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Abstract   In this investigation, a mathematical model for studying oscillatory flow of blood in a 
stenosed artery under the influence of transverse magnetic field through porous medium has been 
developed. The equations of motion of blood flow are solved analytically. The analytical expressions 
for axial velocity, volumetric flow rate, pressure gradient, resistance to blood flow and shear stress 
have been derived. These expressions reveal significant alterations in blood flow due to stenosis. It is 
seen that magnetic field significantly controls the flow patterns. We have incorporated the magnetic 
field perpendicular to the flow of blood. The concept of porous medium is also taken into 
consideration which takes care of the suction factor. The effects of various parameters particularly 
magnetic number and porosity constant on the blood flow through stenosis have been examined. To 
validate the analytical results, numerical experiment is performed. The results obtained in the 
investigation are in reasonably good agreement with experimental findings existing in the literature. 
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 در این تحقیق یک مدل ریاضی براي مطالعه جریان نوسانی خون در یک شریان تنگ شده، تحت تاثیر    چکیده

معادلات حرکت جریان خون به صورت . میدان مغناطیسی عرضی از میان یک مدیاي متخلخل توسعه داده شد
 فشار، مقاومت نسبت معادلات تحلیلی براي سرعت محوري، شدت جریان حجمی، گرادیان. تحلیلی حل شدند

این معادلات تغییرات مهمی را در جریان خون با توجه به تنگی . به جریان خون و تنش برشی به دست آمدند
همچنین مفهوم مدیاي متخلخل براي . از میدان مغناطیسی عمود بر جریان خون استفاده شد. مجرا نشان دادند

مترهاي مختلف به خصوص عدد مغناطیسی و ثابت تاثیر پارا. تضمین ضریب خلا مورد توجه قرار گرفت
. براي توجیه نتایج تحلیلی آزمایش عددي انجام شد. تخلخل روي جریان خون در مجراي تنگ شده بررسی شد

  .نتایج به دست آمده در این تحقیق سازگاري خوب  و منطقی با نتایج آزمایشگاهی موجود در متون دارد
 

1. INTRODUCTION 
 
 One of the leading causes of deaths in the world is 
due to heart related diseases. The heart diseases 
mainly occur due to temporary deficiency of 
oxygen or blood supply to the heart. This 

deficiency may be due to a constriction or 
obstruction in the blood supply to that part; the 
constriction involves the deposition of some fatty 
substances like cholesterol, cellular waste product, 
calcium, etc.. This deposition is called stenosis. 
This stenosis disturbs the flow of blood from its 

mailto:madhufma@iitr.ernet.in
mailto:gokulchandra@sancharnet.in
mailto:singh_ram2008@hotmail.com


244 - Vol. 23, Nos. 3 & 4, December 2010 IJE Transactions B: Applications 

normal state which leads to the development of 
atherosclerosis. The atherosclerosis may cause the 
heart attack.  
     Many researchers have studied blood flow in 
artery by considering blood as either Newtonian or 
non-Newtonian fluids. The study of magnetic field 
with porous medium is very important both from 
theoretical and practical point of view; because of 
most of natural flow problems are connected with 
porous medium. Ahmadi and Manvi [1] derived a 
general equation of motion for the flow of viscous 
fluid through a porous medium. Shukla et al [2] 
studied the effects of stenosis in an artery by 
considering the blood as power-law and Casson-
model fluids. Shukla et al [3] discussed 
biorheological aspect of blood flow through artery 
with mild stenosis. Shukla et al [4] also presented a 
mathematical model to study the effects of 
peripheral layer viscosity on the physiological 
characteristics of blood flow through artery with 
mild stenosis. The effects of the viscosity-
concentration dependence and the concentration 
profile on blood flow through a vessel with 
stenosis have been studied by Perkkiö and 
Keskinen [5]. Haldar [6] studied the problem of 
blood flow through an artery by considering blood 
as non-Newtonian. He also discussed the effects of 
shape of stenosis on blood flow. Misra and Singh 
[7] considered the mathematical model to 
investigate the pulsatile flow of blood through 
arteries by treating the blood vessel as thin-walled, 
non-linearly viscoelastic and incompressible 
circular shell. Misra and Patra [8] developed a 
mathematical model to study non-Newtonian 
nature of blood flow through arteries under 
stenosis. Ghalichi et al [9] proposed a 
mathematical model for blood flow studies in 
certain areas of arterial tree wherein both laminar 
and turbulent flow coexist. Oshima et al [10] 
developed a patient-specific modeling and 
simulation system to investigate the effects of 
vascular morphology on cerebral hemodynamics. 
Varghese and Frankel [11] analyzed numerically 
the pulsatile turbulent flow in stenotic vessels. 
Bhuyan and Hazarika [12] obtained an 
approximation solution for the pulsatile flow of 
blood in a porous channel in the presence of 
transverse magnetic field by assuming blood as 
Newtonian fluid. The study of  blood flow through 
porous medium  is another field of great interest in 

physiological problems. In some physiological 
blood flow situations, the distribution of fatty 
substances which deposits on the walls of an artery 
can be considered as equivalent to a porous 
medium. Peristalsis is one of the major 
mechanisms for fluid transport in many biological 
systems and peristaltic pumping occurs in many 
practical applications involving biomechanical 
systems. Mekheimer and Al-Arabi  [13]  studied 
the mathematical model to determine the 
characteristics of peristaltic transport of 
magnetohydrodynamic flow through a porous 
medium. Übeyli and Güler [14] presented a new 
technique which is based on neuro-fuzzy inference 
system for the detection of internal carotid artery 
stenosis and its occulation.  Oshima and Torii [15] 
developed a medical image based simulation and 
database system to investigate the effects of wall 
deformation on blood flow. Lubbers et al [16] 
constructed a computer based model to explore the 
effects of varying size of stenosis on blood flow.  
    Abbas et al   [17] investigated two dimensional 
magnetohydrodynamic (MHD) flow of upper-
convected Maxwell fluid in a porous channel. 
Arterial wall shear stress is considered to be an 
important factor in the localization of 
atherosclerotic. The height of the stenosis is a key 
factor influencing blood flow than tapering. Since 
high wall shear stress causes the innermost 
membrane of an artery or a vein thickening, but 
may also activate platelets, cause platelet 
aggregation, and finally may result in the 
formation of a thrombus. A mathematical model to 
study the effect of porous parameter and height of 
stenosis on the wall shear stress has been studied 
by Misra and Verma [18]. Chapman [19] 
developed a mathematical model for the blood 
flow through the leaky neovasculature and porous 
interstitium of a solid tumor. Weinberg and 
Mofrad [20] considered a three dimensional model 
to examine the effects of geometric factor on 
multiscale valve mechanics.  A multiphase kinetic 
theory for the computation of viscosity of red 
blood cells and their migration from vessel walls 
has been discussed by Huang [21].  Jain et al [22] 
developed a mathematical model to study the 
blood flow problem through narrow blood vessels 
in the presence of mild stenosis.  A mathematical 
analysis of MHD flow of blood in very narrow 
capillaries in the presence stenosis has been 
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studied by Jain  et al [23]. Rathod and Tanveer 
[24] studied the plusatile flow of blood through a 
porous medium under the influence of periodic 
body acceleration by considering blood as a couple 
stress, incompressible, electrical conducting fluid 
in presence of magnetic field. 
     In this paper, we have made an attempt to see 
the effects of magnetic field on the blood flow 
through stenosis under porous medium. Here the 
artery is considered as a porous medium; because 
in some pathological situation the deposition of 
fatty material or cholesterol and artery-clogging 
blood clots in the lumen of the coronary artery can 
be considered as equivalent to fictitious porous 
medium. The geometry of the stenosis also affects 
the blood flow. There are many types of stenosis 
like cosine shaped stenosis, bell-shaped stenosis, 
overlapping stenosis, irregular stenosis, multi-
irregular stenosis etc.. But in this study, we 
consider the most common cosine shaped 
geometry of the stenosis. 
    The organization of paper is as follows. The 
mathematical formulation of the problem along 
with requisite assumptions and notations has been 
provided in section. 2. Section 3 presents the 
analysis of the problem. The sensitivity analysis is 
carried out in section 4.  Conclusion is given in last 
section 5. 
 

      2. MATHEMATICAL MODEL 
 

   In this paper, the application of porous medium 
for the study of blood flow through stenosed artery 
in the presence of transverse magnetic field is 
made. The application of magnetohydrodynamics 
in physiological problems is of growing interest. 
The flow of blood can be controlled by applying 
sufficient quantity of magnetic field. The Reynolds 
number is assumed to be very small and therefore 
induced magnetic field has been neglected. Two 
important physical factors occur when the fluid 
moves into magnetic field. The first one electric 
field E produced in the flow. We assume that there 
is no excess charge density, so that 0=⋅∇ E .  
Also neglecting induced magnetic field implies 
that 0=×∇ E .  The second factor is Lorentz 
force ( )BJ × , where J the current density acting 
on the fluid. Therefore there is transfer of 
energy ( )BJ ⋅  from electromagnetic field to the 

fluid. In this paper, the relativistic effects are 
neglected and J  is given by Ohm’s law 
as ( )BqJ ×= σ . Here blood is considered to be 
laminar, incompressible and Newtonian in nature, 
through an artery with mild constriction. The 
density and viscosity of the fluid is assumed to be 
constant. The geometry of stenosis is considered to 
be symmetrical and cosine shaped. Let the length 
of tube be L and z be the axis along which the 
blood flows. The geometry of stenosis is given by 
the following relation 
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where R and 0R  are the radii of tube and of 
constricted region of tube due to stenosis, 
respectively. Here 0L  and ε are the length and 
maximum height of the stenosis, respectively. The 
schematic diagram of the stenosis is depicted in 
figure. 1. 
 

 
 
 
2.1. Governing Equations  Since the blood is 
considered as an incompressible Newtonian and the 
flow is axially symmetric with negligible body 
forces, the equation of continuity and the Navier- 
Strokes equations which govern the motion in the 
cylindrical coordinates  ( zr ,,θ ) are as follows: 
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Figure 1. Geometry of cosine shaped stenosis in 
artery 
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where w is the velocity in axial direction, p  be the 
fluid pressure, ρ  be the density of fluid, µ be the 
viscosity, k is the porous parameter,σ  is the 
magnetic intensity and 0B is the applied magnetic 
field. 
 
The boundary conditions are 
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        at    0=r                               (4a) 

  
       0=w           at    Rr =                                (4b) 
 
      0pp =          at   0=z                                  (4c) 
 
      Lpp =          at Lz =                                   (4d) 
 
 

3. THE ANALYSIS 
 
To solve the governing equations of the problem, it 
is convenient to introduce a transformation as 

       
0R

ry = . 

On substituting the above transformation in the 
main equation of motion, it takes the form  
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The corresponding boundary conditions are: 
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0pp =           at       0=z                                   (5c)      

                                                                                         
 

Lpp =         at      Lz =                                     (5d) 
 
It is evident from equation (1) that w is 
independent of z . Also from (2) and (3), it is clear 
that p is independent of r and θ  both. Therefore 
it is justified to make the following substitutions: 
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Putting above values in equation (5), we obtain 
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The solution of equation (6) with boundary 
conditions (5a)-(5b) is given as 
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is the Bessel’s function of zero order with complex 
argument. 
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3.1. Axial Velocity   The axial velocity of the 
blood flow in the artery is given by the following 
expression  
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3.2. Volumetric Flow Rate (Q)  The volumetric 
flow rate (Q) is given by 
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where 1J is the Bessel function of first order with 
complex argument. 
 
 
3.3. Pressure Gradient Pressure gradient is 
expressed as 
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3.4. Resistance to Flow   On integrating equation 
(10) and using equations (4c)-(4d), we obtain 
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The resistive impedance to the flow (cf. Young 
[25] ) is given by the relation 
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Now equations (10) and (11) yield 
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3.5. Wall Shear Stress    The shearing stress at 
wall Rr = is given as follows; 
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4. NUMERICAL ILLUSTRATIONS 
 
    In the present section, numerical results have 
been provided to explore the effects of various 
parameters on the axial velocity, wall shear stress 
etc.. For this purpose, we develop a program coded 
in MATLAB software. We use the defaults 
parameters fixed as 
 

5.12
0

2
0 == iRBM σ , 5.0=R , 1=ε ,    05.0=σ ,

8.0k = ,   06.0=µ ,    08.0=ρ ,      4.0=P ,

2/πω = , ( ) 483.02
0 =αJ , ( ) 564.02

1 =αJ .  
 
The values of Bessel’s functions (zero order and 
first order) are calculated up to 3 decimals. Figures 
2a-2e demonstrate the effects of magnetic field, 
porosity and height of stenosis on the axial 
velocity profiles with the variation in different 
parameters. Figure 2a depicts that increasing 
values of magnetic number have decreasing effects 
on the axial velocity while axial velocity decreases 
with radial distance. It has been noticed that at r=2 
there is a stagnation point at which axial velocity 
becomes zero. 
   Figure 2b shows that the higher value of 
magnetic number leads to lower axial velocity. 
There is a stagnation point at r=2 for t= 2/π . In 
figure 2c, the pattern is different for axial velocity; 
there is more unsteadiness in the flow for t= π . 
Figure 2d is graphical profile for axial velocity 
versus height of stenosis for different values of 
porous parameter. It has been observed that the 
porosity has reciprocal effect on the axial velocity 
and it decreases smoothly with the increase in the 
height of stenosis. Figure 2e represents the axial 
velocity versus radial distance for different values 
of stenosis height. It is seen that the axial velocity 
decreases with the increase in the height of the 
stenosis. It is also noticed from the figure that the 
axial velocity decreases sharply up to r=0.4, but 
beyond that the value of the axial velocity remains 
constant as radial distance increases. 
   Figures 3a-3d display the graphical 
representations of wall shear stress versus radial 
distance and height of stenosis for different 
parameters. Figure 3a depicts wall shear stress 
versus radial distance for fixed value of magnetic 
number at different times; it is evident from figure 

that the wall shear stress at wall varies with the 
time upstream. Figure 3b shows that increasing 
values of magnetic number are responsible for the 
increase in the shear stress at the wall of the artery.  
   We observe in figure 3c that as porous parameter 
increases the shear stress at wall increases. The 
wall shear stress also increases with the increase in 
radial distance. Figure 3d represents the wall shear 
stress versus height of stenosis for different values 
of length of stenosis. It is noticed from the figure 
that the wall shear stress is somewhat constant up 
to r=0.3, but it begins to increase after that. The 
lower values of the length of stenosis lead to lower 
value of wall shear stress. 
   Overall, we conclude that the magnetic field 
causes stagnation on the blood flow and enhances 
the unsteadiness of the flow. It also produces 
remarkable effects on velocity distribution. The 
axial velocity decreases towards the walls of 
artery. It is also noticed that the porosity produces 
positive (negative) effects on the wall shear stress 
(velocity distribution). 

 
             5. CONCLUSION 
 
    In this investigation, we have developed a   
mathematical model for magnetohydrodynamic 
(MHD) blood flow in a stenoses artery under 
porous medium by considering the cosine shaped 
geometry of the stenosis. Our study facilitates 
analytical expressions for the axial velocity, 
pressure gradient, volumetric flow rate and 
resistance to flow. The effects of magnetic field 
and porosity examined indicate that the height of 
the stenosis remarkably affects the velocity, 
pressure and flow rate of the fluid. It has also been 
established that the magnetic field affects the 
velocity and pressure gradient. The length of 
stenosis also positively affects the wall sheer 
stress. Our investigation may be helpful for the 
medical practitioners and Bio-mathematicians to 
understand the flow of blood in the presence of 
stenosis. The outcomes of investigation done may 
be useful for the treatment of hypertension patients 
through magnetic therapy.                                        
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Figure 2a. Effect of magnetic number on axial velocity 
at t=0          with variation in r. 
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Figure 2b. Effect of magnetic number on axial velocity 
at t= 2/π  with variation in r. 
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Figure 2c. Effect of magnetic number on axial velocity 
at                 t=π  with variation in r. 
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Figure 2d. Effects of porosity on axial velocity with 
variation in stenosis height 0/Rε . 
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Figure 2e. Effects of stenosis height 0/Rε  on axial 
velocity with variation in r. 
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Figure 3a. Effect of magnetic number on  wall shear 
stress  for values of different t. 
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Figure 3b.Effect of magnetic number on  wall shear 
stress  for values of different M. 
 
 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Radial distance ( r)

W
al

l s
he

ar
 st

re
ss

K=1.0

K=0.6

K=0.2

 
 
Figure 3c. Effect of porous parameter on  wall shear 
stress with variation in r. 
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Figure 3d.Effect of stenosis length on  wall shear stress 
with variation in stenosis height. 
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