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Abstract   With the aim of extending the use of integrated variational principles on fluid and deck 
plate to the large deflection analysis of floating roofs, this paper investigates the significance of the 
flexural and membrane components in the formulations of the deck plate. Applying integrated 
variational principles on deck plate and fluid facilitate the treatment of the compatibility of 
deformation between floating roof and supporting liquid. Analysis results showed that different 
assumptions about deck plate formulation were commonly used in the literature which resulted in 
considerably different deflection and stress patterns on the floating roof. The results showed that 
modeling of the deck plate as a flexural element rather than membrane, by eliminating the need for 
nonlinear analysis, gave reasonable results for deflections and stresses in the deck plate. Finally, a 
simple and efficient procedure using linear finite element code analyzes of the floating roofs, 
considering only the flexural stiffness was developed. 
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 هاي هاي بزرگ سقف رق براي آناليز تغييرشكلاي از اصول وردشي به سيال و و با اعمال فرم يكپارچهچكيده       

. باشد ها مي شناور، اين مقاله درصدد بررسي ميزان اهميت سختي خمشي و غشايي در بررسي رفتار اين سقف
. كند ها بين ورق و سيال را حذف مي به كنترل سازگاري تغييرشكل اعمال اصول وردشي براي بررسي اين مسئله نياز

گر آن است كه اعمال فرضيات مختلف براي آناليز اين سيستم منجر به نتايج كاملا متفاوتي از  نتايج آناليزها نشان
دهد كه بهترين تقريب از رفتار واقعي با استفاده  همين نتايج نشان مي. گردد ها مي ها و تنش نظر توزيع تغييرشكل

تيجه مشكلات حل عددي هم آيد كه در اين حالت فرمولاسيون خطي شده و در ن از سختي خمشي بدست مي
 .يابد طور اساسي كاهش مي به

 
 

1. INTRODUCTION 
 
Floating roofs are used in the petroleum industries 
for storage of liquid hydrocarbons in atmospheric 
storage tanks. By reducing the evaporation rate of  
stored materials, floating roofs provide better 

protection against possible ignition of the vapors 
by sparks generated from different sources such as 
cigarette smoking, earthquake, static electricity, 
etc. [1]. In addition to the economical benefit of 
preventing the evaporation of valuable products, 
these roofs are also helpful in reduction of the 
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environmental pollution caused by evaporation. 
The conventional floating roofs can be categorized 
into two types: single deck and double deck. The 
single deck floating roofs, which are the subject of 
this study, consist of a circular deck plate and a 
circumferential pontoon and in some cases a 
central pontoon. In these roofs in addition to the 
pontoon buoyancy, the buoyancy provided by the 
liquid under deck plate is also essential for the 
equilibrium of the system. 
     Due to the large deflection of the deck plates 
near the edges, it was anticipated that large 
deflection analysis would be important in the 
analysis of the deck plate. With this in mind, 
different researchers adopted different formulations 
for the deck plate in their analyses. Mitchell [2] 
investigated the stability of the pontoon in floating 
roofs. Ignoring the flexural deformation and 
applying large deflection formulation on the deck 
plate, he evaluated the forces exerted on the pontoon 
from the deck plate. Then, with the assumption of 
small displacements of pontoon, he investigated the 
possibility of in plane, out of plane and torsional 
buckling of the the pontoon due to the forces 
exerted on it by the deck plate. Epstein [3] used the 
shooting method with Runge-Kutta numerical 
integration technique to solve the boundary value 
problem of the deflection of a floating roof. He used 
a large deflection formulation ignoring the flexural 
stiffness of the deck plate. Yuan, et al [4] introduced 
a method based on an equivalent first order ordinary 
differential equation to solve the deflection and stress 
distribution in floating roofs with circumferential and 
central pontoons. They derived the equivalent 
formulation in the state space and then proposed a 
solution algorithm to solve the resulting first order 
ordinary differential equations. They used a large 
deflection formulation including flexural deformation. 
Nerantzaki, et al [5] developed a boundary element 
formulation to study the effect of the ponding of 
rainwater on floating roofs, modeled as a membrane. 
Sun, et al [6] after deriving the formulation of the 
load and deformation, proposed an iterative 
method to modify the buoyancy forces due to the 
supporting liquid and applied load due to rainwater 
accumulation on the top of the deck plate. Nagata, 
et al [7] and Ohmatsu [8] analyzed a rectangular 
large floating structure using a semi-analytical 
approach based on eigenfunction expansions in the 
depth direction. Seto, et al [9] developed a hybrid 

element method (as a combination of the finite 
element method and infinite element) for hydroelastic 
analysis of a large floating structure in stepped-
depth configuration. Iijima, et al [10] analyzed the 
hydroelastic behavior of semi-submersible type 
floating structures using their program named 
VODAC. 
     Variational principles greatly simplify treating 
the compatibility of deformation between the deck 
plate and the contained fluid. Isshiki, et al [11] by 
integrating Hamilton’s variational principle for 
plate and Kelvin’s principle for liquid derived the 
Hamilton-Kelvin principle. Then by introducing 
the velocity potential as an alternative variable 
instead of the fluid velocity, they developed 
different schemes of so-called Hamilton-Dirichlet’s 
principles. Nagata, et al [12] and Ohmatsu [13] 
successfully applied this variational formulation to 
analyze an elastic floating plate. Investigating the 
possible causes of sinking of the floating roofs 
during Niigata earthquake, Sakai, et al [14] used 
the variational principle to study the sloshing 
behavior of floating roofs. By considering only 
flexural stiffness, they developed a linear formulation 
to study the effect of presence of the floating roof 
on the sloshing behavior of the contained liquid 
during earthquakes. 
     As discussed above, different researcheres 
adopted different hypotheses about the deck plate 
in their formulations. Some (e.g. Epstein [3]) 
ignoring the flexural stiffness of the deck plate 
used the large deflection formulation to develop 
their derivations, while some others (e.g. Nagata, 
et al [12]) to have a linear formulation ignored the 
deck plate membrane stiffness and developed their 
formulation by taking into account only the 
flexural stiffness. On the other hand, some other 
researchers (e.g. Yuan, et al) [4] considered the 
flexural and membrane stiffnesses altogether 
in their derivations. 
     Extending the use of variational formulation to 
the nonlinear case, this paper derives the large 
deflection formulation of the floating roofs with 
single deck and circumferential pontoon, by 
applying variational principle simultaneously on 
the deck plate and the liquid. Then by imposing 
some simplifying assumption, the importance of 
the flexural and membrane components on the 
deck plate deflection and stresses are evaluated. It 
is shown that retaining the flexural stiffness, while 
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ignoring the membrane stiffness results in good 
estimate for the deck plate deflections and stresses. 
By this way, it is possible to evaluate these 
deflections and stiffnesses using simple analyses 
employing commercial linear finite element codes. 
 
 
 

2. THE VARIATIONAL PRINCIPLE 
 
Floating roofs essentially consist of a circular deck 
plate and an outer circumferential pontoon as is 
shown in Figure 1. Applying variational principles 
simultaneously on the deck plate and the liquid 
facilitates the problem of imposing the compatibility 
of deformation between the floating roof and the 
supporting liquid. It also eliminates the need for 
two-phase analysis of the system as a coupled 
field. In the following derivations, two main 
assumptions are made. The first is that the 
supporting liquid and the floating roof are in full 
contact, which seems reasonable for a stationary 
liquid. The second is the assumption of rigid 
pontoon. This hypothesis is justified by the 
dimension of the pontoon being large in comparison 
with the deck plate. 
     Assuming that the plate and the fluid are always 
in contact with each other, the Lagrangian of the 
deck plate (Ld) and fluid (Lf) reduces to [11] the 
following equations: 
 

 

dS
ghwdSd

dV
UdV2dL1dLdL  (1a) 
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Where U denotes the deck plate strain energy, Vd 
and Sd are deck plate volume and area (deck plate-
fluid interface), ρ and ρd are fluid and deck plate 
density, h is deck plate thickness and w shows the 
plate deflection relative to the pontoon. Note that 
the plate Lagrangian includes the strain energy of 
the deck plate and its weight, and the fluid 
Lagrangian takes into account the buoyancy force 
exerted on the deck plate by fluid. Using the 
principle of virtual work and equating the variation 
of Ld and Lf  to the variation of the work done by 
pontoon buoyancy force (Wp), we have: 
 

pW)fLdL( 
 

(2) 

 
Variation of the strain energy component of the 
deck plate Lagrangian becomes: 
 

dV)rr
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(3) 

 
Considering the large deflection theory and 
assuming that the in plane displacements are 
infinitesimal and also ignoring the nonlinear terms 
in strain-displacement relation due to this in plane 
displacements (Von Karman theory), the strain-
displacement relation is obtained [15]: 
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Where the displacements are as follow: 
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Here 0u  and 0
ru  denotes the tangential and radial 

displacement in the neutral axes of the deck plate. 
Taking into account the axisymmetry of the 

 
 
 

 
Figure 1. Schematic diagram of a floating roof with
circumferential pontoon. 
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solution, 0u,0/(.)    and the plate strain 
energy reduces to the following equation: 
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Due to the large stiffness of the pontoon in 
comparison with the deck plate and by ignoring 
any deformation in the pontoon, the assumption of 
rigid pontoon is used. To calculate the work done 
by the pontoon buoyancy, the increase in the 
height of the free surface should be calculated. The 
increase in the height of liquid free surface in a 
tank is different from that of  open seas. The 
increase in the height of the liquid free surface is 
decomposed to the deflection due to pontoon (T0) 
plus the increase due to the deflection of the deck 
plate (T). Assuming incompressible liquid, the 
increase in the height of the liquid surface due to 
pontoon T0 (Figure 1) can be evaluated as follows: 
 

]2a2)a[(0TpC)2b2a( 
 

(7) 

 

The increase in the height of the liquid free surface 
due to the deflection of the deck plate T regarding 
Figure 2 and noting that upward deflection in the 
plate is assumed as positive, is obtained: 
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For the definition of the parameters, see Figures 1 
and 2. Now the buoyancy force of the pontoon Fp 
may be calculated as: 
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Where ρ0 denotes ρ-ρp, and ρp denotes the pontoon 
density. Therefore, the variation of the work done 
by pontoon buoyancy is derived as follows:  
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Now to apply an approximate Ritz solution, 
assume that w and ur are functions of known 
interpolation functions of fi and gi, then we have: 
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Where Bi and ci are the unknown coefficients. 
Substituting w from Equation 11 in Equation 10, 
the virtual work of the pontoon buoyancy force can 
be written as: 
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Figure 2. Floating roof after deflection of the deck plate. 
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Substituting w and ur from Equation 11 in the plate 
strain energy and evaluating the variational 
equilibrium, we will have: 
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With the assumed interpolation functions and by 

solving the resulting set of nonlinear Equation 13, 
it is possible to calculate the deck plate deformation 
and stresses. 
     To satisfy the axisymmetric boundary conditions, 
the assumed approximation for w and ur should 
satisfy the following conditions: 
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and in terms of interpolation functions: 
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To satisfy these boundary conditions the following 
interpolation functions are used in this study: 
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The resulting set of nonlinear equations are 
solved using the Newton-Raphson method. The 
convergence tolerance of an energy increment of 
10-8 is used in the analyses. 
 
 
 

3. SIMULATION RESULTS 
 
To assess the impact of different formulations on 
the global and local response of a typical floating 
roof, the deflection and stress distributions of the 
deck plate are calculated for formulations including 
membrane and flexural stiffnesses, flexural stiffness 
only, and finally membrane stiffness only. To obtain 
the results for the case of flexural stiffness only, the 
nonlinear terms in the strain equation (Equation 4) 
have been ignored and the results with membrane 
stiffness only is calculated by ignoring the second 
term on the right hand side of the displacement 
equation (Equation 5). Table 1 denotes the value of 
the parameters used in this study. 
     Figure 3 depicts the deck plate deflection for 
tanks of 20, 40 and 60 m diameters evaluated by 
assuming different stiffness schemes. As can be 
seen, the formulation with membrane stiffness 
results in largest deflections, while deflection for 
the case that includes membrane and flexural 
stiffness is smallest. Discounting the flexural 
stiffness results in at most 37 % increase in the 
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deflection, while disregarding the membrane 
stiffness corresponds to at most 18 % increase. 
Also, note that the deformation pattern near the 
pontoon for the deck plate in formulations ignoring 
flexural or membrane stiffnesses are slightly 
different from that of considering both stiffnesses. 
     Figure 4 shows the stress on the bottom side of 
the deck plate for tanks of aforementioned 
diameters, calculated with different assumptions. 
Examining the total stress at the bottom face of the 
deck plate shows that in the case of flexural 

stiffness, there are increases in negative and 
positive stresses by 6 and 83 %, nearly the same 
value for all tank diameters  is considered in the 
study. In both cases, the maximum stress occurs at 
deck plate-pontoon connection and is mainly due 
to the flexural deformation, therefore, disregarding 
the membrane stiffness will have negligible effect 
on the design thickness of the deck plate. On the 
other hand, design of the deck plate by considering 
only the membrane stiffness, results in the 
elimination of flexural stresses at deck plate-
pontoon connection and there is a significant 
change in the pattern of deflection and stress. In 
addition, there is a considerable decrease in the 
total stress, where the maximum stress is about 33 
% of the case with both membrane and flexural 
stiffnesses for tank of 20 m in diameter, and this 
maximum stress tends to zero with increasing the 
tank diameter. Also, in this case, the noticeable 
increase of the membrane stresses for the 20 m 
diameter tank in comparison with the 40 and 60 m 
tanks is interesting. 
     The results show that different assumptions 
regarding the stiffness formulation of the deck 
plate give substantially different patterns of 
deflection and stress on the deck plate. Considering 
only membrane stresses in the stress analysis of the 
deck plate may be extremely unconservative and at 
the same time, it yields excessively large estimates 
of the actual deflection. On the other hand, 
reviewing Figures 3 and 4 shows that designing 

TABLE 1. The Data used in the Study. 
 

Pontoon Weight 100,000 kg 

Pontoon Width 5 m 

Pontoon Cross 
Sectional Dimension 

0.7x5 m 

Pontoon Depth Below 
Deck plate, Cp 

0.3 m 

Liquid Density, ρ 700 kg/m3 

Deck Plate Thickness 5 mm 

Deck Plate Density, ρd 7800 kg/m3 

Deck Plate Poisson’s 
Ratio, ν 

0.3 

Deck Plate modulus of 
Elasticity, E 

2.1x1011 N/m2 

 
 
 

 
 

Figure 3. Comparison of the deck plate deflection using 
different formulations, for tanks of different diameters. 

 

Figure 4. Comparisons of the stress distributions in the
bottom face of the deck plate, calculated using different
stiffness assumptions. 



IJE Transactions A: Basics Vol. 23, No. 1, January 2010 - 63 

deck plate assuming only the flexural stress will 
be conservative for both stress and deflection 
evaluations. The linearity of the governing equations 
in this case also increases its attractiveness. 
     To develop an approximate solution to the 
problem, consider the governing equation for a 
floating plate ignoring the membrane stiffness: 
 

wggdtdw4

)21(12

3Eh
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(21) 

 
This equation could be rewritten as follows: 
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This is the governing equation for plate on elastic 
foundation with stiffness of ρg and distributed load 
of ρdtdg. Considering this equation, the floating 
plate could be simply modeled as a plate on elastic 
foundation. 
     In this study, ABAQUS [16] is used as finite 
element code for analysis of the floating roof. To 
reduce the computational demand and at the same 
time to increase the accuracy of the analysis, an 
axisymmetric model of the structure is developed 
as depicted in Figure 5. To develop this 
axisymmetric model, at each node, local axes are 
considered parallel or perpendicular to the radial 
line connecting the node to the center of the 
floating plate. Then restraint in the nodes defined 
in such a way to synthesize the axisymmetric 
deformation. In the finite element model, the 
pontoon is modeled as natural extension of the 
deck plate, while to reflect its weight and stiffness, 
different values of the plate thickness in this area 
are used and the stiffness of the plate in pontoon 
area is increased. While the deck plate buoyancy 
has the value of ρgw, the pontoon buoyancy has 
the value of ρg(Cp+w), therefore it is not possible 
to model the buoyancy force for the deck plate and 
pontoon using the same springs. Here the 
buoyancy force in the deck plate area is modeled 
using springs with stiffness of ρg, and in the 
pontoon area, an upward pressure is applied as 
buoyancy force. The value of this upward pressure 
is evaluated using trail and error as is described in 
the following. First, a value for this pressure is 
considered which is slightly larger than the 

distributed load corresponding to the weight of the 
pontoon. Then, the deflection at pontoon centerline 
is evaluated from the results of finite element 
analysis. Then, the corresponding buoyancy force 
for the measured deflection is evaluated. If the 
calculated buoyancy pressure is larger than the 
applied pressure, the pressure is increased, 
otherwise it is decreased. This process is repeated 
until the difference between the applied pressure 
and buoyancy pressure reduces to an acceptable 
value. In general, few iterations are required to 
obtain acceptable accuracy. 
     Figure 6 compares the deflection pattern  
calculated using variational formulation with those 
evaluated using ABAQUS. The deformation 
pattern is similar and the difference in the 
deflection for central part of the plate is mainly 
originated from the possibility of the rotation of the 
 
 
 

 

Figure 5. ABAQUS axisymmetric finite element model of the
floating roof. 

 
 
 

 
Figure 6. Comparisons of the deck plate deflection, calculated
using flexural stiffness only and ABAQUS finite element
model. 
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pontoon in the ABAQUS model, while the 
variational formulation does not consider any 
rotation for pontoon. The pattern of flexural stress 
distribution for both cases is very similar with very 
small difference; therefore, it is not depicted here. 
 
 
 

4. CONCLUSIONS 
 
Applying the variational principle simultaneously 
on the deck plate and the supporting liquid, the 
large deflection formulation of the system 
composing of the floating roof and the liquid is 
derived. The integral equations of the system are 
derived employing the principle of virtual work. 
Simulation results show that different assumptions 
regarding the stiffness of the deck plate, results in 
significantly different patterns of stress and 
deflection in the floating roof. It is shown that the 
best possible simplification will be to use only the 
flexural stiffness for the deck plate, which results 
in a reasonable estimate of the stress and deflection 
in the deck plate. At the end, for analyzing the 
floating roof considering only flexural stiffness and 
employing finite element codes, a simple and 
efficient procedure is developed. 
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