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Abstract   The cup drawing is a basic deep drawing process. Thus, understanding the mechanics of 
the cup drawing process helps in determining the general parameters that affect the deep drawing 
process. There are mainly two methods of analysis; experimental and analytical/numerical. 
Experimental analysis can be useful in analyzing the process to determine the process parameters that 
produce a defect free product. However, experimental work is usually very expensive and time 
consuming to perform. On the other hand, the Analytical/Numerical modeling can be used to model 
and analyze the process through all stages of deformation. This approach is less time consuming and 
more economical than experimental analysis. There have been several efforts to solve and analyze the 
deep drawing problem. Among these are the attempts to analyze the cup drawing process, by few 
researches who developed analytical models for the cup drawing process to solve for stresses and 
strains over the deforming sheet metal. However, they did not explain how to determine the moving 
boundaries in the deforming sheet.. This paper deals with the analysis of deep drawing of circular 
blanks into axi-symmetric cylindrical cups forming using numerical modeling. A rigid plastic 
material model with the variational approach is used for this  analysis. The amount of draw obtainable 
in the drawing process has been related both theoretically and experimentally with the initial diameter 
of the blank. The strains in the radial and circumferential directions have been measured. A 
correlation on the flange thickness variation by taking into account the work hardening with the 
analytical and experimental values also has been arrived at. 

 
Keywords   Modeling Metal Forming, Deep Drawing, Sheet Metal Forming, Analyze Thin Sheet 
Forming 

 
لذا درک درست از مکانيزم . های کشش عميق است های بنيادی فرآيند کشش استوانه از جمله روشده   يچك    

ی برای آناليز ددع/ اصولا دو روش تجربی و تحليلی. ن پارامترهای مهم اين فرآيند کمک کندتواندبه تعيي آن می
با  .تواند در تعريف پارامتر های موثر بر توليد قطعات سالم مفيد باشد آناليز تجربی می. کشش عميق وجود دارد

توانند برای  می عددی/ ی تحليلیها روش. طلبند میه و زمان زيادی را دها غالبا پر هزينه بو حال اين روش اين
های تجربی  ها در مقايسه با روش اين روش. کار روند سازی و تحليل فرآيند در تمامی مراحل شکل دادن به مدل

سازی  تحليلی را  در سال های  اخير محققان زيادی روش مدل. هزينه کمتری داشته و زمان کمتری را نياز دارند
های نازک فلزی را  دادن ورق کرنش در شکل –تنش تاند تا معادلا انه به کار بردهاستو برای آناليز فرآيند کشش

اما اغلب اين تحقيقات پديده کار سختی و تغييرات ضخامت ورق در حين تغيير شکل را مد نظر قرار . حل کنند
ای  يق يک ورق استوانهکشش عماين مقاله  .اند نداده يا با ارايه فرضياتی نه چندان دقيق اين فرآيند راتحليل کرده

ای شکل در حالت تقارن محوری را با ارايه يک مدل تحليلی و با در نظر گرفتن تغييرات  به داخل قالب استوانه
با استفاده از آن مقدار جديدی را برای نسبت حد کشش ارايه  و ضخامت و کار سختی مورد مطالعه قرار داده

 .داده است
 
 

1. INTRODUCTION 
The production of high quality formed products in 

a short time and at a low cost is an ultimate goal in 
manufacturing. To reach this goal, continuous  
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rogress are made at the design and at the floor shop 
levels of forming process [1]. The stage of research 
and development in CAD/CAM/CAE in relation 
with the analysis and design of forming parts can 
be observed from several papers published in 
roceedings of international meetings [2,3]. 
     To avoid trial and error tryout procedures, the 
sheet metal forming simulation is increasingly 
being used in the stamping industry to evaluate the 
deformation paths and the forming defects such as 
fracture and wrinkling. Many research groups are 
still developing and improving finite element codes 
for the analysis when an initial design of the blank 
and the tools is done and when the forming 
conditions are defined. Several analysis tools are 
described in the proceedings [2,3].  
They are based on membrane, shell or even solid 
elements, considering static or dynamic, implicit or 
explicit approaches. These analysis tools can be 
very precise if used by well-trained engineers, but 
they are time consuming and need expensive 
computer resources. Computersimulation can also 
be very attractive and helpful for theprocess and 
tooling engineers to define the initial blank 
(thickness, contour and surface), some process 
parameters (boundary conditions, holding forces, 
lubrication conditions, drawbead types and 
positions, etc.) and the material properties (yield 
stress, hardening, anisotropy, etc.). This has been 
recognized by some industrial and academic 
research and development groups. As a result a 
number of methods have been developed in the last 
decade. They are mainly based on the fact that the 
shape of the desired part is known. A comparison 
is then made with the initial flat blank to estimate 
the deformation of the final product taking in to 
account simple constitutive equations and 
assumptions regarding the tool actions. These 
simplified procedures have been called different 
names: ‘geometrical mapping method’ [4], ‘single 
and multi-stage forming formulations’ [5], ‘one 
step solution’ [6], ‘ideal forming theory’ [7], 
‘inverse approach’ (IA) [8–12] and ‘simplified 
approach’ [13]. 
The inverse approach is based on a discretization 
of the final workpiece by simple triangular flat 
facet shell elements. 
     For a large number of industrial applications, 
the membrane effects are dominant, but it has been 
necessary to consider bending effects using a 

simple discrete Kirchhoff shell element [14–16].  
     Assumptions were made regarding the action of 
the tools (punch and die) at the end of the forming 
process. 
Logarithmic strains and total deformation theory of 
plasticity were considered. The equilibrium of the 
workpiece leads to a set of nonlinear equations. 
These nonlinear equations can be solved by 
different techniques such as the Newton–Raphson 
static implicit approach, the dynamic relaxation 
method or the dynamic explicit algorithm [17–21]. 
The convergence difficulties can be encountered 
for practical situations involving deep drawing 
workpieces (with almost vertical walls) and a low 
plastic hardening law. A simplified scheme in 
order to estimate the trimming part of the 
workpiece for a given blank shape, flat or curved 
has been developed. The inverse approach has 
been continuously evaluated by comparing the 
numerical results with experimental and other 
numerical results obtained by incremental 
approaches. The procedure has been found very 
efficient and quite precise at the preliminary tool 
design stage [22-23]. Based on the 
ideas of the simplified inverse approach two 
industrial codes have been developed [24-26]. The 
codes are routinely used at the preliminary forming 
design stage of car panels and thin walled 
structural members. Some backwards simulation 
codes have been developed and used in the 
industry[27-29]. 
     In this paper, in order to increase the efficiency 
and accuracy of the modeling procedure, the 
yielding criteria and radial and circumference 
strains among with strain hardening and thickness 
variations during the forming process has been 
employed. Finally optimum results are obtained 
and presented and discussed. 
 
 
 

2. SHEET METAL FRMING AT AXI-
SYMMETRIC CONDITION 

 
At axi-symmetric condition the forming of sheet 
metal occurs in plane stress state [30-32]. Stress 
and strain can be defined by the joint solution of 
the equations of plasticity theory and the equation 
describing deformation hardening [30]. 

According to Mises' yield criteria, yield stress 



IJE Transactions B: Applications Vol. 24, No. 1, February 2011 - 57 

calculated as 
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(1) 

z  ,,  - are the main stresses in radial, 

circular and thickness direction respectively. 
Yield stress in quation (1) depends on the value 

of effective strain which is defined as: 
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з  ,,  - are the main strains in the same 

directions, satisfying the condition of volume 
constancy 

0 z                                                   
(3) 

Relationship between stresses and main strains is 
as follow 

( 4) 

id  - is the intensity of increment of main strains 

which is defined as follow 

 
(5) 

In the conditions of plane stress state )0( z  
it follows from equation (4) 
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(6) 
It is convenient to present the dependence 

between the yield stress (1) and the effective strain 
in the form of following function [31-32] 

 

n
is A  , 

(7) 
A , n  - are the parameters of deformation 

hardening depending on mechanical properties of 
the sheet metal. 

The equilibrium equation which has been cut 
out by the main sections from axi-symmetrically 
loaded cover of variable thickness looks like [30] 

 

0)1(   







ds

ds

d

d
.                      (8) 

     Increments of the main strains in circular 
direction and in the direction of thickness are 
connected with the increment of radius d  and 

thickness ds  with parities 
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Substituting (9) in (8), taking into account 

dependences (6), after substitution it shall obtain 
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(10) 
     Taking into account (1) integration (10) is 
possible only for ideal plastic model of deformable 
material )( consts  . When integrating (10) with 

deformation hardening, acceptance of the further 
simplifications is necessary, basis of them is the 
condition of thickness constancy. Such assumption 
is equivalent to the statement that sheet metal 
forming occurs in the conditions of plane strain 
basically excluding the possibility of solution to 
the problems in which plane stress state is realized. 

 
 
 

3. STRAIN AND STRESS AT PLANE STRESS 
CONDITION AND THEIR RELATION 

 
It follows from condition (3) that in case of large 
plastic deformations, strains are interconnected and 
can be presented on the plane in oblique-angled 
coordinates. Let's consider   - plane of plasticity 
cylinder   where the point of origin corresponds to 
zero strain (blank before deformation), and the 
locus of points of consecutive deformed conditions 
represents a way of deformation of the considered 
point particle. Generally current values of main 
stress represent projections of vector-function i


 

on oblique-angled coordinate axes, the deformation 
procedure is described by vector function )( i


 

(  - some time parameter), and the direction of 

deformation speed   dd i /


 coincides with the 

tangent of deformation path. The module of current 
size of vector function )( i


 numerically equals 

the equivalent strain (2) [33]. 
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In the considered plane it is convenient to 
present increments of the main strains in 
trigonometrically form: 

 

 
(11) 

  - is the angle of the kind of deformed condition. 
From the joint decision of (6) and (11) 

depending on radial and circular stresses on the 
angle of the kind of deformed condition the 
following equations are established: 
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(12) 
     These equations satisfy Mises' yield criterion 
For simplification of interpretation of the received 
results the reference point on   - plane is 
combined with axis  , and the increase in angle  

is taken in the direction counter-clockwise. At 
change  20   radial beams divide   - 
plane into 12 sectors with the central angles equal 

6/  (Figure 1 а). 
     In the specified change range of parameter   

vector function )( i


 becomes either parallel, or 

perpendicular to coordinate axes z  ,,  owing 

to what the main strains on these axes change 
within limits from one to zero. 
     Taking into account equation (10) it is possible 
to present (11) and (12) equation of equilibrium 
  - plane in quite a simple way 
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     Thus, the system of equations characterizing 
plane stress state is displayed on  -plane in the 
form of linear dependence between speeds of 
change of radial stress and equivalent strain. 
Proportionality constant in (13) is yield stress of 
the material, characterizing, according to (7), 
deformation hardening. 

assuming  dd i   and using yield criterion  
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Figure 1. Stress condition on -plane (a) and deformation
types (b-flanging, c-drawing) 
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equilibrium equation usually applied in researches 
without change of  thickness. 
 
 
 

4. ANALYSIS OF THIN RING PLATES 
DEFORMATION 

 
Let's consider thin ring plate having the sizes 

000 ,, srR . At certain dimensional characteristics 

of the plate and forming tool the following variants 
of forming are possible [34]: 

- drawing cylindrical cup at constant or 
variable value of diameter of the central hole 
(Figure 1 c). 

- Flanging central hole at constant or variable 
value of diameter of an external contour (Figure 1 
b). 

The given character of forming allows us to 
conventionally divide deformation of ring plate 
into two components: stretching of ring plates with 

the sizes 00 ,, saR  and 00 ,, sra  under the yield 

stress s accordingly applied to internal and to 

external contours. It is obvious that at such 
condition the stresses arising due to material 
bending on radial flanges of deforming tools are 
not taken into consideration, and the size of the 
ring dividing the drawing zone from flanging zone 
is replaced with conventional circle with radius а . 
     The problem with integration (13) that 
generally the increment of equivalent strain 
defined by differentiation (2) does not equal 
increment intensity of the main strain(5). It is easy 
to show that such equality is possible only at 
proportional change of main strains that 
corresponds to radial ways of deformations on  -
plane. 
     Considering this  assumption it follows from 
(13):  
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     Integration constant is found from boundary 
conditions on which for contours free from load 
radial stresses equal zero. Taking into account 
boundary conditions and by equating the 
integration result to equation (12), we will have 
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     Change limits for angle of deformation state 
kind in the considered problems are established 
depending on the sign of circular deformation and 
the value of the greatest stretching stresses. From 
equation (12) follows that in directions 

3/5,0    radial stresses reach the size 
equal to material yield point. Whereas in the range 
of angles 3/0    circular strains are 

negative, and in range 3/53/4    these 
strains  are positive. Thus, all kinds of strains 
which basically can be realized in drawing and 
flanging processes are situated on half-plane and 
occupy equal sectors with central angles 3/   
(Figure 1 a). 

If deformation path coincides with axis  , 

then stretching strain is   in. 

The received solution allows establishing 
interrelation between coordinates of the considered 
material parameters and the angle of deformation 
state kind. For this purpose, by differentiating (15) 
at 0kp , and taking into account (9), (11), result
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After integration (16) results in 
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(17) 
The integration constant in (17) is obtained 

from the following boundary conditions: for 

external ring plate 3/,0   R ; for internal 

ring plate .3/4,0   r  Taking into 

account boundary conditions expression (17) 
becomes for external ring plate 
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(18) 
for internal ring plate 
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Substituting in (18) and (19) the limiting values of 
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angles of deformation state kind  
3

5
,0    

at which stretching stresses reach the value equal 
to material yield point, we will receive the relation 
of the greatest sizes of ring plates 
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(20) 
At 0n  limiting values of relations aR /0  and 

0/ ra  (Limit Drawing Ration (LDR)) are equal to 

2.35 which coincides with the result of work [4] 
and is close enough to the values usually seen in 
experiments [35-37]. Using value of equivalent 
strain, it is easy to define the main strains for the 
initial plastic state of ring plates: 
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 (21) 
Thus, interdependence among (12), (15), (18), 

(19) and (21), being the parametrical solution of 
the problem, completely define the  stress-strain 
state of ring plates taking into account the 
interconnected change of material thickness and 
deformation hardening.It is obvious that by 
eliminating parameter   it is possible to obtain the 
interdependences characterizing the distribution of 
main stresses and strains on coordinate of   
material parameters for the initial plastic states of 
plates. 

 
 
 

5.  RESULTS & DISCUSSION 
 
On Figure 2 a, b the distribution graphs of 
equivalent and main strains are presented, and on 
Figure 2 c, d the distribution graphs of main 
stresses and thickness for internal and external ring 
plates, are accordingly presented. 
     From graphs some characteristic features of 
forming ring plates follow. For external ring plate 
equivalent strain and radial component differ 

slightly. On the boundary area the external plate 
experiences thickening deformation, and absolute 
value of circular deformation at some distance 
from the internal contour reaches its maximum. 

For internal ring plate equivalent strain and 
deformation by thickness slightly differ in absolute 
value. At internal contour the internal plate 
undergoes deformation of radial compression, and 
circular deformation at some distance from 
external contour reaches its maximum. 
Deformation hardening, not changing the deformed 
state in quality, essentially  influences the stress 
state. Coordinates of material parameters, which 
limit characteristic kinds of deformation, may be 
defined from equations (18), (19). 

The determined distribution of strains may be 
used both for definition of the initial sizes of ring 
plates on the set sizes of the blank and for 
optimization of parameters of the forming process. 
 
 

 
6. CONCLUSIONS 

 
1. Analytical solution of the problem of thin ring 
plates forming for biaxial homogenic and 
heterogenic stress state was studied by considering 
the changes in material thickness and deformation 
hardening. 
2. It was established that the limit drawing ratio for 
real plastic deformation of the material which has 
variation of thickness and work hardening during 
the forming stage is 2.35. 
3. It was shown that deformation hardening not 
changing the deformation state in quality, 
essentially influences the stress state. 
4. The results of the present analytical model 
showed good agreement with experimental results. 
5. The present model can be useful in conducting 
parametric studies on different parameters 
affecting the process, including die design, process 
and material parameters. 
6. The present analytical model lends itself as an 
analysis tool for the design of any cup drawing 
process. It can be used as a fast procedure to 
perform a preliminary analysis to predict the 
stresses and strains induced in the forming cup and 
to determine the suitable parameters that give the 
least strains. 
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(a)                                                                                       (c) 
 
 
 
 
 
 

              
 

(b)                                                                                        (d) 
 

 

Figure 2. The distribution of  main stresses and thickness (a,b) and equivalent  main strains for external and internal ring plates (c,d)

(----n=0;   ___   n=0.2). 
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