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Abstract The flow in an elastico-viscous fluid between two co-axial infinite rotating porous discs
is considered for high cross flow Reynolds number. The discs are rotating with different angular
velocity and the injection rate of the fluid at one disc is different from the suction rate of other disc.
The effect of suction parameters on the velocity components have been investigated numerically and
solved by iterative methods/finite difference methods and depicted graphically. This study has
immense practical utility especially when the fluid is non-Newtonian. The results are applicable in the
chemical industry using fluids of higher Reynolds numbers.
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1. INTRODUCTION

The problem of forced flow fluid between two
rotating discs is important in chemical and
mechanical engineering. A large number of
theoretical investigations dealing with the study
of incompressible laminar flow with either
injection or suction have appeared during the last
few decades. Karman [1] has discussed the flow
of viscous incompressible fluid under the
influence of rotating disc. Following Karman [1],
Lance, et al [2] have discussed the flow between
two rotating discs. The problem of flow between
a rotating and a stationary disc has been
independently solved by Mellor, et al [3] under the
assumption of similarity solutions. Narayan, et al
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[4] and Wilson [5] studied the same problem but
they applied suction either on the stationary disc or
on the rotating disc. Gaur [6] also considered the
flow of a viscous incompressible fluid between
two infinite porous rotating discs under the
assumption that the rate of fluid injection at one
disc is equal to the rate of suction at the other.
Hossain, et al [7] studied the same problem in
presence of transverse magnetic field. Chaudhary, et
al [8] studied the flow and heat transfer of an
incompressible second order fluid between two
infinite porous rotating discs of infinite radius where
the suction Reynolds number is assumed small.
The present paper is concerned with the flow of
an incompressible second-order fluid between two
infinite, porous rotating discs, where the suction

Vol. 22, No. 2, August 2009 - 115



Reynolds number is assumed to be high. The
constitutive equation for the incompressible second-
order fluid is taken in the form of;

o =-pl + WA + A, + (A’ ey

Where p is the stress tensor, an are the Kinematic
Rivlin-Ericksen tensor; p;, |, p3 are the material
coefficients describing the viscosity, elasticity and
cross-viscosity respectively. Equation 1 was
derived by Coleman, et al [9] from simple fluids by
assuming that stress is more sensitive to the recent
deformation than the deformation occured in the
distant past.

In this paper, it is assumed that the rate of fluid
suction at one disc is different from the rate of
injection at the other disc. The velocities in
transverse and axial direction have been shown
graphically for various values of parameters
involved in the solution.

2. MATHEMATICAL FORMULATION

Consider the flow of a viscous incompressible
second-order fluid between two coaxial parallel
infinite porous discs. The discs are rotating with
different angular velocities and the suction rate
taken from the upper discs is different than the
injection rate at the lower discs. We use the
cylindrical polar co-ordinate (r,0,Z) and define

the surface of the discs by planes respectively. By
symmetry all the variables will be independent.
Now introducing the following non-dimensional
quantities.

r z ud vid
r=—,z=—,u=—,Vv=——,
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In the governing equations for velocity subject to
the boundary conditions:

z=0,u=0,v=mRQT1,W=nw

z=d,u=0,v=RQr,w=W
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We get the non-dimensional equations as:
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Subject to the boundary conditions:
z=0,u=0,v=mArR,w=nR
z=1,u=0,v=ArR,w=R

Where

, 1s a dimensionless rotational parameter,

R = wd , 1s a suction Reynolds number,

M
a=%, B=%
pd pd

o (the elastico-viscous parameter) is negative since
to < 0. Further the constitutive relation (1) is valid
for flow at low shear rates such that |a] <<1.

3. METHOD OF SOLUTION

To find the solution of Equations 2 to 5, we
introduce the following variables

{u = —(%)F’(Z) , v=1RAG(z),

w =RF(z), P:p(z)+%k2r2} (6)

Then the equation of continuity (2) is identically
satisfied with the Equations 3 to 5 are transformed to

2RF" - 2RZFF" + R2F2 — 4R %32G2 + 402 +
[2R2FFIV 2R2F”2} (7)
B[ZRzF’F"' ~R2F2 4 4R2k2G2} =0

G"-RFG' +RF'G +a [RFG" - RF'G']+

B [REG"-RF'G]=0 ®
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RF"— R2FF —P' +
a [1 IRZF'F" + R2FF" + r2R2F"F" + 4r2R 2)2 G'G"}
+B [7R2F’F” + %rZRZF”F’" + 2r2R2G’G'} =0

€)]
The corresponding boundary conditions are
z=0,F'=0,G=m,F=n,
z=1,F'=0,G=1,F=1.

Equations 7 and 8 are highly non-linear in F and G
which are functions of z. Divide z [0,1] into
hundred equal parts of 0.001 length each. The
finite-difference approximations scheme for the
first, second, third and fourth order derivatives has
been used to discretize the differential Equations 7
and 8 to obtain
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(11)

The Equations 10 and 11 have been solved
numerically using iterative scheme.

4. RESULTS AND DISCUSSIONS

Figures 1-6 represent the behavior of axial velocity
F with z for different values of visco-elastic
parameters o,  for fixed Reynolds number. It has
been observed and concluded that for larger values
of Reynolds numbers, the axial velocity has
negative sign i.e. liquid comes out of disc. The
study is of great importance that the chemical
industry may be interested to find the limit of
Reynolds number for the fluid being used for such
set-ups. These values depend on the characteristics
of the fluid. The results corresponding to Newtonian
fluid can be deduced from the above results by
setting o= 3 =0

Figures 1-2 depict that for o = f =0 and o = -
0.01, B =0.01 the results are in good agreement
with the results of Chaudhary, et al [8], but for a =
-0.05, B =0.05 recirculation occurs at the end
points in the lower and upper discs. From point z =
0.4 to 0.9 the set of values shows the normal study
of circulation and attains maximum value at z=0.7.
Hence, it is concluded that for non-Newtonian
fluid large recirculation occurs at lower disc in
comparison to the recirculation at upper disc. The
behavior of the fluid is turbulent as higher value of
Reynolds number is considered. It is also noticed
that the behavior of the fluid in the practical
purpose is to be seen by the technocrats and
engineers in the industry.

Figure 3 represents that for o = -0.05,  =0.05
recirculation occurs at the end point in lower disc
and attains maximum value at z =0.05. From z =
0.15 to z = 0.1 the set of values depicts normal
behavior of circulation and attains the maximum
value at point z = 0.9. For a = -0.01, f =0.01 the
curve depicts normal behavior of circulation
which has maxima at point z = 0.8 and minima at
point z=0.05.
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Figure 4 depicts that the axial velocity F with z
shows normal circulation curve and attains maximum
value at point z = 0.25 accepts from point z =0.5 to
0.7, where recirculation occurs.

Figure 5 depicts recirculation for o = -0.05, B =
0.05 at end point of lower disc and attains maximum
value at point z = 0.5 and minimum value at z =
0.95. It is almost symmetrical about z = 0.5 except
end points in the lower and upper discs.

Figure 6 shows that for a = -0.05, p = 0.05 at
the end point of the lower disc recirculation occurs
and is maximum at z =0.35, but for other values of
o and B, the set of values represents normal
behavior of circulation.

The comparison of different values of Reynolds
number has been shown graphically in Figure 7.

Figures 8-11 represent the behavior of transverse
velocity G with z for different values of m, n and A
and visco-elastic parameters o, § for fixed Reynolds
numbers Re = 1 and Re = 3. It is observed that
recirculation takes place for different values of z
for different parameters.

5. CONCLUSION

Hence it is concluded that the distribution of
transverse velocity is not symmetrical and for non-
Newtonian fluid, large recirculation occurs at upper
disc in comparison to the recirculation at lower disc
on increasing the value of Reynolds number.

The comparison of different values of Reynolds
number has been shown graphically in Figure 12.

The present study could be of much interest to
bio-engineers involved in design and construction
of artificial organs, e.g. artificial dialysis.

6. REFERENCES

1. Karman, T.V., “Laminare and Turbulente Reibung”,
Zeit. Angew Math. Mech., Vol. 1, (1921), 233.

2. Lance, G.N. and Rogers, M.G., “The Axially Symmetric
flow of a Viscous Fluid between Two Rotating Disks”,
Proc. Roy. Soc. Lond., Vol. 266, No. A, (1962), 109.

3. Mellor, C.L., Chappleand, P.J. and Stokes, O.K., “On
the flow Between a Rotating and Stationary Disk”,
Fluid Mech., Vol. 31, (1968), 95.

4. Narayan, C.L. and Rudraiah, N., “On the Steady flow
Between a Rotating and a Stationary Disk with a
Uniform Suction at the Stationary Disk”, Zeit. Angew.

120 - Vol. 22, No. 2, August 2009

400 -

200 4

-400 -

-600 -

-800 -

-1000 | —Re=3
....... Re=5
-1200 4 o Re=7

Figure 7. Form=2,n=2,A=1,a=-0.01, 3 =0.01.

G—>

-60 - — —— -Re=1,a=0.0,8=0.0
Z---> —o6— Re=1,a=-0.01,8=0.01
Re=1,a=-0.05,8=0.05

Figure 8. Form=2,n=2,1=0.5,Re=1.

6.00E+05 +
4.00E+05
2.00E+05 +
0.00E+00 -4
A -2.00E+05 -
é -4.00E+05 -

-6.00E+05 -

-8.00E+05

-1.00E+06 -

-1.20E+06 -

---e---Re=3,0=0.0,=0.0
Z-—-> — o6 Re=3,a=-0.01,3=0.01

Re=3,a=-0.05,3=0.05

Figure 9. Form=0.5,n=2,A,=1,Re=3.

1JE Transactions B: Applications



1.20E+01
1.00E+01 -
8.00E+00 -+
6.00E+00 -+
4.00E+00 A

‘i\l) 2.00E+00 +

0.00E+00 ‘/,.W

© - N (3] < 0 © N~ o] [ -
a e} a e} (e} a =} c e}
-2.00E+00 -
-4.00E+00
-6.00E+00 +
---e---Re=1,a0=0.0,8=0.0
-8.00E+00 -

Zoo> —=&—— Re=1,0=-0.01,3=0.01

Re=1,a0=-0.05,B3=0.0%

Figure 10. Form=0,n=0,A=1,Re=1.

5.00E+03

4.00E+03

3.00E+03

2.00E+03

1.00E+03

0.00E+00

-1.00E+03

-2.00E+03 -
Z---> ---e---Re=3,0=0.0,=0.0

—=o6—— Re=3,0=-0.01,=0.01
Re=3,0=-0.05,3=0.05

Figure 11. Form=0,n=0,A=1,Re =3.

80000 4
70000 1
60000 1
50000 1
40000

A 30000 1
20000

10000 A

-10000 -+

-20000 -+

-30000 -
Z--->

Figure 12. Form=2,n=2,A=1,a=-0.01,  =0.01.

IJE Transactions B: Applications Vol. 22, No. 2, August 2009 - 121



Math. Ph., Vol. 23, (1972), 96.

Wilson, L.O., “Flow between a Stationary and a Rotating
Disc with Auction”, J. Fluid Mech., Vol. 85, (1978), 479.
Gaur, U.N., “Viscous Incompressible flow Between
Two Infinite Porous Rotating Discs”, Indian J. Pure
Appl. Math., Vol. 4, (1972), 1289.

Hossain, M.A. and Rahman, “On the Steady flow
Between Two Porous Rotating Discs in Presence of
Transverse Magnetic Field”, A.F.M.A., Indian J. Pure
Appl. Math., Vol. 15, (1984), 187.

Choudhury, R. and Das, A., “Elastico-Viscous flow and
Heat Transfer Between two Rotating Discs of Different
Transpiration”, Indian J. Pure Appl. Math., Vol. 28,
(1997), 1649.

Coleman, B.D. and Noll, W., “An Approximation
Theorem for Functionals with Application in Continuum
Mechanics”, Archs. Ration Mech. Analysis, Vol. 2,

122 - Vol. 22, No. 2, August 2009

10.

11.

12.

13.

(1960), 355.

Batchelor, G.K., “Note on a Class of Solutions of the
Navier-Stokes Equations Representing Steady
Rotationally-Symmetric Flow”, Quar. J. Mech. Appl.
Math., Vol. 4, (1951), 29.

Wang, H., “Investigation of Trajectories of Inviscid
Fluid Particles in Two-Dimensional Rotating Boxes”,
Theoretical and Computational Fluid Dynamics, Vol.
22, No. 1, (2008), 1-8.

Donald Ariela, P., “On Computation of the Three-
Dimensional flow Past a Stretching Sheet”, Applied
Mathematics and Computation, Vol. 188, No. 2, (2007),
1244-1250.

Emin Erdogan, M. and Erdem Imrak, C., “Steady Flow
of a Second-Grade Fluid in an Annulus with Porous
Walls, Mathematical Problems in Engineering, Vol.,
(2008), 1-11.

1JE Transactions B: Applications



