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Abstract   The problem of steady, laminar and incompressible natural convection flow in an octagonal 
enclosure was studied. In this investigation, two horizontal walls were maintained at a constant high 
temperature, two vertical walls were kept at a constant low temperature and all inclined walls were 
considered adiabatic. The enclosure was assumed to be filled with a Bousinessq fluid. The study 
includes computations for different Prandtl numbers Pr such as 0.71, 7, 20 and 50 whereas the Rayleigh 
number Ra was varied from 103 to 106. The pressure-velocity form of Navier-Stokes equations and 
energy equation were used to represent the mass, momentum and energy conservations of the fluid 
medium in the enclosure. The governing equations and boundary conditions were converted to 
dimentionless form and solved numerically by penalty finite element method with discretization by 
triangular mesh elements. Flow and heat transfer characteristics were presented in terms of streamlines, 
isotherms and average Nusselt number Nu. Results showed that the effect of Ra on the convection heat 
transfer phenomenon inside the enclosure was significant for all values of Pr studied (0.71-50). It was 
also found that, Pr influence natural convection inside the enclosure at high Ra (Ra > 104). 

 

Keywords   Natural Convection, Penalty Finite Element, Nusselt Number, Octagonal Enclosure, 
Rayleigh Number 

 

. شده استوجهي مطالعه  ناپذير درون يك فضاي هشت ي طبيعي جرياني پايدار، آرام و تراكميجا هجاب   چكيده
ين ثابت نگه داشته شد و تمام يعمودي در دماي پا ةافقي در يك دماي بالا و دو ديوار ةدر اين بررسي دو ديوار

. باشد وجهي با سيال پر شده همچنين فرض شد كه فضاي هشت. نظر گرفته شد آدياباتيك در هاي مورب ديواره
كه عدد  را درحالي 50و  20، 7، 71/0 :مانند است؛ به اعداد پرنتل متفاوت محاسبات مربوط شامل اين بررسي
نظر از فرم  اي موردبراي بيان معادلات جرم، مومنتم و انرژي سيال در فض. متغير بود 106تا  103رايلي از 

دست آمد و شرايط مرزي بدون  معادلات به. شدانرژي استفاده  ةاستوكس و معادلـرعت معادلات ناويرـسفشار
خصوصيات انتقال حرارت . شدهاي مش مثلثي حل  بعد شد و با روش تفاضل محدود پنالتي و جداسازي المان

ثير عدد أنتايج نشان داد كه ت. متوسط نشان داده شد ها و عدد ناسلت صورت خطوط جريان، ايزوترم و جريان به
ر يچشمگ) 71/0-50(مقادير عدد پرانتل  ةنظر براي هم ي در فضاي مورديجا هرايلي روي انتقال حرارت جاب

ي طبيعي در يجا هروي جاب) <104Ra(كه عدد پرانتل در عدد رايلي بالا  شدهمچنين از نتايج استنباط . است
 .گذارد  ير ميثأوجهي ت فضاي هشت

 

1. INTRODUCTION 
 
Analysis of natural convection finds applications in 

thermal insulation, cooling of electronic devices, 
solar energy instruments, nuclear reactors, heat-
recovery systems, room ventilation, crystal growth 
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in liquids and tower type architectural structure, 
etc. The fluid flow and heat transfer behavior of 
such systems can be predicted by mass, momentum 
and energy conservation equations considering 
appropriate boundary conditions. 
     Actual enclosures in practice are often found to 
have different shapes rather than rectangular ones. 
Some examples of non-rectangular channels 
include various channels of constructions, panels 
of electronic equipment and solar energy 
collectors, etc. Several geometrical configurations, 
more or less complex, have been examined under 
theoretical, numerical or experimental approaches. 
Heat transfer experiments in triangular enclosures 
were first reported by Flack, et al [1]. Effect of 
non-uniform heat flux on convection heat transfer 
in trapezoidal channel was experimentally studied 
by Remley, et al [2]. Kumar [3] experimentally 
investigated natural convective heat transfer in 
trapezoidal enclosure. He focused on the 
performance of a box type solar cooker and 
evaluated the natural convective heat transfer 
coefficient. Natural convection in tilted 
parallelopiped cavities for large Rayleigh numbers 
was studied numerically and experimentally by 
Baїri, et al [4]. The majority of researches involved 
in convection study are restricted to the cases of 
simple geometries like rectangular, square, 
cylindrical and spherical cavities. However, the 
configurations of actual containers occurring in 
practice are often far from simple ones. Heat and 
mass transfer by free convection in a trapezoidal 
enclosure with hot lower wall and cold side walls 
was studied by Boussaid, et al [5]. In that research 
work, momentum, energy and mass equations were 
solved by finite volume method and the influences 
of the geometrical parameters were observed. 
Kuyper, et al [6] investigated laminar natural 
convection flow in trapezoidal enclosures to study 
the influence of the inclination angle on the flow 
and also the dependence of the average Nusselt 
number on the Rayleigh number. Iyican, et al [7], 
McQuain, et al [8], Van der Eyden, et al [9], 
Reynolds, et al [10], Papanicolaou, et al [11] and 
several other researchers have several attempts to 
understand the basic heat transfer and fluid flow 
characteristics inside a trapezoidal cavity. 
     To the best of the author’s knowledge, no 
attention has been paid to the problem of natural 
convection of flow and heat transfer within an 

octagonal enclosure whose inclined walls are 
considered adiabatic with other vertical and 
horizontal walls maintained at constant high and 
low temperature, respectively. The objective of the 
present study is to examine the effect of Rayleigh 
and Prandtl numbers within an octagonal enclosure 
for the above mentioned boundary conditions. The 
results are presented in terms of parametric 
presentations of streamline and isotherm plots 
inside the enclosure and the variation of the 
average Nusselt number at the heated surfaces with 
the change of governing parameters are also 
discussed briefly. 
 
 
 

2. PROBLEM FORMULATION 
 
The present paper considers the problem of natural 
convection in an octagonal enclosure where 
different working fluids have been considered for 
simulation. The length of each sides of the 
enclosure is assumed to be equal to L. The physical 
model considered here is shown in Figure 1 along 
with the important geometric parameters and 
boundary conditions. The vertical left and right 
walls are kept at fixed high temperature, Th 
whereas, the top and bottom horizontal walls are at 
constant low temperature, Tc(Tc<Th). In the present 

 
 
 

 
Figure 1. Schematic diagram of the physical system. 
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work, a steady two-dimensional laminar flow of 
incompressible fluid is considered with negligible 
viscous dissipation effect. For the treatment of the 
buoyancy term in the momentum equation, 
Boussinesq approximation is adopted to account 
for the variations of temperature as a function of 
density as well as to couple the temperature field 
with the flow field. With the above mentioned 
assumptions, the governing equations for steady 
natural convection flow using conservation of 
mass, momentum and energy can be expressed in 
the following dimensionless form as follow: 
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Where, X and Y are the non-dimensional 
coordinates along the horizontal and vertical 
directions, respectively, U and V are the non-
dimensional velocity components in the X and Y 
directions, respectively, Θ is the non-dimensional 
temperature and P is the non-dimensional pressure. 
The non-dimensional numbers appeared in the 
governing equations, Ra and Pr are the Rayleigh 
number and Prandtl number respectively and are 
defined as follows: 
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The dimensionless parameters in the previous 
equations are defined as follow: 
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Where, ρ, β, υ, α and g are the fluid density, 
coefficient of volumetric expansion, kinematic 
viscosity, thermal diffusivity and gravitational 
acceleration, respectively. Among others x, y are 
Cartesian coordinates while p and T denote 
pressure and temperature, respectively. 
     The boundary conditions for the present 
problem are specified as follow: 
 

 For horizontal walls: U = V = Θ = 0  
 

 For vertical walls: U = V = 0, Θ = 1  
 

 For inclined walls: 0
n

VU 



 , where n is 

the outward normal dimensionless length. 
 

The sum of the average Nusselt number at the hot 
walls of the enclosure may be expressed as: 
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In the present study, numerical simulations are 
carried out for parametric variation of Rayleigh 
numbers, Ra from 103 to 106 with Prandtl number 
of 0.71, 7, 20 and 50, respectively. 
 
 
 

3. FINITE ELEMENT FORMULATION 
 
The continuity Equation 1 can be used as a 
constraint due to the mass conservation and it may 
be used to obtain the pressure distribution. In order 
to solve Equations 2-4, Penalty finite element 
method [12] has been used, where the pressure P is 
eliminated by Penalty parameter γ and the 
incompressibility criteria is given by Equation 1 
which results in: 
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The continuity Equation 1 is automatically satisfied 
for large values of γ. Using Equation 8, the 
momentum Equations 2 and 3 reduce to: 
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Expanding the velocity components (U,V) and 

temperature (Θ) using basis set  N

10kkN
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Then Galerkin finite element method yields the 
following nonlinear residual equations for Equations 
9-11, respectively at nodes of internal domain A. 
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Three point Gaussian quadratic formulas are used 
to evaluate the integrals in the residual equations. 
The nonlinear residual Equations 12-14 are solved 
using Newton’s method to determine the 
coefficients of the expansions in Equation 11. Also 
 

η),(ξkNkY
6

1k
Yandη),(ξkNkX

6

1k
X 





  (15) 

 
Where, Ni(ξ,η) are the local six noded triangular 
basis functions in ξ–η domain. The integrals in 
Equations 12-14 can be evaluated in ξ-η domain 
using the following relationships: 
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4. RESULTS AND DISCUSSIONS 
 
The numerical procedure that has been used to 
solve the governing equations for the present work 
is Penalty finite element method. It provides 
smooth solutions in the interior domain including 
the corner regions. The non-linear parametric 
solution is chosen to solve the governing 
equations. This approach will result in 
substantially fast convergence assurance. A non-
uniform triangular mesh arrangement is 
implemented in the current investigation 
especially, near the heated wall to capture the rapid 
changes in the dependent variables. Also, six 
noded triangular elements are considered in the 
present model since the six noded elements 
smoothly capture the non-linear variations of the 
field variables. All six nodes are associated with 
velocity as well as temperature while only the 
corner nodes are associated with pressure. The 
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relative tolerance for the error criteria is considered 
to be 10-6. As the dependent variables vary greatly 
in magnitude, manual scaling of the dependent 
variables is used to improve numerical convergence. 
The manual scaling values are kept constant and 
selected in such a way that the magnitudes of the 
scaled degrees of freedom become unity. 
 
4.1. Grid Sensitivity Check   Test for the 
accuracy of the grid sensitivity is examined for the 
arrangements of five different non-uniform grid 
systems with the following number of elements 
within the octagonal enclosure: 5829, 7121, 8796, 
10466 and 13658. The results are shown in Table 1. 
From these comparisons, it is suggested that 10466 
non-uniform elements are sufficient to produce 
accurate results. 
 
4.2. Code Validation   Since validation of 
experimental data is not possible in the present 
case; the computational code is validated with the 
results obtained for natural convection flows in a 
trapezoidal enclosure as mentioned by Natarajan, 
et al [13]. Comparison of the result is shown in 
Figure 2 and it has been observed that the present 
numerical solution is almost in full agreement with 
the aforementioned one in terms of the isotherm 
plot. Therefore, it can be concluded that the current 
code can be used to predict the flow and thermal 
field for the present problem accurately. However, 
almost similar experimental results for square 
straight enclosure with discrete bottom heating 
obtained by Corvaro, et al [14] are compared by 
the present code and reported in Table 2. The 
agreement is found to be excellent which validates 
the present computations and lead us confidence 
for the use of the present code. 
 
4.3. Flow and Thermal Fields   The thermal 
and dynamical velocity field the investigated 
octagonal enclosure are depicted in Figure 3 for Pr 
= 0.71 air and Ra ranging from 103 to 106. The 
opposite walls of the octagonal enclosure along the 
vertical axis are hot isothermal surfaces (Th) while 
those along the horizontal axis are cooled (Tc) with 
the other four inclined walls at the corners are 
being adiabatic. Due to the density gradient of the 
fluid in the vicinity of the hot and cold walls, a 
convection current is set up that causes the hot 
fluid to rise up along the vertical side walls whilst, 

cold fluid comes down through the middle portion 
of the enclosure forming two symmetric rolls with 
clockwise and counter clockwise rotations. The 
obtained results clearly reveal dependency of the 
streamlines number Ra as shown in Figure 3. 
     Figure 3a shows the temperature and streamline 
distribution inside the enclosure for Pr = 0.71 and 
Ra = 103. In this case, the streamline distribution 

TABLE 1. Comparison of the Results for Various Grid 
Dimensions at Ra = 103 and Pr = 0.71. 
 

Elements Nusselt Number, Nu 

5829 2.4105 

7121 2.4128 

8796 2.4437 

10466 2.4544 

13658 2.4544 

 
 
 

 
 

(a) 
 

 
 

(b) 
 
Figure 2. Comparison of the isotherm plots by Natarajan, et al 
[13] at Ra = 105 and Pr = 0.71, (a) Natarajan, et al [13] and (b) 
Present Code. 
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consists of two identical rolls inside the enclosure 
while the isotherms are found to be symmetric 
only with respect to vertical central axis. The 
asymmetry of isotherms with respect to the 
horizontal axis is due to differential convection 
effect experienced by the cold walls located at the 
top and bottom of the enclosure. Near the central 
core at the lower half of the enclosure, there are 
small gradients in temperature whereas a large 
stratification zone of temperature is observed at the 
vertical symmetric line near the top wall. The 
pronounced convection effect acting on the top 
cold wall results in densely spaced isotherms while 
those near the bottom cold wall are found to be 
flatter as shown the Figure 3a. 
     As Rayleigh number increases, significant change 
in the contour of isotherms occurs as shown in 
Figures 3b-3d. While Pr = 0.71, these Figures 3b-3d 
illustrate the streamlines and isotherms for Ra = 104, 
105 and 106, respectively. With the increase of 
Rayleigh number Ra, enhanced buoyancy 
strengthens the convection circulation which in 
turn results in significant distortion of the isotherms 
inside the enclosure. At high Ra, part of the flow 
that is deflected by the upper corner walls towards 
the center of the enclosure plays vital role in 
reshaping the streamlines and isotherms. All 
isotherms are pushed closer to the walls from the 
center of the enclosure under increasingly “Y” 
shaped flow. The isotherms that are almost flat near 
the bottom cold wall at Ra = 103, become concave at 
Ra = 106. At high Ra, some secondary flows are 

observed near the bottom cold wall as shown in 
Figures 3c,d. 
     In the present study, it is found that effect 
of Prandtl number Pr on natural convection 
phenomena inside the octagonal enclosure for the 
given boundary conditions does not affect 
significantly for lower value of Rayleigh number 
(Ra<104). For simplicity, the isotherm and 
streamline distribution for Ra = 103, 104 are not 
included here. This phenomenon will also be clear 
from the heat transfer characteristics later. The 
effect of Pr on convection characteristics inside the 
enclosure is shown in Figure 4 for Ra = 106. As Pr 
increases, the circulation strength also increases 
and the zone of stratification of the temperature at 
the vertical symmetric line increases. Consequently, 
it causes more and more compression of the 
isotherms towards the boundary of the enclosure. 
The contour of the isotherms near the bottom cold 
wall indicates enhanced heat transfer towards the 
lower half of the enclosure for high Pr number. 
The secondary convection current at lower part of 
the enclosure becomes more prominent with high 
Prandtl number. 
 
4.4. Heat Transfer Characteristics   The 
overall effects upon the heat transfer rates are 
depicted in Figure 5, where variation of sum of the 
average Nusselt number Nu of the two opposite hot 
walls of the octagonal enclosure, as defined by 
Equation 7, is shown in logarithmic scale with 
Rayleigh number for different Prandtl numbers. 

TABLE 2. Comparison Between the Experimental and Numerical Average Nusselt Number. 
 

Rayleigh 
Number, Ra 

Average Nusselt Number 

Error (%) Experimental Data Obtained by 
Corvaro, et al [14] 

Numerical Data (Present Code)  

7.56 × 104 4.80 5.31 10.63 

1.38 × 105 5.86 6.07 3.60 

1.71 × 105 6.30 6.37 1.11 

1.98 × 105 6.45 6.58 2.01 

2.32 × 105 6.65 6.82 2.56 

2.50 × 105 6.81 6.94 1.91 
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Figure 3. Distribution of streamlines and isotherms for different Ra at Pr = 0.71. 
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Figure 4. Distribution of streamlines and isotherms for different Pr at Ra = 106. 
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     It is worth to mention that for Ra = 103, the 
distribution of isotherms and streamlines do not 
alter for all values of Pr (0.71<Pr<50). Distribution 
of the isotherms indicates conduction dominant 
heat transfer at Ra = 103. From Figure 5, it is 
clear that for Ra > 103, average Nusselt number 
increases with Rayleigh number but the rate of 
increment is pronounced at high range of Ra 
(Ra≥105). For a particular value of Ra, heat 
transfer also increases as Prandtl number increases 
but at high range of Prandtl number, relative 
increase of Nu is not significant compered to Ra as 
shown in Figure 5. 
 
 
 

5. CONCLUSION 
 
Two-dimensional numerical simulation of natural 
convection inside an octagonal enclosure with two 
hot walls (side walls) and two cold walls (top and 
bottom walls) separated consecutively by four 
adiabatic walls (corner inclined walls) has been 
performed in the present study. From the analysis 
of the streamline and isotherm patterns, it is found 
that conduction dominant heat transfer prevails 
inside the enclosure up to Ra = 103. Both the 
Rayleigh number and Prandtl number are found to 
influence the convection characteristics inside the 
enclosure. It is interesting that at high values of 
Rayleigh number, the bottom cold wall undergoes 
progressively higher cooling effect than the top 
one. Not only that, some secondary circulation 

occurs at the bottom half of the enclosure at high 
Rayleigh number due to the deflection of strong 
circulation caused by the corner walls. Finally, the 
overall heat transfer from the hot walls is found to 
increase with Rayleigh number and the effect is 
found to be amplified at higher values of Ra. 
Similar result is also observed for the variation of 
Prandtl number at higher values of Ra (Ra>104) 
but its effect seems to lessen at higher values of Pr 
compared with Ra. 
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