotary inertia.

Amini, et al [5] studied stress analysis for thick
annular functionally graded plate. They used first-
order shear deformation plate and von Kéarman-
type equation.

Their results revealed that vibration amplitude
and volume fraction have significant effect on
resultant stresses in large amplitude vibration of
functionally graded thick plate.

The am of the present paper is to study
nonlinear free vibration of thin circular
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functionally graded plates with rigid core. Material
properties are assumed to be graded in the
thickness direction according to a simple power
law distribution in terms of the volume fractions of
the constituents.

The formulations are based on Classic Plate
Theory and von Karmén-type equation. For
harmonic vibration by using assumed-time-mode
method sinusoidal oscillations are assumed, then
the time variable is eiminated by applying
Kantorovich averaging method. Therefore, the
basic governing equations for the problem are
reduced to a pair of ordinary differential equations
which form a nonlinear boundary value problem.

Shooting method is used to the numerical study
of these governing equations.

Extensive numerical results are presented in
both dimensionless tabular and graphical forms,
and highlight the influence of material composition
and ratio of rigid core radiuses on induced stresses
in large amplitude vibration of thin circular
functionally graded plates with rigid core.

2. THEORETICAL DEVELOPMENT

In this paper mass of the rigid core is considered
negligible. Also, the radius of the rigid core is not
constant. This is fraction of the plate radius.
Consequently, some terms which are dependent
upon the weight of the rigid core have been
eliminated.

For thin plate, there are several theories; from
that von-Karman's large deflection theory which
provides a good approximation and is usualy
applied has been used in this study.

2.1. Properties of Functionally Graded M aterial
FGMs are typically made of a combination of
ceramic and metal or a combination of different
metals. In the present study the FGMs composed
of metal and ceramic have been considered. The
Thickness of the plate is constant and equal to h.
Thetop surface (z=h/2) of the plate is ceramic-rich
whereas the bottom surface (z=-h/2) is metal-rich.
Material properties P of the functionally graded
plate are assumed to vary through the thickness of
the plate, as a function of the volume fraction and
properties of the constituent materials. These
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properties can be expressed as
p:énin,P=E,p,(x,K,v 1)

i=1 '
where P, and V; are the material properties and
volume fraction of the constituent material i. It is
clear that the sum of volume fractions of the
constituent materials, should be

av-=1 @

To start with, a simple law definition for the
volume fraction across the thickness of the plate is
assumed. Thisis defined as:

_,2z+h,, 3
=) ®)

Volume fraction index n dictates the material
variation profile across the plate thickness. This
simple rule of mixture model does provide a
reasonably accurate prediction of the mechanical
as well as thermal properties of these
inhomogeneous materials.

From Equations 1 to 4, one has:

P(2)=(P.- P,

22z+ho
s P (4

%}
in which indices (c) and (m) indicate ceramic and
metal, respectively. In what follows, the FGM is

combined of stainless stee (SUS304) and silicon
nitride (Si3N4). Detail of this FGM is presented in

Tablel.

2.2. Governing Equations Consider a thin
circular FGM plate with rigid core subjected to
axisymmetric transverse load and cylindrical
coordinates r, ¢, and z located in its initialy
undeformed configuration.

The direction of the r-coordinate is radially
outward from the center, the z-coordinate along the
thickness, and the

0-coordinate is directed along a circumference
of the plate (Figure 1).

The thickness of the FGM plate is h, the radius
of theplater=a and rigid coreradiusisr=c.

The radial displacement u, and the transverse
displacement u, show the displacement of the point
with (r,z) coordinate. By using the Kirchhoff plate
theory, the radia displacement u, and the
transverse displacement u, are expressed as,

u,(r,z,t) = ulr,t) — zw(r,t) , (5)
u,(r,z, t) =w(rt) (6)

where u(r, t) and w(r, t) are the radia and
transverse displacements of the point on the middle
surface of the plate respectively, and t is the time
variable.

On the basis of geometric non-linear theory of thin
plates in von Karman's sense, one obtains the
strain-displacement relations:

2 2
ou 1(6w) ‘w
==4+(=) —zZ= 7
&r ar 2 \or Zarz ()

TABLE 1. Temperature- Dependent Coefficients of Material Properties|[3].

Property Material P. P: P, Ps
SiaN, 0 384.4369 -3.070e-4 216067  -8.946e11
E(GPa) SUS304 0 201.04€9 3.079%-4 -6.534e-7 0
SiaN, 0 2,370 0 0 0
p(kgm’)  SUS304 0 8,166 0 0 0
SiaN, - 0.2400
SUS304 0.3177 - - -
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Figure 1. Geometry and co-ordinates of the plate

g9 =227 ®)

r r or
where e, and ¢4 are the radial and tangential strains,
respectively. The constitutive equations are given
asfollows:

s, = El(zI) gliv(e +ve )H ©
.= Efzi’giv< ey o
E(zT)-Ecm(T)( ) +E,(M) 1)
E,.=E.-E, (12)

The membrane forces, and the bending moments
are defined as:

(NN = 36,5,z
: (13)
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M, M) =3.(s,.5,)lz
2 (14)

N,, Ny, the membrane forces, and M,, M, the
bending moments,where o, and o, are the stresses,
E(z,T) the dastic module, and v the Poisson ratios.

Now by substituting Equations 9 and 10 into
Equations 13 and 14 and integrating, the resultant
moments and forces can be calculated.

Governing equations for nonlinear vibration of
the plates in cylindrical coordinate can be
expressed as follows.

(rNyy, —Np =0 (15)

(rQr),r +(rNr\N'r)'r + rP(r,t) =h.l .r.wn

I—( Cm+r bl om=Fc- T (16)

(er),r - Mq - r.Qr =0 (17)

P(r.t) is the uniformly distributed lateral intensity ,
Qr isthe shearing force per unit length .

By diminating the radial displacement function
u(r,t) from the results of Equations 13 the
compatibility equation is obtained with the aid of
Equation 15:

(Ny +Ng)r = —= ( )2 (18)

when the stress function w(r,0) ,and the
corresponding relations

Y
Nr =—,N =Y.
o (19)
Combining Equations (18) and (19) gives:
Yrr +2Yr - L2:ip\(wr)2
' r  r 2r ' (20)

Combining results of Equation 14 and 19, and
moment equilibrium about a circumferential
tangent, one may obtain:

3 .2
h™(B h“(R). .
©_. (gx ) - ( ow,) +h< 1 Wy

A vd) 1-v
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NUCTER _
l-\/zgh(A)( rrrr) h(A)( nr) rh(A)( rr) Zh(@( ) 3h(A)( )u
h2(B) é 2- u

- N v2 gwr )(Wrrr) +(Wrr) t— (W )(Wrr )El- P(r,t)

(21)
where

. 2 1 1

N4W=W,rrrr +?W,rrr - r—ZW,rr +r—3W,r (22)

Since the principal vibration takes place in
direction perpendicular to the middle planeg, it is
reasonable to neglect the longitudinal and rotary
inertias.

Equations 20 and 21 are dynamic forms of von-
Karman's equations, where the longitudinal and
rotary inertias are neglected.

By introducing dimensionless variables as

r* = rla, h =hla, ¢ = c/a, U = ula, W = wa,

@=yl(@En), t =1/ ayEm/r mt W =ayr m/ EmW,
q(r’,)=P(r )/Ex, (23)

where Q isthelinear natural frequency.

By using the dimensionless variables, the
governing equations can now be written in
nondimensional form. In the following equations
and relations we eliminate the ()* for simplicity.

et - = Ay
' S ¢ 2r ' (24)

3
h™(B h“(R). . 1
LG (2))(N4 ) Ewp),p +h-ST
(A@A- Vv ) 1-v r n+1

2
h (B) ‘
Ty [h(A)( rrre) * h(A)( rre)t (A)( rr)

Y )]

oy
+r2h(A)( v r3h(A)

(D\

- Lz( )(W )+(W )+2 (W )(W ) =q(rt)
. > é ' )\Werr rr r)\Wrr H
(25)
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3. BOUNDARY CONDITIONS

In order to solve governing Equations 24 and 25,
they must be accompanied by a set of boundary
conditions at both inner and outer boundary for any
time t .The boundary conditions are

Inner radius:
wr(ct)=0,u(ct)=0 (26)
Outer radius:
w(at)=0,wr(at)=0,u(at)=0 (27)

An exact solution of the differential Equations 24
and 25 which satisfy boundary conditions of the
form (26) and (27) is at present unknown.
The coefficients A, B, Rare given in Appendix.

In the analysis and solution, the method of
“assumed-time-mode” has been used. Assuming an
appropriate harmonic response for non-linear
vibrations, the time variable is eliminated by using
a Kantorovich averaging method [1], and a non-
linear boundary value problem is obtained
including spatial variables. This boundary value
problemis solved numerically.

4. APPROXIMATE ANALYSIS

Despite many researches on the nonlinear behavior
of plates, there is still no analytical solution for
Equations 24 and 25. The reason lies in coupling
nature of governing equations as well as the non-
linear terms of the derivatives of displacements.

The standard Fourier analysis used in linear
vibration problems cannot be applied in an exact
sense due to nonlinear character of differential
equations which causes a coupling of vibration
modes.

In the analysis and solution of this kind of
equations two approximate methods are commonly
used. One is known as “assumed-space-mode”
solution, which is generally achieved by taking
some assumed spatial shape function and by using
a variation method to eliminate the gpatial
variables and reduce the partia differential
equations to ordinary ones only including time as
independent variable[6,7].
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Another method is *“assumed-time-mode’
solution. In this method, a simple harmonic
function in time is assumed and is then eliminated
from the equation of motion using the Kantorovich
averaging procedure [8-10].

The resulting nonlinear boundary value problem
is solved numerically. In the present investigation,
the latter method is employed.

4.1. Kantorovich averaging method Firdly, it is
assumed that the plate is imposed by a harmonic
load of thefollowing form

q(r,t) =Q(r)snwt (28)

For the purpose of the approximate analysis, the
steady-state response is assumed to be as follows:

w(r,t)=G(r)sin Wt (29)

f(rt)=F(r)(snW )2 (30)

where F(r) and G(r) are undetermined shape
functions of vibration. The assumption @(r, 1)
follows from Equation 30 and for F(r) is consistent
with the fact that the radial displacement of any
point of the plate is independent of the up or down
position of the plate.

By substituting Equations 29 and 30 into the
governing Equation 13, one finds,

e L F_ ho

F,rr+7F,r_72=_ G )2

r r r (31)

Expressions (28-30) cannot satisfy Equation 14 for
al values of 7. equating the average virtual work
over one period oscillation zero yields:

(B PR, s 31
((A)(l_ Rk 2)(N*G) - r(FG,r),r
e sgwis- LB 6y =qq)
n+1 1- v (32)

Set of Equations 31 and 32 along with boundary
conditions (26) and (27) compose the two-point
nonlinear boundary value problem which governs
the large amplitude vibration of a thin circular
FGM plate with rigid core.

Now, the hon-dimensional boundary conditions
of thethin circular FGM plate with rigid core:
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ir=c

.:.G’r:O

T _ Q(r)c 33
16, =- (h3(R))( )< (Go) 33
|

}F(r)r—F(r)

where ¢ is non-dimensional rigid cor€ s radius. The
circular plate edge is clamped at r=1, so the
boundary conditions can be expressed as:

ir=1:

{G=0

:G, =0

}F(r)’r -uF(r)=0

(34)

4.2. First-Order Differential Equations By
introducing new variables as:

Z(r) :[G’GF’GFF’GFFF’F’I:,F]T

— T
=[2,2,2,,2,,2,,2] (35)
E;'GJ f:' ézzl\;' éerl] éfll]
g; u 0 %2 U & q
o 0 &g &2l ghyg
ibrrrl:I éZ4l;| AZSr éfgu
e’ l;l:é u==¢€ =é&°0
ie,rrrr ljl §z4vr l;| ez4r U éf4 U
& U & 0 & U g&u
€ r l:I g l;l GSrU &8°0
8:'” H @Ze,r H ezer u @fG )

(36)

First, the higher order equations must be rewritten
asafirst order differential equation formlike

zl,r = 22 (37)

2,r

=2 (38)

- (

3
h3BZ h3R )[Z(ZZZB + Z325) (39)
(A(l- vd) 1- v2)

+h( Cm+1)Izl+( 2)23+Q] (40)

200 =2 (41
1 hA.

2y = L2t s (D)2 @2
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where A=Q? and the boundary conditions are;

1- v?_,Qc
h®R )(7

z (43)

)1
Cc

I
I
]
r:c:}z4 =-(
i
i
I
I
rzl:}. z,=0 (44)

5.VERIFICATION OF RESULTS

In order to show the rdiability of the numerical
technique employed in this study, some numerical
tests have been carried out. In order to validate the
results of the present study the linear and nonlinear
steady-state free and forced vibration of a clamped
circular FGM plate without rigid core has been
solved using this method. In this case a coreless
plate with thickness ratio of h/r,=0.1, volume
fraction index n=10 has been investigated and the
results have been compared with those of Ref. [3].

Figure 2 shows the harmonic response of the
clamped circular cordess FGM plate in transverse
vibration. In this figure the close agreement
between the results of this study and the results of
Ref. [3] can be observed.

This figure describes the influence of amplitude
on the non-dimensional linear and nonlinear
frequencies (w,) of FGM plate in free (Q=0) and
forced (Q=1.5*10°) vibration around the first
mode.

6. NUMERICAL RESULTSAND
DISCUSSIONS

Thefirst nonlinear normalized axisymmetric mode
shapes for various values of n are plotted in Figure
3. Effect of various values of n on the mode shape
isnegligible.

The diagram of Figure 4 has been drawn from
the contact place of plate with therigid core at the
radius of 0.1. The stress on the contact place at r*

IJE Transactions A: Basics
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Figure 2. Harmonic response of the clamped circular coreless
FGM plate around the first mode for the uniformly distributed
load (Q=1.5*10-9), values taken from Ref. [3], read from

graph.
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Figure 3. Nonlinear normalized axisymmetric mode shapes of
the clamped circular FG plate with rigid core for different
values of n a the First Mode.
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Figure 4. Variation of dimensionless radid stress with

dimensionless radius on metd-rich and neutra and rich-
ceramic surface for rigid coreradius 0.1.
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=0.1 is more than those of other places around as it
may be seen in the figure. This reative increase of
the stress is due to the clamped contact of the core
to the plate. Such conditions are present at the
outer edge of core at the radius of r*=1. In other
words, the amount of the stress at the outer edge is
more than those of other neighboring places.

The radius of the rigid core from r*=0.1 in
Figure 4 has been increased to r*=0.2 in Figure 5.
So, the diagram in Figure 5 has been drawn for
r*=0.2.

As it is shown in the figures, the stress at the
geometrical middle surface (z*=0) remains
unchanged.

The dimensionless radial stresses of a circular
FGM with different rigid core radius has been
obtained. A comparison of these stresses is shown
in Figure 6. This diagram is drawn for pure metal.
From this figure it may be seen that with the
increasing of the radius of the core the radial
stresses increase.

Comparison of the circumferential stresses is
shown in Figure7.

The stresses with minus sign are of compressive
and those with plus sign are tensile. There is no
common sense on the change of circumferential
stress.

In Figures 8(ab) and 9, it is obvious that
increasing n, will decrease the amount of the
stresses. For metal rich plates (n=0), the stress
distribution is linear, where for the FGM plate; the
behavior is nonlinear and is governed by the
variation of the properties in the thickness
direction.

The material properties of functionally graded
plate are assumed to vary through the thickness of
the plate; therefore, mid plane of the plate is
different from the neutral surface. Since the
Young's modulus of the ceramic is greater than
that of the metal, the neutral plane is closer to the
ceramic-rich surface.

Figures 10 and 11 show variation of the
dimensionless radial and circumferential stresses
versus the dimensionless radius on metal-rich
surface.

As may be seen from the figures by increasing
the n and reducing E(z) the amount of the
dimensionless stresses has been reduced. Also, the
figures show that the stress at the centre of the core
is negative, while at the outer radius is positive.
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Figure 5. Variation of dimensionless radid stress with
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Figure 6. Comparison between dimensionless radia stress on
metal-rich surface for rigid core radii 0.1and 0.2.
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Figure 7. Comparison between dimensionless circumferential
stress on metal -rich surface for rigid core radii 0.1 and 0.2.
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Figure8. (a) Variation of the dimensionlessradia stress aong
the thickness of the plate at outer radius for plate with rigid
core radius C=0.1 and (b) Comparison between dimensionless
radial stress along the thickness for different rigid core radii
C=0.1and C=0.2.
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Figure 9. Variation of the dimensionless circumferential stress
along the thickness of the plate at outer radius for plate with
rigid core radius C=0.1.
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Figure 10. Variaion of the dimensionless radia stress with
the dimensionless radius on metal-rich surface.
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Figure 11. Variation of the dimensionless circumferential
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7. CONCLUSION

Large amplitude vibration of a thin circular
functionally graded plate with rigid core has been
investigated in this paper by using Classic-plate
theory and von-Karman -type equation. The effect
of volume fraction index and change of the radius
of rigid core has been studied. For the low
vibration amplitudes, different amounts of volume
fraction index as well as radius of the rigid core
affect the stress, while different values of volume
fraction index have considerable effect on the
stresses in high vibration amplitudes.
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The FGM properties vary through the constant
thickness of the plate. Reduction of volume
fraction index causes the dimensionless modulus of
elagticity to be reduced. Consequently, the
dimensionless stress has been reduced.

In the ceramic-rich surface as well as the metal-
rich surface, the stress is distributed linearly on the
transverse section, whereas, the FGM plate with
rigid core experiences a nonlinear stress
distribution. Also, the middle plane of the rigid
plate differs from its neutral plane; by increasing
the dimensionless radius of the core, the radial
stress rises. However, an exact decision may not be
made on the circumferential stress.

8. APPENDI X

Definition of variables A, B, D, R, and S

Bz MEwm (A1)
2(n+H(n+2)
—_ Ecm
A=(E, + =) (A.2)
_En,_ (n"+n+2) (A.3)

T12  An+)(n+2(n+3) "
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