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Abstract  The present work involves numerical simulation of a steady, incompressible forced 
convection fluid flow through a matrix of porous media between two parallel plates at constant 
temperature. A Darcy model for the momentum equation was employed. The mathematical model for 
energy transport was based on single phase equation model which assumes local thermal equilibrium 
between fluid and solid phases. Single phase equation was derived by volume averaging on control 
volume. This model was modified by addition of dispersion terms.  
The results of this investigation were compared with two phase simulation’s results. Implementation 
of two phase model was expressed by separate energy equations of each solid and fluid phase. The 
results show that in many cases there are no significant differences between two approaches. 
However better compatibility of single phase model’s results with empirical results and no possibility 
of determining the empirical parameters of two phase model, was observed. 
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در اين تحقيق دو ديدگاه تك فازي ودو فازي در انتقال حرارت درداخل يك كانال دو بعدي پر شده با   چکيده 
تحليل انتقال حرارت در محيط متخلخل با در . بطور جداگانه بررسي شده اند ماده متخلخل با دماي ديواره ثابت

اين معادله بصـورت  . گيردنظر گرفتن شرائط تعادل موضعي دمايي بر اساس معادلات انرژي تك فاز صورت مي
متوسط گيري حجمي روي حجم كنترلي، كه در آن شرط يكسان بودن دماي فاز جامد وسيال فرض شده است ، 

با افزايش عدد پكلت به مقادير بيشتر از يك، به دليل تـأثيرات پراكنـدگي حرارتـي، شـرط تعـادل      . گرددن ميبيا
در ديدگاه اول مدل تك فاز، تنها با افزودن ترم پراكندگي حرارتي در معادلـه  . موضعي دمايي صادق نخواهد بود

. گـردد ا براي هر يك از دو فاز بيان مـي گردد و در ديدگاه دوم، معادلات انرژي بصورت مجزانرژي تصحيح مي
تطـابق بهتـر   . بدست آمده بر اساس هر دو ديدگاه ذكر شده، تحليل و با يكديگر مقايسه شده است عددي نتايج

نتايج روش تك فاز با نتايج تجربي از يك سو وعدم امكان تعيين تجربي پارامترهاي مدل دو فاز از سوي ديگر، 
-ك فاز نسبت به روش دو فاز، حداقل در محدوده مورد بررسي اين تحقيـق مـي  بيانگر ارجحيت نسبي روش ت

 .باشد
 
 

1. INTRODUCTION 
 
The transport phenomena in porous media have 
been of continuing interest for the past five 
decades. 
This interest stems from the complicated and 

interesting phenomena associated with transport 
processes in porous media. The wide applications 
available have led to numerous investigations in 
this area. Such applications can be found in solar 
receiver devices, building thermal insulation, heat 
exchangers, energy storage units, ceramic 
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processing and catalytic reactors to name a few. 
Our attention in this study focuses on packed beds 
of solid sphere particles in particular and porous 
media in general. Many aspects in this field are 
important to explore for a thorough understanding 
of fluid mechanics and heat transfer characteristic 
that are involved in the transport phenomena 
through porous beds. Some of the aspects related 
to transport phenomena were tackled in this 
literature.  

An important topic in packed beds is related to 
the mixing and recirculation of local fluid streams 
as the fluid flows through tortuous paths offered by 
the solid particles. This secondary flow effect is 
classified as thermal dispersion. Extensive 
attention has been given to studies on 
determination of axial and radial effective thermal 
conductivities in cylindrical packed beds [1, 2]. 
Investigations by Cheng and Vortmeyer [3] and 
Hunt and Tien [4] provided some insight into the 
physics of the dispersion phenomena. Previous 
investigations [5, 6] have noted the small 
contribution from the axial dispersion to overall 
energy transport and the fact that its significance is 
confined to low Peclet or particle Reynolds 
numbers. This is because the convective heat 
transfer dominates the axial diffusion mode at high 
flow rates, therefore, the axial dispersion quantity 
can be neglected without causing significant 
impact on the heat transfer results. In above 
investigations, variations do exist among these 
models in terms of the Nusselt number predictions 
at various Peclet number due to incorporating 
different formulations for the porosity variations 
and the effective thermal conductivities. In all 
above mentioned investigations, a single phase 
model was adopted which assumes a state of local 
thermal equilibrium (LTE) between the fluid and 
solid phase at any location in the bed. This is a 
common practice for most of the investigations in 
this area where the temperature gradient at any 
location between two phases is assumed to be 
negligible. Vafai and Amiri [7] studied forced 
convection heat transfer with local thermal non 
equilibrium (LNTE) assumption and consideration 
of inertia and boundary effects with variable 
porosity in a channel filled by porous medium at 
constant walls temperature. Note that solid and 
fluid might be at the same temperature in some 
conditions especially in low Peclet numbers by 

implementation of two phase model but it is 
different from LTE assumption  because the 
energy equations should solve separately. 

In present paper local thermal equilibrium 
(LTE) assumption was used and the error caused 
with this assumption was covered by adding 
thermal dispersion term to diffusion term. 
Temperature, local Nusselt number and heat flux 
diagrams are illustrated to height and length of 
channel and comparative tables based on results of 
single and two phase model are presented. The 
results show better accuracy and compatibility to 
experimental results for single phase model. Better 
prediction of thermal dispersion values in low 
Peclet number’s range in this work is the major 
reason for better results of single phase model. The 
discrepancies between two phase models' results 
and experimental data are due to large Peclet or 
Reynolds numbers which is common in literature 
[7]. 

 
 

 
2. ANALYSIS 

 
The problem under investigation is forced 
convection of incompressible fluid flow through a 
parallel plate channel filled by porous medium as 
illustrated in Figure (1).  
The computational length and height is 50 and 2 

cm, respectively. The extent of the packed bed in 
z-direction is assumed to be long enough that the 
problem will essentially be two dimensional. 
To summarize assumption on which established 
model is based: 
(1) The medium is isotropic. 

 

Figure 1  .  Schematic diagram of the problem 
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(2) The porous medium is of uniform spherical 
shape and incompressible particles. 

(3) The porous medium is saturated. 
(4) The forced convection dominates the packed 

bed, i.e. natural convection effects are 
negligible. 

(5) The variation of thermophysical properties with 
temperature is ignored. This is a reasonable 
assumption for the operating temperature range 
applied (40 K) in the analysis. 

(6) Due to the relatively low temperature 
considered in the present study, the inter-
particle and     intra-particle radiation heat 
transfer are neglected. 

(7) The flow is one dimensional. The flow 
equation in x-direction is Darcy’s equation.                 
(Only x-direction component of velocity is non 
zero) 

(8) The flow is fully developed, accordingly hydro-
dynamically and thermally developing flows 
are not considered. 

(9) Local thermal equilibrium exists between the 
fluid and solid phases. 

(10) Heat transfer in x-direction is only convection 
and the conduction heat transfer is in x and y 
directions.  
 
 

2.1. Governing Equations   By assimilating the 
above points, the system of the governing 
equations can be presented in the following vector 
form based on the volume average technique [8, 9 
and 10]: 
Continuity equation  
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The physical aspects of various terms in the 
governing equations are discussed in references. 
[8, 9, 10] and the symbols are defined in the 
nomenclature. It should be noted that other 
mathematical models which include inertia term 
like Forchheimer model can be used. However, in 
this work, due to flow velocity ranges, Darcy’s 
equation has been applied. It is important to know 
that the time interval within which steady-state 
condition is reached for the velocity field is of the 
order of few seconds for most practical cases [11]. 
Therefore, in the numerical analysis the steady-
state forms of the continuity and momentum 
equations, equations (1) and (2), are considered. 

The permeability of the packed bed is based on 
experimental results [12] and may be expressed as 
a function of particle diameter in the following 
form: 

 

(6) 
)1(150 2

23





 p

p

d
K  

 
where pd  is the particle diameter. 

In the present study, the dispersion 
phenomenon is treated as an additional diffusive 
term added to the stagnant component [4] 
. The stagnant component is expressed in terms of 
the phase porosities and the individual thermal 
conductivities of the phases based on series model. 
The empirical correlation developed by  
Shahnazari an Abbasi [13] is employed in single 
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phase approach to model the effective 
conductivity. 
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In fact dk is the additional diffusive term due to 

thermal dispersion phenomenon that added to the 
stagnant diffusion component. Peclet number was 
calculated by Reynolds number based on particle 
diameter.   
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The Nusselt number is defined as follow: 
 

(12) 

hY

mw y

T

TT

H
Nu
























2
 

 
Where mT  is the mixed mean temperature and is 

defined as follow: 
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2.2. Boundary Conditions   In this investigation, no 
slip condition is imposed at the walls and the walls 
are kept at constant temperature. The boundary 
conditions are, therefore, as follows: 

 
(14)     0,,  hyxuhyxu 
(15)   wThyxT , 
(16)   wThyxT , 
(17)   inTyxT  ,0  

 
Inlet and outlet velocity at boundaries are 

calculated from equation (2) where pressure 
gradient is considered known constant parameter.   

In the numerical computations, inlet 
temperature  inT  and boundary temperature  wT  

were taken as C27  and C67 , respectively. 
Particle diameter and porosity of bed 

characteristics values were used 0.294 mm and 
0.69 respectively in computations to be closed data 
to experimental results of [14]. The Reynolds and 
Peclet numbers were varied by applying different 
axial pressure gradients. The physical data for fluid 
and solid phases which were considered in the 
numerical computations are calculated at the 
average film temperature and are shown in Table 
1.  

 

3. SOLUTION METHODOLOGY 
 
A finite volume scheme was employed to solve the 
system of the governing equations subject to the 
cited boundary conditions. The numerical scheme 
was based on the discretized finite volume versions 
of equations (1) - (3). The steady state solutions of 
these equations were obtained. Grid generation of 
domain was implemented by use of uniform square 
grid with 10000 meshes. Heat transfer in y-
direction was more essential. Therefore, the grid 
size in this direction was considered much smaller 

 
 
TABLE 1. Physical Data. 
 

Fiber 
(Eglass 1)

Resin ( 90% 
Glycerin & 10% 

Diethylen 
glycol) 

  

2550  1230  




  3kgm  

670  2495   11  KJkgcp 

0.421  0.282   11  KWmk 

-  0.2260125   11  skgm 
- 2000  Pr 
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than x-direction. Momentum and energy equations 
are not coupled since forced convection was 
assumed. 

Since Darcy’s law was used as momentum 
equation, values of pressure gradient leads to 
velocity distributions.  

The spatial derivatives in energy equation were 
discretized by the central differencing except for 
the convective term which is approximated by an 
upwind differencing scheme. Equation (3) was 
solved also in second order discretization. Due to 
high quantity for mesh number, no significant 
discrepancies were observed between first and 
second order solutions. 

The accuracy of the numerical results was 
rigorously examined as temperature values in two 
consecutive iteration differed by less than the 

convergence criterion of 1010 .  
By neglecting x-direction diffusion in steady 

state condition, equation (3) can be solved 
analytically by separation of variable (S.O.V) 
method as follows.    
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4. RESULTS AND DISCUSSION 

 
To examine validity of the numerical scheme, 
numerical results were compared with analytical 
results in steady state condition, neglecting x-
direction diffusion. 

As may be seen in Figure (2a) for 
35108.1  Nm

dx

dp  and Figure (2b) for 

35105.3  Nm
dx

dp  the comparison between 

numerical and analytical results showed an 
excellent agreement. 
Temperature distributions were depicted to 
dimensionless length and height of channel those 

defined as follow: 
 

(19) 
H

y
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L

x
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Where H is total height of channel and equal to 

2h. 

 
Also, the local Nusselt number, channel center 

line temperature, cross section mean temperature 
and local heat flux from each plate of channel was 
depicted to . 
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Figure 2. Comparison of numerical and analytical temperature 
distribution results. (a) 1.0   ,  1Pe .         (b)  3.0   ,  

1Pe  
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4.1. Longitudinal Effects     Figure (3) illustrates 
development of temperature distribution in length 
of channel. It is clear that temperature increases 
due to effects of walls temperature and incoming 
heat flux to channel. 

Figure (4) shows cross section mean 
temperature and center line temperature of channel 
those were confirmed increasing of temperature in 
length of channel. 

Figure (5) depicts Nusselt number versus 
length of channel. 

 This diagram represents temperature gradient 
decreases in length of channel to an asymptotic 
value and stays constant at the end. Asymptotic 
value of Nusselt number is 10 in these physical  
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Figure 5. Local Nusselt number to dimensionless length of 
channel at constant Peclet number. 5Pe  
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Figure 3. Comparison of temperature distribution in various 
dimensionless length of channel at constant Peclet 
number. 5Pe   
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Figure 4. Center line and cross section mean  temperature to 
dimensionless length of channel at constant Peclet number. 
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  (b). 10Pe  , 3.0    
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Figure 6. Thermal dispersion effects on temperature 
distribution in different models at different Peclet numbers 
when     is constant. 
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conditions that occur almost in 3.0 , also 
average Nusselt number is 12.8. Nusselt number at 
the entrance of channel is 202. 

 
 

4.2. Thermal Dispersion Effects   According to 
relation (9), value of additional diffusion term due 
to thermal dispersion effects is rigorously depend 
on Peclet number and the Peclet number is also 
depend on many parameters. 

In this investigation all the parameters which 
can affect on Peclet number was kept constant 
except velocity. Therefore, variations of Peclet 
number represent velocity variations which will be 
discussed in section 4.3. 

Figure (6) illustrated temperature distributions 
in 5Pe , 10Pe , 200Pe  and 3.0  for 
single and  two phase models. Temperature 
distribution without incorporating thermal 
dispersion effects was depicted for comparison. 
All the relations for two phase model was based on 
reference [7]. The empirical correlation developed 
by Wakao and Kaguei [2] was employed in 
reference [7] to model the effective conductivity as 
follow: 
 

 

(20) fd kPek  1.0  

 
 
As illustrated in Figure (6), by adding thermal 

dispersion term to equations, both models predict 
higher temperatures. 

An important point is the difference between 
predicted temperature by single and two phase 
models. This discrepancy is due to approximation 
of values of thermal dispersion on each model. 
This is clear that single phase model based on 
empirical relation (9) predicts higher value for 
thermal dispersion.  

Investigators have expressed many different 
relations for thermal dispersion approximation 
such as (9) and (20). Closed form correlation that 
was attained by Koch and Brady was used in this 
investigation as follow [15]:  

 

(21) 
fd k

Pe
k 

2
)1(

320

)2(63 2
12

1

 

 
Range of Peclet number in this work was 

selected between 201  Pe  which is 
represented as 01.0Re0005.0  . 

The theoretically predicted values of effective 
diffusivity obtained from equation (17) have 
compared with the experimental values reported by 
Fried & Combarnous [16]. As it is noticeable in 
Figure (6), correlation (21) has not good accuracy 
for the range of Peclet number [14]. Values of 
experimental data are greater than those calculated 
by equation (21). Baron’s results express thermal 
dispersion as follows [17]: 

 

(22)   fd KPeK 



155

1

 
 
Yagi et al. (1960) and also Schertz and 

Bischoff (1969) have expressed thermal dispersion 
as following relation [18]: 

 

(23)   fd KPeK  3.01.0
 

 
Predicted values of transverse thermal 

dispersion using different correlations are shown in 
table 2 for various Peclet numbers. 
As it appears from table 2, predicted values of 
thermal dispersion by Shahnazari empirical 
relation (9), was presented minimum discrepancies 
from experimental data reported by Fried &  

TABLE 2. Predicted values of transverse thermal dispersion 
by use of different correlations for various Peclet numbers. 
 
 

10 5 1 
Pe 

dk  

0.6390.314 0.055 Shahnazari 
(empirical correlation) 

0.2820.141 0.028 Wakao&Kaguei 
(empirical correlation) 

0.5640.282 0.056 Baron 
(empirical correlation) 

0.2180.109 0.022 Koch & Brady    (closed 
form solution) 

0.6480.366 0.225 Fried &Combarnous 
(Experimental Data) 
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Combarnous and Baron’s empirical correlation. 
Therefore, equation (20) that was applied in two 
phase model in reference [7] shows relative error 
in this present work’s confine because of covering 
a wide range of Peclet number and this is a 
confirmation to the past investigations that 
governing relations for thermal dispersion are 
changed in Peclet numbers under 10 or 20. 
Therefore, considering different relations for 
different Peclet number ranges will cause more 
accurate results. 

Figure (7) represents temperature distribution  
in single and two phase model considering 
different correlations of thermal dispersion.  
As it appears temperature distribution of single 

phase model with Koch & Brady’s predicted 
values of thermal dispersion has a good 
compatibility to two phase model and 
discrepancies from single phase model with 
Shahnazari’s predicted values. Figure (8) was 
presented a very good compatibility of Shahnazari 
correlation and Fried &Combarnous Experimental 
Data in prediction of temperature distribution. 

Therefore, it sounds that accurate prediction of 
Shahnazari correlation for thermal dispersion in 
single phase model causes accurate prediction for 
temperature distribution compared two phase 
model.   

Figure (9) depicts local Nusselt number to 
dimensionless length of channel.  
Values of Nusselt number are greatest when 
thermal dispersion effects are excluded and also 
two phase model predicted greater values for  
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Figure 9. Thermal dispersion effects on local Nusselt number 

in different models at constant Peclet number. 5Pe  
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Figure 7. Comparison of temperature distributions for 

different correlations of thermal dispersion.               
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Nusselt number than single phase model. It should 
be mentioned that the definition of the Nusselt 
number (12) essentially represents the temperature 
gradient at the boundary and greater values for 
Nusselt number do not mean greater heat flux, 
because magnitude of heat flux also is dependent 
to effk  that should be multiplied by Nusselt 

number. Then Figure (10) illustrates the heat flux 
from each plate of channel. 
As expects, the least value of heat flux is related to 
no dispersion assumption, because of the least 
value of effk . Considering the prediction of the 

maximum value of additional diffusion term due to 
thermal dispersion effect by single phase model, 

effk has maximum value in this model. Then 

greater values of temperature gradient in single 
phase model were predicted greater values for heat 
flux than two phase model. 

Average Nusselt number and total heat flux in 
different empirical models are presented in Table 3 
and Table 4 for various Peclet numbers, 
respectively. 

 
 

4.3. Velocity (Peclet) Effects       As mentioned in 
section 4.2. variations of Peclet number represent 
velocity variations in present work. Figure (11) 
shows temperature distribution on various Peclet 
numbers across height of channel when 3.0 . 
As it appears, less velocity magnitude causes 
higher walls temperature effects on fluid due to 
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Figure (12). Peclet number effects on local Nusselt number 
which shows Nusselt number versus dimensionless length of 
channel at different Peclet number. 
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Figure 13. Peclet number effects on cross section mean 
temperature to dimensionless length of channel which shows 
cross section mean temperature at different Peclet number. 
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Figure 14. Peclet number effects on heat flux which shows 
heat transfer rate versus dimensionless length of channel at 
different Peclet number. 
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Figure 11. Peclet number effects on temperature distribution
which shows temperature profile atdifferent Peclet number

and constant dimensionless length. 3.0  
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velocity term at right side of equation (3). Figure 
(12) was showed that cross section mean 
temperature of fluid at exhaust of channel is equal 
to walls temperature for 1Pe .  

But for 5Pe and 10Pe  the fluid 
temperature is less than walls temperature. Figures 
(13) and (14) were depicted local Nusselt number 
and heat flux from each plate to non dimensional 
length of channel, respectively. Heat transfer is 
greater in higher Peclet numbers due to greater 
values of temperature gradient in boundaries and 
also greater values of effk due to thermal dispersion 

effects.  
 
 
 

5. CONCLUSIONS 
 

In this work, accurate simulation of heat transfer in 
packed beds has been accomplished. The analysis 
has been conducted for steady, incompressible 
forced convective fluid flow. In addition, the 
simulation was carried out using separate energy 
equations for the fluid and solid phases for two 
phase model and an energy equation with LTE 
assumption for single phase model. Furthermore, 
the investigation aimed at exploring the influence 
of a variety of effects such as length, thermal 
dispersion and velocity on the transport processes 
in porous media. Comparison of temperature 
distribution, heat transfer rate and Nusselt number 
between single and two phase model with different 
correlation of dispersion was represented. Results 
show that implementation of single phase model 
could provide a better prediction especially in low 
Peclet number range. Accurate prediction of 
Shahnazari correlation for thermal dispersion in 
single phase model at low Peclet number range 
( 201  Pe ) causes accurate prediction for 
temperature distribution compared with the two 
phase model. Due to compatibility of single phase 
model’s results with empirical results and no 
possibility of determining the empirical parameters 
of two phase model, usage of single phase model 
relations for prediction of thermal behavior of fluid 
in porous medium is more reasonable at least in 
Peclet number range of this investigation.  

 
 

6. NOMENCLATURE 
 

description Symbol  

Coordinates zyx ,, 

Volume averaging   

Greek symbols  
Dimensionless length   

Dimensionless height  
Density )( 3m

kg    
Porosity  
Dynamic viscosity )( ms

kg    

Subscripts  
Fluid f  

Solid s 
Fluid and solid m 

Effective property eff  

Dispersion  d  
Wall w 
Inlet in  
Specific heat at constant 
pressure








kgK
J   pC  

Pressure gradient (Pa) P 
Height of the packed bed (m) H 
Half height of the packed bed 
(m) 

h  

Thermal conductivity  mK
W  k  

Permeability )( 2m  pK 

Length of the packed bed (m) L 

Temperature  )( C  T  
Velocity component in the x-
direction  s

m  u  

Velocity vector  s
m  V  

Time  sec  t  

Particle diameter  mm  pd  

Mixed mean velocity  s
m  

mU  

Prandtl number  Pr 
Peclet Number Pe  
Nusselt number Nu  
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