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Abstract In this investigation, a mathematical model for studying oscillatory flow of blood in a
stenosed artery under the influence of transverse magnetic field through porous medium has been
developed. The equations of motion of blood flow are solved analytically. The analytical expressions
for axial velocity, volumetric flow rate, pressure gradient, resistance to blood flow and shear stress
have been derived. These expressions reveal significant alterations in blood flow due to stenosis. It is
seen that magnetic field significantly controls the flow patterns. We have incorporated the magnetic
field perpendicular to the flow of blood. The concept of porous medium is also taken into
consideration which takes care of the suction factor. The effects of various parameters particularly
magnetic number and porosity constant on the blood flow through stenosis have been examined. To
validate the analytical results, numerical experiment is performed. The results obtained in the
investigation are in reasonably good agreement with experimental findings existing in the literature.

Keywords: MHD flow, Stenosis, Magnetic number, Porosity, Axial velocity, Volumetric flow rate,
Wall shear stress
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1. INTRODUCTION

One of the leading causes of deaths in the world is
due to heart related diseases. The heart diseases
mainly occur due to temporary deficiency of
oxygen or blood supply to the heart. This
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deficiency may be due to a constriction or
obstruction in the blood supply to that part; the
constriction involves the deposition of some fatty
substances like cholesterol, cellular waste product,
calcium, etc.. This deposition is called stenosis.
This stenosis disturbs the flow of blood from its
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normal state which leads to the development of
atherosclerosis. The atherosclerosis may cause the
heart attack.

Many researchers have studied blood flow in
artery by considering blood as either Newtonian or
non-Newtonian fluids. The study of magnetic field
with porous medium is very important both from
theoretical and practical point of view; because of
most of natural flow problems are connected with
porous medium. Ahmadi and Manvi [1] derived a
general equation of motion for the flow of viscous
fluid through a porous medium. Shukla et al [2]
studied the effects of stenosis in an artery by
considering the blood as power-law and Casson-
model fluids. Shukla et al [3] discussed
biorheological aspect of blood flow through artery
with mild stenosis. Shukla et al [4] also presented a
mathematical model to study the effects of
peripheral layer viscosity on the physiological
characteristics of blood flow through artery with
mild stenosis. The effects of the viscosity-
concentration dependence and the concentration
profile on blood flow through a vessel with
stenosis have been studied by Perkkié and
Keskinen [5]. Haldar [6] studied the problem of
blood flow through an artery by considering blood
as non-Newtonian. He also discussed the effects of
shape of stenosis on blood flow. Misra and Singh
[7] considered the mathematical model to
investigate the pulsatile flow of blood through
arteries by treating the blood vessel as thin-walled,
non-linearly viscoelastic and incompressible
circular shell. Misra and Patra [8] developed a
mathematical model to study non-Newtonian
nature of blood flow through arteries under
stenosis. Ghalichi et al [9] proposed a
mathematical model for blood flow studies in
certain areas of arterial tree wherein both laminar
and turbulent flow coexist. Oshima et al [10]
developed a patient-specific modeling and
simulation system to investigate the effects of
vascular morphology on cerebral hemodynamics.
Varghese and Frankel [11] analyzed numerically
the pulsatile turbulent flow in stenotic vessels.
Bhuyan and Hazarika [12] obtained an
approximation solution for the pulsatile flow of
blood in a porous channel in the presence of
transverse magnetic field by assuming blood as
Newtonian fluid. The study of blood flow through
porous medium is another field of great interest in
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physiological problems. In some physiological
blood flow situations, the distribution of fatty
substances which deposits on the walls of an artery
can be considered as equivalent to a porous
medium. Peristalsis is one of the major
mechanisms for fluid transport in many biological
systems and peristaltic pumping occurs in many
practical applications involving biomechanical
systems. Mekheimer and Al-Arabi [13] studied
the mathematical model to determine the
characteristics ~ of  peristaltic  transport  of
magnetohydrodynamic flow through a porous
medium. Ubeyli and Giiler [14] presented a new
technique which is based on neuro-fuzzy inference
system for the detection of internal carotid artery
stenosis and its occulation. Oshima and Torii [15]
developed a medical image based simulation and
database system to investigate the effects of wall
deformation on blood flow. Lubbers et al [16]
constructed a computer based model to explore the
effects of varying size of stenosis on blood flow.

Abbas et al [17] investigated two dimensional
magnetohydrodynamic (MHD) flow of upper-
convected Maxwell fluid in a porous channel.
Arterial wall shear stress is considered to be an
important factor in the localization of
atherosclerotic. The height of the stenosis is a key
factor influencing blood flow than tapering. Since
high wall shear stress causes the innermost
membrane of an artery or a vein thickening, but
may also activate platelets, cause platelet
aggregation, and finally may result in the
formation of a thrombus. A mathematical model to
study the effect of porous parameter and height of
stenosis on the wall shear stress has been studied
by Misra and Verma [18]. Chapman [19]
developed a mathematical model for the blood
flow through the leaky neovasculature and porous
interstitium of a solid tumor. Weinberg and
Mofrad [20] considered a three dimensional model
to examine the effects of geometric factor on
multiscale valve mechanics. A multiphase kinetic
theory for the computation of viscosity of red
blood cells and their migration from vessel walls
has been discussed by Huang [21]. Jain et al [22]
developed a mathematical model to study the
blood flow problem through narrow blood vessels
in the presence of mild stenosis. A mathematical
analysis of MHD flow of blood in very narrow
capillaries in the presence stenosis has been

IJE Transactions B: Applications



studied by Jain et al [23]. Rathod and Tanveer
[24] studied the plusatile flow of blood through a
porous medium under the influence of periodic
body acceleration by considering blood as a couple
stress, incompressible, electrical conducting fluid
in presence of magnetic field.

In this paper, we have made an attempt to see
the effects of magnetic field on the blood flow
through stenosis under porous medium. Here the
artery is considered as a porous medium; because
in some pathological situation the deposition of
fatty material or cholesterol and artery-clogging
blood clots in the lumen of the coronary artery can
be considered as equivalent to fictitious porous
medium. The geometry of the stenosis also affects
the blood flow. There are many types of stenosis
like cosine shaped stenosis, bell-shaped stenosis,
overlapping stenosis, irregular stenosis, multi-
irregular stenosis etc.. But in this study, we
consider the most common cosine shaped
geometry of the stenosis.

The organization of paper is as follows. The
mathematical formulation of the problem along
with requisite assumptions and notations has been
provided in section. 2. Section 3 presents the
analysis of the problem. The sensitivity analysis is
carried out in section 4. Conclusion is given in last
section 5.

2. MATHEMATICAL MODEL

In this paper, the application of porous medium
for the study of blood flow through stenosed artery
in the presence of transverse magnetic field is
made. The application of magnetohydrodynamics
in physiological problems is of growing interest.
The flow of blood can be controlled by applying
sufficient quantity of magnetic field. The Reynolds
number is assumed to be very small and therefore
induced magnetic field has been neglected. Two
important physical factors occur when the fluid
moves into magnetic field. The first one electric
field E produced in the flow. We assume that there
is no excess charge density, so that V- E=0.
Also neglecting induced magnetic field implies
thatVx E=0. The second factor is Lorentz
force (J X B), where J the current density acting
on the fluid. Therefore there is transfer of
energy(] -B) from electromagnetic field to the
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fluid. In this paper, the relativistic effects are
neglected and J is given by Ohm’s law
as J= G(q X B). Here blood is considered to be
laminar, incompressible and Newtonian in nature,
through an artery with mild constriction. The
density and viscosity of the fluid is assumed to be
constant. The geometry of stenosis is considered to
be symmetrical and cosine shaped. Let the length
of tube be L and z be the axis along which the
blood flows. The geometry of stenosis is given by
the following relation

R € ( nz]
—=1-——|1+cos—
R, 2R, L,

where Rand R, are the radii of tube and of

constricted region of tube due to stenosis,

respectively. Here L, and ¢ are the length and

maximum height of the stenosis, respectively. The
schematic diagram of the stenosis is depicted in
figure. 1.

Figure 1. Geometry of cosine shaped stenosis in
artery

2.1. Governing Equations Since the blood is
considered as an incompressible Newtonian and the
flow is axially symmetric with negligible body
forces, the equation of continuity and the Navier-
Strokes equations which govern the motion in the
cylindrical coordinates (r,0, z) are as follows:

~—==0 1
2, (1)
op

= _ 2
o 0 (2)
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where wis the velocity in axial direction, p be the
fluid pressure, p be the density of fluid, p be the
viscosity, kis the porous parameter,c is the
magnetic intensity and B, is the applied magnetic
field.

The boundary conditions are

Z—‘: =0 at r=0 (4a)

w=0 at r=R (4b)

P=D, at z=0 (4c)

P=p, at z=L (4d)
3. THE ANALYSIS

To solve the governing equations of the problem, it
is convenient to introduce a transformation as

YZE-

On substituting the above transformation in the
main equation of motion, it takes the form

yoy - u ot u oz
()

Fw, 1ow (GI%ZRJ K]W_p_Rfa_wﬁ@

The corresponding boundary conditions are:
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—=0 at y=0 (5a)
dy
R
w=0 at y=— (5b)
R,
P=D, at z=0 (5¢)
pP=Dp, at z=1L (5d)

It is evident from equation (1) that Wwis
independent of z. Also from (2) and (3), it is clear
that pis independent of rand 6 both. Therefore

it is justified to make the following substitutions:

Wy, 1) = w(y)e"

op
0z

— _Pei(ut

Putting above values in equation (5), we obtain

dw 1 d_v_v{d%z&z R’ +p&2iw)w R oo
d/ ydy | n k p I
(6)

The solution of equation (6) with boundary
conditions (5a)-(5b) is given as

J {az .Vjs/z}
0
—vv(y)_ P 1— RO ei(ut

- 2 . R
iu oB, _l+@ ]0{0521'3/2}
pookop R,

(7

B 2 2 2 2ja)
WhereaZZGORO—RO +pRO and J,
M k M
is the Bessel’s function of zero order with complex
argument.
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3.1. Axial Velocity The axial velocity of the
blood flow in the artery is given by the following

expression
]{azrjs/z}
0
P 1_ I% iot

2 . ¢
o 1 P Jo{aszm}
pok ou R,

®)

wr.t)=

3.2. Volumetric Flow Rate (Q) The volumetric
flow rate (Q) is given by

R
Q= [ 2zrwdr 9)

0

Therefore
RISZP 2]1{azri3/2}
Q: - ' ot % eiat
i ﬂ—l—k&) R i3/2a2]0{a2Ri3/2}
pokop R,
(9a)

where J,is the Bessel function of first order with
complex argument.

3.3. Pressure Gradient Pressure gradient is
expressed as

- 6352 1 pio 2 R 3,
I”R{H k+ " j]o{a qu }

0z RJ{aZRi3/2}—2]{a2ri3/2}
1
TR R
(10)

3.4. Resistance to Flow On integrating equation
(10) and using equations (4c)-(4d), we obtain

Qéial‘
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] {aZ 1 1'3/2}
1
P )
= . 1_ RO et(ut

Ap=p,—p. =
. B, ' .
jur |98 1, pio Jo{alewz}
vk oop R,
Ralo{azRi3/2}—2ll{a2rim}
R, R,

Qe—ia)t[L_ L()]

(11)

The resistive impedance to the flow (cf. Young
[25] ) is given by the relation

A by — P,

0 (11a)

Now equations (10) and (11) yield

g 9B _1 P, zR,m}
e ”l%[u k+u]°{a&

R]O{azRim}—2]1{azri3/2}
R R

e*L-1,]

X

(11b)

3.5. Wall Shear Stress  The shearing stress at
wall r = Ris given as follows;

e
: 'uﬁr R

(12a)

Vol. 23, Nos. 3 & 4, December 2010 - 247




4. NUMERICAL ILLUSTRATIONS

In the present section, numerical results have
been provided to explore the effects of various
parameters on the axial velocity, wall shear stress
etc.. For this purpose, we develop a program coded
in MATLAB software. We use the defaults
parameters fixed as

M=cBR:i=15,R=05,¢=1, =005,
k=08, u=006, p=008, P=04,
w=m/2.J,(a*)=0483, J (a®)=0.564.

The values of Bessel’s functions (zero order and
first order) are calculated up to 3 decimals. Figures
2a-2¢ demonstrate the effects of magnetic field,
porosity and height of stenosis on the axial
velocity profiles with the variation in different
parameters. Figure 2a depicts that increasing
values of magnetic number have decreasing effects
on the axial velocity while axial velocity decreases
with radial distance. It has been noticed that at r=2
there is a stagnation point at which axial velocity
becomes zero.

Figure 2b shows that the higher value of
magnetic number leads to lower axial velocity.
There is a stagnation point at r=2 for t=7 /2. In
figure 2c, the pattern is different for axial velocity;
there is more unsteadiness in the flow for t=7 .
Figure 2d is graphical profile for axial velocity
versus height of stenosis for different values of
porous parameter. It has been observed that the
porosity has reciprocal effect on the axial velocity
and it decreases smoothly with the increase in the
height of stenosis. Figure 2e represents the axial
velocity versus radial distance for different values
of stenosis height. It is seen that the axial velocity
decreases with the increase in the height of the
stenosis. It is also noticed from the figure that the
axial velocity decreases sharply up to r=0.4, but
beyond that the value of the axial velocity remains
constant as radial distance increases.

Figures  3a-3d  display the  graphical
representations of wall shear stress versus radial
distance and height of stenosis for different
parameters. Figure 3a depicts wall shear stress
versus radial distance for fixed value of magnetic
number at different times; it is evident from figure
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that the wall shear stress at wall varies with the
time upstream. Figure 3b shows that increasing
values of magnetic number are responsible for the
increase in the shear stress at the wall of the artery.

We observe in figure 3¢ that as porous parameter
increases the shear stress at wall increases. The
wall shear stress also increases with the increase in
radial distance. Figure 3d represents the wall shear
stress versus height of stenosis for different values
of length of stenosis. It is noticed from the figure
that the wall shear stress is somewhat constant up
to r=0.3, but it begins to increase after that. The
lower values of the length of stenosis lead to lower
value of wall shear stress.

Overall, we conclude that the magnetic field
causes stagnation on the blood flow and enhances
the unsteadiness of the flow. It also produces
remarkable effects on velocity distribution. The
axial velocity decreases towards the walls of
artery. It is also noticed that the porosity produces
positive (negative) effects on the wall shear stress
(velocity distribution).

5. CONCLUSION

In this investigation, we have developed a
mathematical model for magnetohydrodynamic
(MHD) blood flow in a stenoses artery under
porous medium by considering the cosine shaped
geometry of the stenosis. Our study facilitates
analytical expressions for the axial velocity,
pressure gradient, volumetric flow rate and
resistance to flow. The effects of magnetic field
and porosity examined indicate that the height of
the stenosis remarkably affects the velocity,
pressure and flow rate of the fluid. It has also been
established that the magnetic field affects the
velocity and pressure gradient. The length of
stenosis also positively affects the wall sheer
stress. Our investigation may be helpful for the
medical practitioners and Bio-mathematicians to
understand the flow of blood in the presence of
stenosis. The outcomes of investigation done may
be useful for the treatment of hypertension patients
through magnetic therapy.
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Figure 2a. Effect of magnetic number on axial velocity
with variation in r.

at t=0
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Figure 2b. Effect of magnetic number on axial velocity
at t=7 /2 with variation in r.
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Figure 2¢. Effect of magnetic number on axial velocity
at t=7 with variation inr.
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Figure 2d. Effects of porosity on axial velocity with

variation in stenosis height &/ R,
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Figure 2e. Effects of stenosis height £€/R on axial

velocity with variation in r.
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Figure 3a. Effect of magnetic number on wall shear

stress for values of different t.
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Figure 3b.Effect of magnetic number on wall shear
stress for values of different M.
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Figure 3c¢. Effect of porous parameter on wall shear
stress with variation inr.
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Figure 3d.Effect of stenosis length on wall shear stress

with variation in stenosis height.
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