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Abstract   In this paper we examine fluctuation and frequency of the governing equation of 
oscillator with odd and even nonlinearities without damping and we present a new efficient 
modification of the He’s homotopy perturbation method for this equation. We applied standard and 
modified homotopy perturbation method and compare them with the numerical solution (NS), also we 
applied He’s Energy balance method (EBM) for study frequency of this equation. By compare 
modified homotopy perturbation method with numerical solution we find that this modified homotopy 
perturbation method works very well for the wide range of time and boundary conditions for 
nonlinear oscillator, and comparison of the result obtained using this method for frequency with those 
obtained by Energy balance method reveals that the former is very effective and convenient. The new 
modified method accelerates the rapid convergence of the solution, reduces the error solution and 
increases the validity range for fluctuation and frequency. 

 

Keywords   Homotopy Perturbation Method (HPM), Nonlinear Undamped Oscillator, Energy 
Balance Method (EBM), Modified Homotopy Perturbation Method (MHPM) 

 

گر با درجه غير خطي زوج و فرد بدون ميرايي  در اين مقاله ما نوسان و بسامد معادله حاكم بر نوسانچكيده       
 ما روش.را مورد آزمايش قرار داده  و روش جديد هموتوپي پرتوربيشن بهبود يافته آقاي هي را ارائه مي دهيم

همچنين براي بدست .را بكار برده وآنها را با راه حل عددي مقايسه مي كنيم HPMستاندارد وبهبود يافته هاي ا
بهبوديافته با راه  HPMبا مقايسه .گيرد آوردن فركانس اين معادله روش انرژي بالانس هي مورد استفاده قرار مي

 گي از مسائل زماني و شرايط مرزي نوسانبراي بازه بزر HPMحل عددي در مي يابيم كه اين روش بهبوديافته 
گر غير خطي بسيار خوب كار كرده و با مقايسه نتايج بدست آمده از اين روش براي فركانس و روش انرژي 

روش بهبود . بسيار موثر و مناسب است) هموتوپي پرتوربيشن بهبود يافته(بالانس نشان مي دهد كه روش اول 
يع راه حل را تسريع كرده و خطا را كاهش داده و بازه معتبر براي نوسان و يافته جديد رسيدن به همگرايي سر

  .بسامد را افزايش مي دهد
 
 

1. INTRODUCTION 
 
Nonlinear oscillations systems are such phenomena 

that mostly occur nonlinearly. These systems are 
important in engineering because many practical 
engineering components consist of vibrating systems 
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that can be modeled using oscillator systems such 
as elastic beams supported by two springs or mass-
on-moving belt or nonlinear pendulum and vibration 
of a milling machine [1,2]. 
     The development of numerical techniques for 
solving nonlinear algebraic equations is a subject 
of considerable interest. There are many papers 
that deal with nonlinear algebraic equations. The 
application of homotopy perturbation method in 
linear and nonlinear problems has been devoted by 
scientists and engineers [3-21], because this method 
is to continuously deform a simple problem which is 
easy to solve into the under study problem which 
is difficult to solve. This method, homotopy 
perturbation method (HPM), proposed first by He 
[3,4], for solving differential and integral equations, 
linear and nonlinear has been the subject of 
extensive analytical and numerical studies. The 
method is a coupling of the traditional perturbation 
method and homotopy in topology. This method, 
which does not require a small parameter in an 
equation, has a significant advantage in that it 
provides an analytical approximate solution to a 
wide range of nonlinear problems in applied 
sciences. This HPM has already been applied 
successfully to solve Laplace equation, nonlinear 
dispersive K(mp) equations, heat radiation equations, 
nonlinear integral equations, nonlinear heat 
conduction and convection equations, nonlinear 
oscillators, nonlinear Schrödinger equations, nonlinear 
wave equations, nonlinear chemistry problems, and 
to other fields [5-21]. This HPM yields a very rapid 
convergence of the solution series in most cases, 
usually only a few iterations leading to very accurate 
solutions. Thus He’s HPM is a universal one which 
can solve various kinds of nonlinear equations. 
     Recently, some modifications of this method 
have published to facilitate and accurate the 
calculations and accelerate the rapid convergence 
of the series solution and reduce the size of work 
[22-27] and some new methods were found to 
overcome the shortcomings, such as parameter-
expansion method [28-33]. It is the purpose of the 
present paper to examine fluctuation and frequency 
of the oscillator’s governing equation with strong 
(odd and even) nonlinearities and introduce a new 
reliable modification of the HPM. The new 
modification demonstrates an accurate solution if 
compared with standard HPM and Energy balance 
method [34,35], and therefore it has been shown 

that to be computationally efficient in applied 
fields. In addition the new modified HPM may 
give the exact solution for nonlinear equations by 
using two iterations only. The obtained results 
suggest that this newly improvement technique 
introduces a powerful improvement for solving 
nonlinear problems. 
     In this paper, we consider the following 
oscillator equation that is governing equation for 
many mechanical systems with odd and even 
nonlinearities without damping. 
 

,03xxxxx   ,A)0(x   .0)0(x   (1) 
 

Where the following equation presented for the 
relation between the deflection of this spring and 
the force acting upon it: 
 

,3x3k2x2kx1kF 
 

 
or 
 

),3x2xx(mF   (2) 
 
There are many mechanical systems that model by 
mass and spring, which some of them shown in 
Figure 1. 
     Also some of two degree of freedom mechanical 
systems simplified to Equation 1 shown in Figure 2. 
 
 
 

2. ANALYSIS OF THE METHODS 
 
2.1. Analysis of the Homotopy Perturbation 
Method   The Homotopy perturbation method is a 
combination of the classical perturbation technique 
and Homotopy technique. To explain the basic idea 
of the HPM for solving nonlinear differential 
equations we consider the following nonlinear 
differential equation: 
 

,r,0)r(f)u(A   (3) 
 
Subject to boundary condition 
 

,r,0)n/u,u(B   (4) 
 
Where A is a general differential operator, B a 
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boundary operator, f(r) is a known analytical 
function, Γ is the boundary of domain Ω and ∂u/∂n 
denotes differentiation along the normal drawn 
outwards from Ω. The operator A can, generally 
speaking, be divided into two parts: a linear part L 
and a nonlinear part N. Equation 3 therefore can be 
rewritten as follows: 
 

,0)r(f)u(N)u(L   (5) 
 

In case that the nonlinear Equation 3 has no “small 

parameter”, we can construct the following 
Homotopy: 
 

,0))r(f)v(N(p)0u(pL)0u(L)v(L)p,v(H   (6) 
 

Where, 
 

  ,R1,0:)p,r(   (7) 
 

In Equation 6, ]1,0[P  is an embedding parameter 
and u0 is the first approximation that satisfies the 
boundary condition. We can assume that the 
solution of Equation 6 can be written as a power 
series in p, as following: 
 

,...2
2p1p0   (8) 

 
and the best approximation for solution is: 
 

,...2101plimu   (9) 

 

When, Equation 6 correspond to Equations 3 and 9 
becomes the approximate solution of Equation 3. 
Some interesting results have been attained using 
this method. Convergence and stability of this 
method is shown in [36]. 
 

2.2. The New Modified HPM   The present 
new modified HPM that is used to solve the 
nonlinear undamped oscillator is similar to 
standard HPM. In this way, the homotopy 
parameter p is used to expand the square of the 
unknown angular frequency   as follows: 
 

,...2
2p1p2   (10) 

 

or 
 

,...2
2p1p2   (11) 

 

Where µ is coefficient of u(r) in Equation 3, that 
the right hand of Equation 10 replace to it. Also 
α(i=1,2,...) are arbitrary parameters that to be 
determined. 
     The only different between present HPM and 
standard HPM is expansion of angular frequency 
ω, and we can approximate frequency by obtain α 
in every section. 
 

,...21
2   (12) 
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Figure 1. The mass-nonlinear spring systems, (a)
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Figure 2. The 2DOF mass-nonlinear spring systems, (a) 
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2.3. Energy Balance Method   In this method 
according to basic idea of the energy balance 
method, if θ = 0, it shows the whole energy is in 
form of kinetic energy and if θ = π/2, it shows the 
whole energy is in form of potential energy, in θ = 
π/4 there is a balance between the potential energy 
and kinetic energy so we can benefit from this 
point. 
     Then a Hamiltonian is constructed, from which 
the angular frequency can be readily obtained by 
collocation method. 
     In the present paper, we consider a general 
nonlinear oscillator in the form [37]: 
 

0))t(u(fu   (13) 
 

In which u and t are generalized displacement and 
time variables, respectively. 
     Its variational principle can be easily obtained: 
 

dtt
0 )u(F2u

2

1
)u(J  






   (14) 

 

Where w
2T   is period of the nonlinear 

oscillator,  du)u(f)u(F . 

     Its Hamiltonian, therefore, can be written in the 
form: 
 

)A(F)u(F2u
2

1
H   (15) 

 

or: 
 

0)A(F)u(F2u
2

1
)t(R   (16) 

 

Oscillatory systems contain two important physical 
parameters, i.e. the frequency   and the amplitude 
of oscillation, A. So let us consider such initial 
conditions: 
 

0)0(u,A)0(u   (17) 
 

Assume that its initial approximate guess can be 
expressed as: 
 

)t(cosA)t(u   (18) 
 

Substituting (17) into u term of (15), yield: 
 

0)A(F)tcosA(Ft2sin2A2
2

1
)t(R   (19) 

If, by chance, the exact solution had been chosen 
as the trial function, then it would be possible to 
make R zero for all values of t by appropriate 
choice of ω. Since Equation 17 is only an 
approximation to the exact solution, R cannot be 

made zero everywhere. Collocation at 4t   

gives: 
 

t2sin2A

))tcosA(F)A(F(2




  (20) 

 
Its period can be written in the form: 
 

t2sin2A

))tcosA(F)A(F(2

2
T






  (21) 

 
 
 

3. APPLICATIONS 
 

3.1. Solution using Homotopy Perturbation 
Method   In this section, we will apply the HPM 
to nonlinear ordinary differential Equation 1. 
According to the HPM, we can construct a 
homotopy of Equation 1 as follows: 
 

)3xxxxx(p)xx)(p1()p,x(H    

 (22) 
 
Assume that the solution of Equation 1 can be 
written as a power series in p: 
 

...2x2p1px0xx   (23) 
 
Substituting Equation 23 into Equation 22 we have: 
 

]3...)2x2p1px0x(...)2x2p1px0x(

...)2x2p1px0x(...)2x2p1px

0x(...2x2p1xp0x[(p...))2x2p

1px0x(...2x2p1xp0x)(p1()p,x(H













 

(24) 
 
Equating the terms with identical powers of p, we 
obtain the following set of linear differential 
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equations: 
 

:0p  ,00x0x 
 ,A)0(0x   0)0(0x 

 (25) 
 

:1p  ,03
0x0x0x1x1x   ,0)0(1x   

0)0(1x   (26) 
 

0)0(2x,0)0(2x

,01x2
0x30x1x22x2x:2p









 
(27) 

 

0)0(3x,0)0(3x,0)2x2
0x2

1x0x(3

)1x1x0x2x2(3x3x:3P









 
(28) 

 

The solution of Equation 25 is 
 

)tcos(A)t(0x   (29) 
 

Substitution of this result into Equation 26 gives: 
 

,03))tcos(A(

)tcos(A)tcos(A1x1x





 
(30) 

 

It is possible to do the following Fourier series 
expansion: 
 











)t3cos(3a)tcos(1a

)t)1n2(
0n

cos(1n2a3))tcos(A(

)tcos(A)tcos(A)t(f

(31) 

 

Where: 
 
























 d

2

0 ))1n2](cos(3))cos(A(

)cos(A)cos(A[4
1n2a

 

(32) 

 

and 
 

,,2A
15

83A
4

1
5a

,2A
15

83A
4

1
3a,2A

3

83A
4

3
1a













 (33) 

 

 )t(f  has an infinite number of harmonics and it is 
difficult to solve the new differential equation; 
however we can truncate the series expansion at 

Equation 31 and write an approximate equation 
)t(f  in the form: 

 

),t
N

0n
)1n2cos((1n2a)t()N(f 




 
(34) 

 

Equation 34 has only a finite number of harmonics. 
It is possible to make this approximation because 
the absolute value of the coefficient 1n2b   decreases 
when n increases as we can easily verify from 
Equations 31 and 32. Comparing Equations 31 and 
34, it follows that 
 

,)t()N(fNlim)t(f   (35) 
 

In the simplest case we consider N = 1 (n = 0,1) in 
Equation 34, and we obtain 
 

,)t3cos(3a)tcos(1a)t()2(f   (36) 
 

Substituting Equation 31 into Equation 30, 
     When N = 1 (n = 0,1) we have: 
 

,0)0(1x,0)0(1x

,0)t3cos(3a)tcos(1a1x1x









 (37) 

 

By solving Equation 37 we obtain: 
 

)),tcos(
2

)tsin(t(

2
3

2

1a

)t3(cos(
8

3a
)t5(cos(

24
5a

)t(cos(
24

1a63a35a
1x




















 (38) 

 

Substituting Equations 29 and 38 into Equation 27, 
we have 
 

,0)))tcos(
2

)tsin(t(

2
3

2

1a

)t3(cos(
8

3a
)t5(cos(

24
5a

)t(cos(
24

1a63a35a
)(2)tcos(A3

)tcos(A2(2x2x






















 

 (39) 
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The same procedure as was used for calculating 1x  
we obtain the following expression for 2x : 
 

)),tcos(
2

)tsin(t(

2
3

2

1b
)t3(cos(

8
3b

)t5(cos(
24

5b
)t(cos(

24
1b63b35b

2x























 

(40) 

 

Where 
 

β),3a1792β5a768Aε3aπ630Aε5aπ315

tεA1aμ5040βt1aμ(4480
πμ3360

A
1b





 

 

β)3a11520β5a256Aε3aπ2835

εtA1aμ15120βt1aμ(24192
μπ30240

A
3b





 
 

β)3a59136β5a58112Aε3aπ31185εA5aπ20790

εtA1aμ166320tβ1aμ63360(
πμ332640

A
5b




 

 (41) 
 

Having xi, i = 1,2,...,n, the solutions are as follows: 
 

)t(nx...)t(2x)t(1x)t(0x)t(x 
 

 
3.2. The New Modified HPM   To illustrate the 
new modified HPM, we expand the solution x(t) 
and the square of the unknown angular frequency 
  as follows: 
 

,...2
2p1p2   (42) 

 

...2x2p1px0xx   (43) 
 

Where i (i = 1, 2...) are to be determined. 
     Substituting Equations 42 and 43 into Equation 
1 we have: 
 

 ...2x2p1xp0x)(p1()p,x(H   

]3...)2x2p1px0x(

...)2x2p1px0x(...)2x2p1px0x(

...)2x2p1px0x...)(2
2p1p2(

...2x2p1xp0x[(p...))2x2p1px0x(







 

 

(44) 
 
Equating the terms with identical powers of p, we 
obtain the following set of linear differential 
equations: 
 

.0)0(0x,A)0(0x,00x2
0x:0p    (45) 

 

.0)0(1x,0)0(1x

,00x1
3
0x0x0x1x2

1x:1p








 

 (46) 
 

.0)0(2x,0)0(2x,01x10x2

1x2
0x30x1x22x2

2x:2p









 

 (47) 
 

.0)0(3x,0)0(3x

,02x11x20x3)2x2
0x

2
1x0x(3)1x1x0x2x2(3x2

3x:3p











 

 (48) 
 
The solution of Equation 45 is: 
 

)tcos(A)t(0x   (49) 

 
Substitution of this result into Equation 46 gives: 
 

,0)tcos(A1
3))tcos(A(

)tcos(A)tcos(A1x2
1x





 
(50) 

 
It is possible to do the following Fourier series 
expansion: 
 









)t3cos(3a)tcos(1a)t)1n2cos((
0n

1n2a3))tcos(A()tcos(A)tcos(A
 

 (51) 
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Where 
 










 




d
2

0
))1n2(cos(]3))(cosA()(cosA)(cosA[

4
1n2a

 (52) 
 
and 
 

,2A
15

83A5a

,2A
15

83A
4

1
3a

,2A
3

83A
4

3
1a
















 
(53) 

 
Substituting Equation 51 into 50, we have: 
 

,0)tcos(A1)t)1n2cos((
0n

1n2a1x2
1x









 

 
or 
 

,0)tcos()A11a()t)1n2cos((
1n

1n2a1x2
1x









 
(54) 

 
No secular terms in  (t)x1 requires eliminating 
contributions proportional to cos(ωt) in the Equation 
54 and we obtain 
 

,
A
1a

1 
 

(55) 

 
Taking into account Equations 55 and 54, we 
rewrite Equation 54 in the form: 
 

),t)1n2((
1n

cos1n2a1x2
1x 






 
 (56) 
 
With initial conditions 1x (0) = 0and 1x (0) = 0. 
The periodic solution to Equation 56 can be 

written as: 
 









)t3cos(3b)tcos(1b)t)1n2cos((
0n

1n2b)t(1x

 
(57) 

 
Substituting Equation 57 into Equation 56 we 
obtain: 

),t)1n2((
1n

cos1n2a

)t
0n

)1n2cos(()2)1n2(1(1n2b2













 

 (58) 
 
We can write the following expression for the 
coefficients 1n2b  : 
 

,
21) ω4n(n

12na

21) ω21)((2n

12na
12nb







 
for n ≥ 1 (59) 
 
Taking into account that 1x (0) = 0, Equation 31 
gives 
 







1n
1n2b1b  (60) 

 
 (t)x1  has an infinite number of harmonics and it is 

difficult to solve the new differential equation; 
however we can truncate the series expansion at 
Equation 57 and write an approximate equation 

 (t)x(N)
1 in the form 

 

)t
N

1n
)1n2cos((1n2b)tcos()N(

1b)t()N(
1x 




 
 (61) 
 
Where 
 





N

1n
1n2b)N(

1b  (62) 

 
Equation 61 has only a finite number of harmonics. 
It is possible to make this approximation because 
the absolute value of the coefficient 1n2b   decreases 
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when n increases as we can easily verify from 
Equations 51 and 59. Comparing Equations 57 and 
61, and Equations 60 and 61, it follows that: 
 

)N(
1bnlim1b

,)t()N(
1xnlim)t(1x





 (63) 

 
In the simplest case we consider N = 1 (n = 0,1) in 
Equations 61 and 62, and we obtain: 
 

,))t3cos()t(cos(3b)t()1(
1x   (64) 

 
From Equation 59 the following expression for the 
coefficient 3b  is obtained: 

 

,
28

3a
3b




 
(65) 

 
and from Equation 42 and 55, writing p = 1, we 
can find that the first-order approximate frequency 
 

A
1a

1)A(1 
 

(66) 

 
Substituting Equations 49, 64 and 66 into Equation 
3.26 gives the following equation for  (t)x2 : 

 

,0))t3cos()tcos((3b1)tcos(A2

))t3cos()tcos((3b)t(2cos2A3

)tcos(A))t3cos()tcos((3b2
2x2

2x









 

(67)

 
 
It is possible to do the following Fourier series 
expansion: 
 













)t3cos(3c)tcos(1c

)t)1n2(
0n

cos(1n2c))t3(cos(3b1

))t3cos()tcos((3b)t(2cos2A3

)tcos(A))t3cos()tcos((3b2

 

(68) 

Where 
 




































 d

2

0

))1n2((cos]))3(cos

)(cos(3b)(2cos2A3

))3((cos3b1)t(cosA

))3(cos)cos((3b2[

4
1n2c

 

 (69) 
 
and 
 

),
35
1b

21
3b5

(A
3

16
3b2A

4

3
5c

,3b1)1b
15

4
3b

35

36
(A

4
)

2
1b

3b(2A
8

3
3c

),1b
5
3b

(A
3

16
)1b33b(2A

4

3
1c
















 

(70) 

 
Substituting Equation 31 into Equation 30, we have: 
 

,0)tcos(3b1)tcos(A2

)t)1n2(
0n

cos(1n2c2x2
2x









 

 
or 
 

,0)tcos()1cA23b1(

)t)1n2(
1n

cos(1n2c2x2
2x









 
(71) 

 
No secular terms in (t)x2  requires eliminating 
contributions proportional to cos(ωt) in the 
Equation 71 and we obtain 
 

,
A

3b11c
2




 
(72) 

 
Taking into account Equation 72 and 71, we 
rewrite Equation 71 in the form 
 

),t)1n2(
1n

cos(1n2c2x2
2x 






 
(73) 

 
With initial conditions 2x (0) = 0 and 2x (0) = 0. 
The periodic solution to Equation 73 can be 
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written as: 
 









)t3cos(3d)tcos(1d

)t
0n

)1n2cos((1n2d)t(2x

 
(74) 

 
Substituting Equation 74 into Equation 73 we 
obtain: 
 

),t)1n2((
1n

cos1n2c

)t
0n

)1n2((cos)2)1n2(1(1n2d2













 

 (75) 
 
We can write the following expression for the 
coefficients 1n2b  : 
 

,
2)1n(n4

1n2c

2)12)1n2((

1n2c
1n2d





  

for n ≥ 1 (76) 
 
Taking into account that 2x (0) = 0, Equation 74 
gives 
 







1n
1n2d1d

 
(77) 

 
The same procedure as was used for approximate 

1x  we obtain the following expression for 2x : 
 

,)t5cos(5d)t3cos(3d)tcos()5d3d(

)t()2(
2x




 (78) 

 
and from Equations 42 and 72, writing p = 1, we 
can find that the first-order approximate 
 

2A

3b1a

A
1c

A
1a

21)A(2    (79) 

 
3.3. Energy Balance Method   for Equation 1,  
 

,3x2xx)x(f   
 
and 

4

4x

3

3x

2

2x
)x(F 

 
 
Its variational and Hamiltonian formulations can 
be readily obtained as follows: 
 




























t

0
dt

4

4x

3

3x

2

2x2x
2

1

)x(J

 

(80) 

 

4

4A

3

3A

2

2A

4

4x

3

3x

2

2x2x
2

1

H





 

 (81) 
 

0
4

4A

3

3A

2

2A

4

4x

3

3x

2

2x2x
2

1

)t(R





 
(82) 

 
Substituting (17) into (82), we obtain: 
 

0
4

4A

3

3A

2

2A

4

4)t(cos4A

3

3)t(cos3A

2

2)t(cos2A2)t(sin
2

22A

)t(R

















 
(83) 

 
We obtain the following result: 
 

)tsin(

)
2

2A

3

A2

2

4)tcos(2A

3

3)tcos(A22)tcos((

2
1













 

 (84) 
 

with 
 2T  , yields: 

 














3

3)tcos(A22)tcos(

)t(sin2T  

2
1

2

2A

3

A2

2

4)tcos(2A









  (85) 
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If we collocate at 4t  , we obtain: 

 

3

A4

4

2A3

3

A2


 
(86) 

 

with 
 2T , yields: 

 

3

A4

4

2A3

3

A2

2
T




  (87) 

 
 
 

4. CONCLUSIONS 
 
In the present work, we have applied He’s Homotopy 
Perturbation Method (HPM), modification He’s 
Homotopy Perturbation Method (MHPM) and He’s 
Energy balance method (EBM) to investigation of 
fluctuation and frequency of the oscillator’s governing 
equation with strong nonlinearities. This equation 
is solved by the numerical method using the 
software MAPLE 11, whose results of the different 
methods of HPM and MHPM are compared in 
Figures 3-5, and the result for A = 5, A = 10 have 
been shown in Figure 4. 
     Observe that HPM is just valid for short region, 

but the new modification HPM solution exactly 
the same with the numerical solution (NS) for this 
strongly nonlinear problem. These approximate 
analytical solutions are in an excellent agreement 
with the corresponding numerical solutions. 
     Figure 5 shows the comparison between numerical 
solution and new modification HPM for different 
value of A, µ, β and ε. 
     The results of the different methods of MHPM 
and EBM for frequency are compared in Figures 
6-12. 

 
 
 

 

Figure 3. The comparison between standard HPM, modified
HPM and numerical solutions for A = 1, µ = 1, β = 1, .1  

 
(a) 

 

 
(b) 

 
Figure 4. The comparison between standard HPM, modified
HPM and numerical solutions for (a) A = 5, µ = 1, β = 1,

1  and (b) A = 10, µ = 1, β = 1, .1  
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