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Abstract   In this paper, the nonlinear free and forced axisymmetric vibration of a thin circular plate 
made of functionally graded material (FGM) with rigid core has been studied. This plate is formulated 
in terms of von-Karman’s dynamic equation. In this study a semi-analytical approach is developed. 
For harmonic vibrations, by using assumed-time-mode method and Kantorovich time averaging 
technique, the governing equations are solved. This problem is solved using MATLAB code. FGM 
properties vary through the thickness of the plate.  FGMs are spatial composites in which material 
properties vary continuously as well as non-homogeneity. The mass of the core respect to the mass of 
plate is negligible. For verification, a coreless FGM circular plate has been solved using this code. 
The results show a good approximation. The results reveal that the vibration amplitude and volume 
fraction have significant effects on the resultant stresses in large amplitude vibration of the 
functionally graded plate with rigid core. 
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بررسي شده   FGMدر اين مقاله ارتعاش آزاد و اجباري غير خطي يک صفحه ساخته شده از ماده چكيده   

معادلات حاکم بر اين . اين صفحه دايروي با تقارن محوري داراي يک هسته صلب در وسطش مي باشد. است
ين مطالعه يک روش نيمه براي انجام ا. کارمن بهدست آمده است -صفحه با استفاده از معادلات ديناميکي ون

براي حل معادلات حاکم بر اين ارتعاش هارمونيکي از تکنيک متوسط . تحليلي مورد استفاده قرار گرفته است
 FGMمواد . استفاده شده است  Matlabو نيز از کد نوشته شده در  assumed-time-modeزماني کانتروويچ و 

دراين  FGMخواص ماده . کند وسته و نامتجانس تغيير ميمواد مرکب بخصوصي هستند که خواص آنها بطور پي
براي اعتبارسنجي . باشد جرم هسته در مقايسه با جرم صفحه ناچيز مي. کند مطالعه در طول ضخامت آن تغيير مي

نتايج اين حل . بدون هسته با کد نوشته شده در اين مطالعه حل شده است FGMآمده يک صفحه  نتايج بهدست
نتايج اين . باشد دهد که دليل بر درستي کارکرد کد مورد استفاده مي را با نتايج موجود نشان ميسازگاري خوبي 
  .دهد که دامنه ارتعاش و کسر حجمي تاثير قابل توجهي بر تنش بوجود آمده دارند تحقيق نشان مي

 
 

1. INTRODUCTION 
 
Consider a thin circular plate with uniform 

thickness h and rigid core, Material of the plate is 
FGM. The present paper considers the vibration of 
a circular plate with a finite, axisymmetric, rigid 
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core attached. This case is an annular with a 
clamped interior edge. However, for rigid core 
without mass, the boundary conditions at the 
connection rigid core to the plate have been 
considered. Thin circular and annular plates are 
used in many engineering applications. They are 
often subjected to severe dynamic loading 
conditions, and can exhibit large amplitude 
vibrations of the order of the plate thickness. In 
this case, a significant geometrical nonlinearity is 
induced. Hence, the linear model would not be 
sufficient to predict the behavior of the plate. 
Therefore, the dynamic analog of the von-Karman 
equations, as the nonlinear equations of motion for 
thin plates have been used widely, especially for 
space vehicles and automobiles. 
     Functionally graded materials (FGMs) are 
inhomogeneous composite materials and are made 
from different phases of materials such as ceramics 
and metals. FGMs have different applications in 
defense industries, electronics, and biomedical 
sectors. Properties of FGMs vary continuously 
from one interface to the other. This is achieved by 
gradually varying volume fraction of constituent 
materials. 
     Reddy and Cheng [2] studied the harmonic 
vibration problem of functionally graded plates by 
means of a three-dimensional asymptotic theory 
formulated in terms of transfer matrix. 
     Allahverdizadeh and Naei [3] studied Nonlinear 
free and forced vibration analysis of thin circular 
functionally graded plates and investigated the 
amplitude and thermal effects on the nonlinear 
behavior of those plates. They also studied the 
effects of large vibration amplitudes on the stresses 
of thin circular functionally graded plates. 
     Chen [4] analyzed the nonlinear vibration of a 
shear deformable functionally graded plate by 
using the equations that include the effects of 
transverse shear deformable and rotary inertia. 
     Amini, et al [5] studied stress analysis for thick 
annular functionally graded plate. They used first-
order shear deformation plate and von Kármán-
type equation. 
     Their results revealed that vibration amplitude 
and volume fraction have significant effect on 
resultant stresses in large amplitude vibration of 
functionally graded thick plate. 
     The aim of the present paper is to study 
nonlinear free vibration of thin circular 

functionally graded plates with rigid core. Material 
properties are assumed to be graded in the 
thickness direction according to a simple power 
law distribution in terms of the volume fractions of 
the constituents. 
     The formulations are based on Classic Plate 
Theory and von Kármán-type equation. For 
harmonic vibration by using assumed-time-mode 
method sinusoidal oscillations are assumed, then 
the time variable is eliminated by applying 
Kantorovich averaging method. Therefore, the 
basic governing equations for the problem are 
reduced to a pair of ordinary differential equations 
which form a nonlinear boundary value problem. 
     Shooting method is used to the numerical study 
of these governing equations.  
     Extensive numerical results are presented in 
both dimensionless tabular and graphical forms, 
and highlight the influence of material composition 
and ratio of rigid core radiuses on induced stresses 
in large amplitude vibration of thin circular 
functionally graded plates with rigid core. 
 
 
 

2. THEORETICAL DEVELOPMENT 
 
In this paper mass of the rigid core is considered 
negligible. Also, the radius of the rigid core is not 
constant. This is fraction of the plate radius. 
Consequently, some terms which are dependent 
upon the weight of the rigid core have been 
eliminated. 
     For thin plate, there are several theories; from 
that von-Karman’s large deflection theory which 
provides a good approximation and is usually 
applied has been used in this study. 
 
2.1. Properties of Functionally Graded Material   
FGMs are typically made of a combination of 
ceramic and metal or a combination of different 
metals. In the present study the FGMs composed 
of metal and ceramic have been considered. The 
Thickness of the plate is constant and equal to h. 
The top surface (z=h/2) of the plate is ceramic-rich 
whereas the bottom surface (z=-h/2) is metal-rich. 
Material properties P of the functionally graded 
plate are assumed to vary through the thickness of 
the plate, as a function of the volume fraction and 
properties of the constituent materials. These 
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properties can be expressed as 
, P= E, ρ, α, K, ν  (1) 

 
where Pi and Vi are the material properties and 
volume fraction of the constituent material i. It is 
clear that the sum of volume fractions of the 
constituent materials, should be 
 

  (2) 

 
To start with, a simple law definition for the 
volume fraction across the thickness of the plate is 
assumed. This is defined as: 
 

  (3) 

 
Volume fraction index n dictates the material 
variation profile across the plate thickness. This 
simple rule of mixture model does provide a 
reasonably accurate prediction of the mechanical 
as well as thermal properties of these 
inhomogeneous materials. 
     From Equations 1 to 4, one has: 
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in which indices (c) and (m) indicate ceramic and 
metal, respectively. In what follows, the FGM is 
combined of stainless steel (SUS304) and silicon 
nitride (Si3N4). Detail of this FGM is presented in 

Table 1. 
2.2. Governing Equations   Consider a thin 
circular FGM plate with rigid core subjected to 
axisymmetric transverse load and cylindrical 
coordinates r, θ, and z, located in its initially 
undeformed configuration. 
     The direction of the r-coordinate is radially 
outward from the center, the z-coordinate along the 
thickness, and the 
     θ-coordinate is directed along a circumference 
of the plate (Figure 1). 
     The thickness of the FGM plate is h, the radius 
of the plate r=a and rigid core radius is r=c. 
     The radial displacement ur and the transverse 
displacement uz show the displacement of the point 
with (r,z) coordinate. By using the Kirchhoff plate 
theory, the radial displacement ur and the 
transverse displacement uz are expressed as, 
   ( ,  ,  ) =  ( ,  ) −   ( ,  ),  (5) 
   ( ,  ,  ) =  ( ,  ) (6) 
 
where u(r, t) and w(r, t) are the radial and 
transverse displacements of the point on the middle 
surface of the plate respectively, and t is the time 
variable. 
On the basis of geometric non-linear theory of thin 
plates in von Karman's sense, one obtains the 
strain-displacement relations: 
   =     +          −           (7) 
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TABLE 1. Temperature- Dependent Coefficients of Material Properties [3]. 
 

Property Material P-1 P0 P1 P2 P3 

 
E(GPa) 

 
ρ (kg/m3) 

 
  

Si3N4 0 384.43e9 -3.070e-4 2.160e-7 -8.946e-11 

SUS304 0 201.04e9 3.079e-4 -6.534e-7 0 

Si3N4 0 2,370 0 0 0 

SUS304 0 8,166 0 0 0 

Si3N4 - 0.2400    

SUS304  0.3177 - - - 
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  =   −         (8) 
where εr and εθ are the radial and tangential strains, 
respectively. The constitutive equations are given 
as follows: 
 

  (9) 
 

 (10) 
 

 (11) 
 

 (12) 
 
The membrane forces, and the bending moments 
are defined as: 
 

 (13) 

 (14) 
 
Nr, Nθ the membrane forces, and Mr, Mθ the 
bending moments,where σr and σθ are the stresses, 
E(z,T) the elastic module, and υ the Poisson ratios. 
     Now by substituting Equations 9 and 10 into 
Equations 13 and 14 and integrating, the resultant 
moments and forces can be calculated. 
     Governing equations for nonlinear vibration of 
the plates in cylindrical coordinate can be 
expressed as follows.   
 (   ), −  = 0  (15) 
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P(r,t) is the uniformly distributed lateral intensity , 
Qr is the shearing force per unit length . 
     By eliminating the radial displacement function 
u(r,t) from the results of Equations 13 the 
compatibility equation is obtained with the aid of 
Equation 15: 
 (  +   ), =      ( , )   (18) 
 
when the stress function ψ(r,θ) ,and the 
corresponding relations 
 

 (19) 
 
Combining Equations (18) and (19) gives:  
 

 (20) 
 
Combining results of Equation 14 and 19, and 
moment equilibrium about a circumferential 
tangent, one may obtain: 
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Figure 1. Geometry and co-ordinates of the plate 
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Since the principal vibration takes place in 
direction perpendicular to the middle plane, it is 
reasonable to neglect the longitudinal and rotary 
inertias. 
     Equations 20 and 21 are dynamic forms of von-
Karman’s equations, where the longitudinal and 
rotary inertias are neglected.  
     By introducing dimensionless variables as 
 
r* = r/a, h* =h/a, c* = c/a, u* = u/a, w* = w/a, 
Ø=ψ/(aEm), tmmEa ρτ //1= , Ω=Ω mEma /* ρ , 
q(r*,τ)=P(r,t)/Em  (23) 
 
where Ω is the linear natural frequency. 
     By using the dimensionless variables, the 
governing equations can now be written in 
nondimensional form. In the following equations 
and relations we eliminate the ()* for simplicity. 
 

 (24) 
 

 
 

 
 

 
 (25) 

3. BOUNDARY CONDITIONS 
 
In order to solve governing Equations 24 and 25, 
they must be accompanied by a set of boundary 
conditions at both inner and outer boundary for any 
time τ .The boundary conditions are  
Inner radius: 
 

0),(, =τcrw , 0),( =τcu   (26) 
 
Outer radius: 
 

0),( =τaw , 0),(, =τarw , 0),( =τau   (27) 
 
An exact solution of the differential Equations 24 
and 25 which satisfy boundary conditions of the 
form (26) and (27) is at present unknown. 
     The coefficients A, B, R are given in Appendix. 
In the analysis and solution, the method of 
“assumed-time-mode” has been used. Assuming an 
appropriate harmonic response for non-linear 
vibrations, the time variable is eliminated by using 
a Kantorovich averaging method [1], and a non-
linear boundary value problem is obtained 
including spatial variables. This boundary value 
problem is solved numerically.  

 
 
 

4. APPROXIMATE ANALYSIS 
 
Despite many researches on the nonlinear behavior 
of plates, there is still no analytical solution for 
Equations 24 and 25. The reason lies in coupling 
nature of governing equations as well as the non-
linear terms of the derivatives of displacements. 
     The standard Fourier analysis used in linear 
vibration problems cannot be applied in an exact 
sense due to nonlinear character of differential 
equations which causes a coupling of vibration 
modes. 
     In the analysis and solution of this kind of 
equations two approximate methods are commonly 
used. One is known as “assumed-space-mode” 
solution, which is generally achieved by taking 
some assumed spatial shape function and by using 
a variation method to eliminate the spatial 
variables and reduce the partial differential 
equations to ordinary ones only including time as 
independent variable [6,7]. 
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     Another method is “assumed-time-mode” 
solution. In this method, a simple harmonic 
function in time is assumed and is then eliminated 
from the equation of motion using the Kantorovich 
averaging procedure [8-10]. 
     The resulting nonlinear boundary value problem 
is solved numerically. In the present investigation, 
the latter method is employed. 
 
4.1. Kantorovich averaging method   Firstly, it is 
assumed that the plate is imposed by a harmonic 
load of the following form 
 

 (28) 
 

 For the purpose of the approximate analysis, the 
steady-state response is assumed to be as follows: 
 

ττ Ω= sin)(),( rGrw  (29) 
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where F(r) and G(r) are undetermined shape 
functions of vibration. The assumption ∅( ,  ) 
follows from Equation 30 and for F(r) is consistent 
with the fact that the radial displacement of any 
point of the plate is independent of the up or down 
position of the plate. 
     By substituting Equations 29 and 30 into the 
governing Equation 13, one finds, 
 

 (31) 
 

Expressions (28-30) cannot satisfy Equation 14 for 
all values of τ. equating the average virtual work 
over one period oscillation zero yields: 
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Set of Equations 31 and 32 along with boundary 
conditions (26) and (27) compose the two-point 
nonlinear boundary value problem which governs 
the large amplitude vibration of a thin circular 
FGM plate with rigid core. 
     Now, the non-dimensional boundary conditions 
of the thin circular FGM plate with rigid core: 
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where c is non-dimensional rigid core’s radius. The 
circular plate edge is clamped at r=1, so the 
boundary conditions can be expressed as: 
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4.2. First-Order Differential Equations   By 
introducing new variables as: 
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 (36) 
 

First, the higher order equations must be rewritten 
as a first order differential equation form like 
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where λ=Ω2 and the boundary conditions are: 
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5. VERIFICATION OF RESULTS 
 
In order to show the reliability of the numerical 
technique employed in this study, some numerical 
tests have been carried out. In order to validate the 
results of the present study the linear and nonlinear 
steady-state free and forced vibration of a clamped 
circular FGM plate without rigid core has been 
solved using this method. In this case a coreless 
plate with thickness ratio of h/ro=0.1, volume 
fraction index n=10 has been investigated and the 
results have been compared with those of Ref. [3]. 
     Figure 2 shows the harmonic response of the 
clamped circular coreless FGM plate in transverse 
vibration. In this figure the close agreement 
between the results of this study and the results of 
Ref. [3] can be observed. 
     This figure describes the influence of amplitude 
on the non-dimensional linear and nonlinear 
frequencies (ωb) of FGM plate in free (Q=0) and 
forced (Q=1.5*10-9) vibration around the first 
mode. 
 
 
 

6. NUMERICAL RESULTS AND 
DISCUSSIONS 

 
The first nonlinear normalized axisymmetric mode 
shapes for various values of n are plotted in Figure 
3. Effect of various values of n on the mode shape 
is negligible. 
    The diagram of Figure 4 has been drawn from 
the contact place of plate with the rigid core at the 
radius of 0.1. The stress on the contact place at r* 

 
Figure 2. Harmonic response of the clamped circular coreless 
FGM plate around the first mode for the uniformly distributed 
load (Q=1.5*10-9), values taken from Ref. [3], read from 
graph. 
 
 
 

 
Figure 3. Nonlinear normalized axisymmetric mode shapes of 
the clamped circular FG plate with rigid core for different 
values of n at the First Mode. 

 
 
 

 
Figure 4. Variation of dimensionless radial stress with 
dimensionless radius on metal-rich and neutral and rich-
ceramic surface for rigid core radius 0.1. 
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Figure 5. Variation of dimensionless radial stress with 
dimensionless radius on metal-rich & neutral & rich-ceramic 
surface for rigid core radius 0.2. 
 
 
 

 
Figure 6. Comparison between dimensionless radial stress on 
metal-rich surface for rigid core radii 0.1 and 0.2 . 
 
 
 

 
Figure 7. Comparison between dimensionless circumferential  
stress on metal-rich surface for rigid core radii 0.1 and 0.2. 
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=0.1 is more than those of other places around as it 
may be seen in the figure. This relative increase of 
the stress is due to the clamped contact of the core 
to the plate. Such conditions are present at the 
outer edge of core at the radius of r*=1. In other 
words, the amount of the stress at the outer edge is 
more than those of other neighboring places. 
     The radius of the rigid core from r*=0.1 in 
Figure 4 has been increased to r*=0.2 in Figure 5. 
So, the diagram in Figure 5 has been drawn for 
r*=0.2. 
     As it is shown in the figures, the stress at the 
geometrical middle surface (z*=0) remains 
unchanged. 
     The dimensionless radial stresses of a circular 
FGM with different rigid core radius has been 
obtained. A comparison of these stresses is shown 
in Figure 6. This diagram is drawn for pure metal. 
From this figure it may be seen that with the 
increasing of the radius of the core the radial 
stresses increase. 
     Comparison of the circumferential stresses is 
shown in Figure 7. 
    The stresses with minus sign are of compressive 
and those with plus sign are tensile. There is no 
common sense on the change of circumferential 
stress. 
     In Figures 8(a,b) and 9, it is obvious that 
increasing n, will decrease the amount of the 
stresses. For metal rich plates (n≈0), the stress 
distribution is linear, where for the FGM plate; the 
behavior is nonlinear and is governed by the 
variation of the properties in the thickness 
direction. 
     The material properties of functionally graded 
plate are assumed to vary through the thickness of 
the plate; therefore, mid plane of the plate is 
different from the neutral surface. Since the 
Young’s modulus of the ceramic is greater than 
that of the metal, the neutral plane is closer to the 
ceramic-rich surface. 
     Figures 10 and 11 show variation of the 
dimensionless radial and circumferential stresses 
versus the dimensionless radius on metal-rich 
surface. 
     As may be seen from the figures by increasing 
the n and reducing E(z) the amount of the 
dimensionless stresses has been reduced. Also, the 
figures show that the stress at the centre of the core 
is negative, while at the outer radius is positive. 



IJE Transactions A: Basics Vol. 24, No. 3, September 2011 - 289 

 
(a) 

 

 
(b) 

 
Figure 8. (a) Variation of the dimensionless radial stress along 
the thickness of the plate at outer radius for plate with rigid 
core radius C=0.1 and (b) Comparison between dimensionless 
radial stress along the thickness for different rigid core radii 
C=0.1 and C=0.2. 
 
 
 

Figure 9. Variation of the dimensionless circumferential stress 
along the thickness of the plate at outer radius for plate with 
rigid core radius C=0.1. 
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Figure 10. Variation of the dimensionless radial stress with 
the dimensionless radius on metal-rich surface. 
 
 
 

 
Figure 11. Variation of the dimensionless circumferential 
stress with the  dimensionless radius on metal-rich surface. 
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7. CONCLUSION 
 
Large amplitude vibration of a thin circular 
functionally graded plate with rigid core has been 
investigated in this paper by using Classic-plate 
theory and von-Karman -type equation. The effect 
of volume fraction index and change of the radius 
of rigid core has been studied. For the low 
vibration amplitudes, different amounts of volume 
fraction index as well as radius of the rigid core 
affect the stress, while different values of volume 
fraction index have considerable effect on the 
stresses in high vibration amplitudes. 
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     The FGM properties vary through the constant 
thickness of the plate. Reduction of volume 
fraction index causes the dimensionless modulus of 
elasticity to be reduced. Consequently, the 
dimensionless stress has been reduced. 
     In the ceramic-rich surface as well as the metal-
rich surface, the stress is distributed linearly on the 
transverse section, whereas, the FGM plate with 
rigid core experiences a nonlinear stress 
distribution. Also, the middle plane of the rigid 
plate differs from its neutral plane; by increasing 
the dimensionless radius of the core, the radial 
stress rises. However, an exact decision may not be 
made on the circumferential stress. 
 
 
 

8. APPENDIX 
 
Definition of variables A, B, D, R, and S 
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