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Abstract   The flow in an elastico-viscous fluid between two co-axial infinite rotating porous discs 
is considered for high cross flow Reynolds number. The discs are rotating with different angular 
velocity and the injection rate of the fluid at one disc is different from the suction rate of other disc. 
The effect of suction parameters on the velocity components have been investigated numerically and 
solved by iterative methods/finite difference methods and depicted graphically. This study has 
immense practical utility especially when the fluid is non-Newtonian. The results are applicable in the 
chemical industry using fluids of higher Reynolds numbers. 
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نهايت بزرگ در اعـداد رينولـدز        يجريان سيال لزج ارتجاعی بين دو ديسک متخلخل دوار هم محور ب              دهيچک

 و نـرخ رانـش       دارند ها سرعت دورانی متفاوت    ديسک. بر مبنای سرعت عرضی جريان بزرگ بررسی شده است        
اثرات پارامترهای مکش بر عوامل سرعت      .  متفاوت است  ديگر از يک ديسک با نرخ مکش سيال از ديسک           سيال

 محدود و تکرار حل شده و به صورت منحنی نمايش داده شده             های تفاضل  به شکل عددی و با استفاده از روش       
ی ين نتايج برای صنايع شيميا    اي. دهد اين مطاله امکانات وسيع علمی برای سيال غير نيوتنی را به دست می            . است

 .با عدد رينولدز جريان بالا قابل استفاده است
 
 

1. INTRODUCTION 
 
The problem of forced flow fluid between two 
rotating discs is important in chemical and 
mechanical engineering. A large number of 
theoretical investigations dealing with the study 
of incompressible laminar flow with either 
injection or suction have appeared during the last 
few decades. Karman [1] has discussed the flow 
of viscous incompressible fluid under the 
influence of rotating disc. Following Karman [1], 
Lance, et al [2] have discussed the flow between 
two rotating discs. The problem of flow between 
a rotating and a stationary disc has been 
independently solved by Mellor, et al [3] under the 
assumption of similarity solutions. Narayan, et al 

[4] and Wilson [5] studied the same problem but 
they applied suction either on the stationary disc or 
on the rotating disc. Gaur [6] also considered the 
flow of a viscous incompressible fluid between 
two infinite porous rotating discs under the 
assumption that the rate of fluid injection at one 
disc is equal to the rate of suction at the other. 
Hossain, et al [7] studied the same problem in 
presence of transverse magnetic field. Chaudhary, et 
al [8] studied the flow and heat transfer of an 
incompressible second order fluid between two 
infinite porous rotating discs of infinite radius where 
the suction Reynolds number is assumed small. 
     The present paper is concerned with the flow of 
an incompressible second-order fluid between two 
infinite, porous rotating discs, where the suction 
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Reynolds number is assumed to be high. The 
constitutive equation for the incompressible second-
order fluid is taken in the form of; 
 
σ = -pI + μ1A1 + μ2A2 + μ3(A1)2 (1) 
 
Where p is the stress tensor, an are the Kinematic 
Rivlin-Ericksen tensor; μ1, μ2, μ3 are the material 
coefficients describing the viscosity, elasticity and 
cross-viscosity respectively. Equation 1 was 
derived by Coleman, et al [9] from simple fluids by 
assuming that stress is more sensitive to the recent 
deformation than the deformation occured in the 
distant past. 
     In this paper, it is assumed that the rate of fluid 
suction at one disc is different from the rate of 
injection at the other disc. The velocities in 
transverse and axial direction have been shown 
graphically for various values of parameters 
involved in the solution. 
 
 
 

2. MATHEMATICAL FORMULATION 
 
Consider the flow of a viscous incompressible 
second-order fluid between two coaxial parallel 
infinite porous discs. The discs are rotating with 
different angular velocities and the suction rate 
taken from the upper discs is different than the 
injection rate at the lower discs. We use the 
cylindrical polar co-ordinate )z,,r( θ  and define 
the surface of the discs by planes respectively. By 
symmetry all the variables will be independent. 
Now introducing the following non-dimensional 
quantities. 
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In the governing equations for velocity subject to 
the boundary conditions: 
 

nww,rmR,0u,0z =Ω=ν==  
 

Ww,rR,0u,dz =Ω=ν==  

We get the non-dimensional equations as: 
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Subject to the boundary conditions: 
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Where 
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α (the elastico-viscous parameter) is negative since 
μ2 < 0. Further the constitutive relation (1) is valid 
for flow at low shear rates such that 1<<α . 
 
 
 

3. METHOD OF SOLUTION 
 
To find the solution of Equations 2 to 5, we 
introduce the following variables 
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Then the equation of continuity (2) is identically 
satisfied with the Equations 3 to 5 are transformed to 
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The corresponding boundary conditions are 
 

,nF,mG,0F,0z ===′=  
 

.1F,1G,0F,1z ===′=  
 
Equations 7 and 8 are highly non-linear in F and G 
which are functions of z. Divide z [0,1] into 
hundred equal parts of 0.001 length each. The 
finite-difference approximations scheme for the 
first, second, third and fourth order derivatives has 
been used to discretize the differential Equations 7 
and 8 to obtain 
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The Equations 10 and 11 have been solved 
numerically using iterative scheme. 
 
 
 

4. RESULTS AND DISCUSSIONS 
 
Figures 1-6 represent the behavior of axial velocity 
F with z for different values of visco-elastic 
parameters α, β for fixed Reynolds number. It has 
been observed and concluded that for larger values 
of Reynolds numbers, the axial velocity has 
negative sign i.e. liquid comes out of disc. The 
study is of great importance that the chemical 
industry may be interested to find the limit of 
Reynolds number for the fluid being used for such 
set-ups. These values depend on the characteristics 
of the fluid. The results corresponding to Newtonian 
fluid can be deduced from the above results by 
setting α = β =0  
     Figures 1-2 depict that for α = β =0 and α = -
0.01, β =0.01 the results are in good agreement 
with the results of Chaudhary, et al [8], but for α = 
-0.05, β =0.05 recirculation occurs at the end 
points in the lower and upper discs. From point z = 
0.4 to 0.9 the set of values shows the normal study 
of circulation and attains maximum value at z=0.7. 
Hence, it is concluded that for non-Newtonian 
fluid large recirculation occurs at lower disc in 
comparison to the recirculation at upper disc. The 
behavior of the fluid is turbulent as higher value of 
Reynolds number is considered. It is also noticed 
that the behavior of the fluid in the practical 
purpose is to be seen by the technocrats and 
engineers in the industry. 
     Figure 3 represents that for α = -0.05, β =0.05 
recirculation occurs at the end point in lower disc 
and attains maximum value at z =0.05. From z = 
0.15 to z = 0.1 the set of values depicts normal 
behavior of circulation and attains the maximum 
value at point z = 0.9. For α = -0.01, β =0.01 the 
curve depicts normal behavior of circulation 
which has maxima at point z = 0.8 and minima at 
point z = 0.05. 
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Figure 4. For m = 0.5, n = 2, λ = 1, Re = 3. 
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Figure 5. For m = 0, n = 0, λ = 1, Re = 1. 
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Figure 6. For m = 0, n = 0, λ = 1, Re = 3. 
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Figure 1. For m = 2, n = 2, λ = 1, Re = 1. 
 
 
 

-1400000

-1200000

-1000000

-800000

-600000

-400000

-200000

0

200000

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

Z--->

F-
-->

α=0.0,β=0.0
α=-0.01,β=0.01
α=-0.05,β=0.05

 
Figure 2. For m = 2, n = 2, λ = 1, Re = 3. 
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Figure 3. For m = 2, n = 2, λ = 0.5, Re = 1. 
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     Figure 4 depicts that the axial velocity F with z 
shows normal circulation curve and attains maximum 
value at point z = 0.25 accepts from point z =0.5 to 
0.7, where recirculation occurs. 
     Figure 5 depicts recirculation for α = -0.05, β = 
0.05 at end point of lower disc and attains maximum 
value at point z = 0.5 and minimum value at z = 
0.95. It is almost symmetrical about z = 0.5 except 
end points in the lower and upper discs. 
     Figure 6 shows that for α = -0.05, β = 0.05 at 
the end point of the lower disc recirculation occurs 
and is maximum at z =0.35, but for other values of 
α and β, the set of values represents normal 
behavior of circulation. 
     The comparison of different values of Reynolds 
number has been shown graphically in Figure 7. 
     Figures 8-11 represent the behavior of transverse 
velocity G with z for different values of m, n and λ 
and visco-elastic parameters α, β for fixed Reynolds 
numbers Re = 1 and Re = 3. It is observed that 
recirculation takes place for different values of z 
for different parameters. 
 
 
 

5. CONCLUSION 
 
Hence it is concluded that the distribution of 
transverse velocity is not symmetrical and for non- 
Newtonian fluid, large recirculation occurs at upper 
disc in comparison to the recirculation at lower disc 
on increasing the value of Reynolds number. 
     The comparison of different values of Reynolds 
number has been shown graphically in Figure 12. 
     The present study could be of much interest to 
bio-engineers involved in design and construction 
of artificial organs, e.g. artificial dialysis. 
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