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Abstract   The mine production planning defines a sequence of block extraction to obtain the 
highest NPV under a number of constraints. Mathematical programming has become a widespread 
approach to optimize production planning, for open pit mines since the 1960s. However, the previous 
and existing models are found to be limited in their ability to explicitly incorporate the ore grade 
uncertainty into the planning process. To overcome this shortcoming, this paper presents an Integer 
Programming (IP) model, for long-term planning of open pit mines. This model is set up to account 
for grade uncertainty. The grade distribution function, in each block is used as a stochastic input, to 
optimize the model. The deterministic equivalent of this model is then achieved by using stochastic 
programming, which is a form of nonlinear in binary variables. Because of the difficulties in solving 
large scale nonlinear models, the model is then approximated by a linear one.This formulation will 
yield schedules with high chance of  achieving planned production targets, while maximizes the 
expectation of net present value, it simultaneously minimizes the variance in function. 
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کند که تحت  برنامه ريزی توليد معادن ترادف استخراج بلوک ها از معدن را طوری مشخص می   چكيده    

 ميلادی استفاده از برنامه ۱۹۶۰از دهه . محدوديت های موجود، حداکثر ارزش خالص فعلی نصيب معدن شود
 اما مدل های قبلی و موجود هيچکدام .ينه سازی برنامه ريزی توليد خيلی متداول شده استريزی رياضی در به

در اين مقاله يک مدل برنامه ريزی عدد صحيح . نتوانستند عدم قطعيت عياری را به صورت صريح در نظر گيرند
تابع توزيع . رديده استبرای توليد بلند مدت معادن روباز ارايه شده که عدم قطعيت عيار در مدل سازی لحاظ گ

سپس با استفاده از برنامه ريزی . احتمال عيار بلوک ها به عنوان يک ورودی تصادفی مدل در نظر گرفته شد
به خاطر مشکلات موجود در . تصادفی، مدل قطعی معادل آن به دست آورده شد که يک مدل غير خطی است

اين مدل برنامه ای را .  مدل خطی تقريب زده شدحل مسايل غير خطی با ابعاد بزرگ، مدل غير خطی با يک
دهد که شانس دستيابی به اهداف توليدی در آن بيشتر بوده و در عين حالی که ارزش  برای توليد معدن ارايه می

 .يابد شود، واريانس آن نيز کاهش می خالص فعلی معدن بيشينه می
 
 

1. INTRODUCTION 
 
The aim of long-term production planning is, to 

maximize the overall discounted net value of the 
total profits, from the production process within 
the operational constraints, such as mining slope, 
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grade blending, ore production, mining capacity 
and etc, during each planning period with the 
predetermined high degree of probability. 
Operational Research (OR) techniques have been 
applied to solve long-term production planning 
problems since 1960s. There are two mathematical 
optimization approaches to solve this kind of 
problems: deterministic and uncertainty-based 
approaches. In deterministic models all inputs are 
assumed to have fixed real values (known). 
     However, the assumption of input certainty is 
not always realistic. In reality, some data on ore 
grades, future product demand, price and 
production costs- can vary within certain limits, 
(for our discussion, randomly) and we have to 
make our decision on the production plan before 
knowing the exact values of those data. None of 
the deterministic methods are able to deal with the 
uncertainty in a quantitative manner. This will 
result in generating infeasible schedules in terms of 
production requirements. 
     Uncertainty-based approach in optimizing, open 
pit mine design and planning has been developed 
since 1990s. Ravenscroft [1] discussed risk 
analysis in mine production planning. This method 
can only show the impact of grade uncertainty on 
production planning, using the alternative 
scenarios of the orebody which are provided by 
conditional simulation. Dowd [2] proposed a 
framework for risk assessment in open pit mines. 
He also considered some other random variables 
like commodity price, mining costs, processing 
costs, etc. Denby, et al [3] proposed an algorithm 
which considers ore grade variance in open pit 
design and planning, using Genetic algorithm. 
They used multi-objective optimization method: 
maximizing value and minimizing risk. 
Dimitrakopoulos, et al [4] discussed an LP approach 
that considered grade uncertainty, equipment 
access and mobility constraints. This formulation 
was based on expected ore block grades and the 
probabilities of different element grades being 
above required cutoffs, both were derived from 
simulated orebody models. Gody, et al [5] 
presented an algorithm which addresses the 
generation of optimal condition under uncertainty. 
At first, they generated production planning on 
each simulated ore body and then, they combined 
the mining sequences to produce a single schedule 
that minimizes the chance of deviating from 

production target. This was done using Simulated 
Annealing Meta-Heuristic method. Ramazan, et al 
[6] suggested a MIP model that accommodates 
grade uncertainty. In this method, after obtaining 
simulated ore body models, planning patterns on 
each model is generated using traditional MIP 
formulation (with the objective of NPV 
maximization). Then the excavation probability 
of each blocks in a given time period is calculated. 
The blocks with probability between zero and one, 
are considered in a new optimization model. 
     It has been shown that these risk-based models 
are unable to explicitly integrate the ore grade 
uncertainty and also presenting an optimal 
solution, under uncertainty without conducting 
repeated, boring traditional optimization on 
simulated orebody. To deal with this draw back, a 
stochastic programming based model is developed 
by Gholamnejad, et al [7]. In this model, grade 
uncertainty is incorporated explicitly in the 
mathematical programming model for long-term 
production planning by applying chance 
constrained programming approach. This model 
generates the schedules that, maximizes net present 
value of the total revenue and simultaneously, 
minimizes the risk of the schedules which is 
originated from ore grade uncertainty, and also 
maintains a predetermined reliability with respect 
to satisfying probabilistic constraints. But this 
model can not be implemented on a large size 
deposit, owing to the nonlinear form of the 
objective function and constraints. Therefore 
accurate linear approximation would be useful to 
analyze this class of problems. 
     In this paper, at first the nonlinear integer model 
for long-term production planning is introduced 
and then, the nonlinear model is extended by using 
linear approximation. 
 
 
 

2. UNCERTAINTY IN OPEN PIT 
OPTIMIZATION 

 
Long-term production planning is a challenging 
task in the theory of surface mining. It determines 
the distribution of cash flow over the life of the 
mine. Also long-term plans are used as basis for 
implementing cutoff grade strategy,to create short-
term and medium-term production scheduling; 
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because of this, the optimality of the mentioned 
issues strongly depends on the optimality of the 
long-term plans. The optimal long-term production 
plans are sensitive to the uncertainties concerned 
with the optimization model inputs. The 
uncertainty related to orebody model and in-situ 
grade variability is a major contributor, causing 
expectations not to meet in the early stages of a 
projects. Valee [8] reported, in the first year of 
operation after startup, 60 % of surveyed mines 
had an average rate of less than 70% production of 
designed capacity. Geological uncertainty is 
identified as a major contributor to these short 
falls. Indeed geological risks -which is originated 
from geological uncertainties, can not be 
eliminated; consequently, the best solution is 
to quantify the grade uncertainties, reduce 
these uncertainties as far as investment permits 
and finally, manage the residual risk of grade 
uncertainty. 
     Kriging is a geostatistical method which 
estimates the ore block grade so that the mean 
squared error is minimized; therefore, the variance 
of value estimated by kriging is smaller than the 
real but unknown variance. This smoothing of true 
variability of the grade, leads to overestimation of 
low grades and underestimation of high grades. 
Additionally, smoothing is a function of data 
density and configuration: areas of greater density 
will show more local variability while areas having 
sparse data will be more uniform [9]. Hence, 
production schedules that are based on Kriging can 
not account for probable deviation in production 
targets and obtained plans will only provide 
erroneous conclusions. Multiple Indicator Kriging 
works on a probabilistic basis to define the 
distribution of grade of samples within each search 
window, providing a discrete approximation to the 
conditional cumulative distribution function for 
each block [10]. Rather than Kriging, although the 
probabilistic estimates, produced by Multiple 
Indicator Kriging method often reduces smoothing 
effect, but the local grade variability may still be 
incorrectly characterized. 
     The best way to quantify grade uncertainty is 
conditional simulation. Conditional simulation is a 
generalization of the Monte Carlo type simulation 
approach, which considers three dimensional spatial 
correlation [11,12]. It produces independent and 
equally probable images of in-situ orebody grades 

which have the following characteristics [13]: 
 
• At sampled location, the simulated values of 

each variable are the same as measured 
values of those variables. 

• All the simulated values of a given variable 
have the same spatial relationships as 
observed in the data value. 

• All the simulated values of any pairs of 
variables have the same spatial 
interrelationships as observed in the data 
values. 

• The simulated values histogram, of all 
variables are the same as those observed for 
the data images. 

 
Each simulation run produces an image or a 
realization of the deposits that correctly reflects the 
statistical and spatial variability of the real data. 
Performing several independent simulations are 
required to assess the impact of local variability. 
     Reducing the uncertainty of the ore blocks 
grade can be achieved by spending more money to 
increase drill holes density. These infill drilling 
should be conducted preferably in the high grade 
zones associated with a high level of uncertainty. 
These zones can be identified by using results of 
conditional simulation. 
     Finally mine planning should be managed in 
such a way, so that the residual risk of grade 
uncertainty is minimized in design procedure. The 
key note in this regard is, the extraction of high 
grade and certain low zones in earlier production 
periods, and leaving more uncertain zones for the 
later periods such as, all mining constraints are 
satisfied with a high level of confidence. In the 
following sections we deal with this important 
using Stochastic Programming. 
 
 
 
3. STOCHASTIC VERSION OF LONG-TERM 

PRODUCTION PLANNING MODEL 
 
Stochastic programming based production planning 
method can be summarized as follows: 
 
• To develop an economic block model. 
• Finding ultimate pit limits using one of 

optimum methods such as Learchs, et al 
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[14,15] and maximum flow network methods 
[16,17]. 

• To develop a stochastic integer programming 
model for optimal selection of the blocks in 
each period on the basis of specified criteria. 

• Obtaining the deterministic equivalent on 
mentioned stochastic model. 

• Solving the deterministic form of the 
stochastic model for long term production 
planning problem using efficient zero-one 
integer programming methods. 

 
 
 

4. FORMULATION OF THE LONG-TERM 
PRODUCTION PLANNING PROBLEM 

 
The following variables are defined for the 
mathematical formulation of the long term 
production planning model: 
 

t: Planning period index, t = 1,2,…,T. 
T: Total number of planning periods in 

the planning horizon. 
n: Block identification number; n = 

1,2,…,N. 
N: Total number of blocks to be 

scheduled. 
d: Discount rate in each period. 
xn

t: A binary decision variable which is 
equal to 1 if the block i is to be 
mined in period t and 0 otherwise. 

Pt: Unit selling price of the metal in 
period t. 

SPt: Unit selling cost of the metal in 
period t. 

Pc
t: Unit processing cost of the ore in 

period t. 
Mco

t: Unit mining cost of the mineralized 
material in period t. 

Mcw
t: Unit mining cost of the 

waste/overburden material in period t. 
ng~ : Block grade which is a random 

variable (n = 1,2,…,N). 
E( ng~ ): Expected value of ng~ . 
Var( ng~ ): Variance estimation of ng~ . 
Cov( ng~ , mg~ ): Covariance between ng~  and ng~ . 
Cn

t: Net present value to be generated by 
mining block n in period t. 

⎭
⎬
⎫

⎩
⎨
⎧ −⎥⎦

⎤
⎢⎣
⎡ −−−

+
=

)n.Twt
cw(Mn.Tot

coMt
cP.Rng~).tSPt(P

td)(1
1t

nC

 

 (1) 
 
R: Total metal recovery. 
Ton: The total amount of ore in block n. 
Twn: The total amount of waste in block n. 
Gmax

t: The upper bound average grade of 
material sent to the mill in period t. 

Gmin
t: The lower bound average grade of 

material sent to the mill in period t. 
PCmax

t: The upper bound total tones of ore 
processed in period t. 

PCmin
t: The lower bound total tones of ore 

processed in period t. 
MCmax

t: The upper bound total amount of 
material (waste and ore) to be mined 
in period t. 

MCmin
t: The lower bound total amount of 

material (waste and ore) to be mined 
in period t. 

b: The index of a block considered for 
extraction in period t. 

e: The total number of blocks 
overlaying block b. 

l: The counter for the m overlaying 
blocks. 

αt: The least probability of fulfilling the 
demand in period t (confidence 
level). As a matter of fact 1-αt 
represent the acceptable risk level for 
not fulfilling the demands in period t. 

Pr: The probability operator. 
 
4.1. Formulation of the Multi-Period Long-
Term Production Planning Model   In light of 
definition described above, the multi-period 
production planning model will be formulated as 
follows: 
 
4.1.1. Objective function 
 

∑
=

∑
=

=
T

1t

N

1n
t
n.xt

nC   ZMaximize  (2) 

 
This objective function is subjected to the following 
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constraints: 
 
4.1.2. Grade blending constraints   The average 
grade of the mineralized material sent to the mill 
has to be more than a lower bound (Gmin

t) and less 
than an upper bound (Gmax

t) in each period: 
 

t
maxG

N

1n
t
n.xnTo

N

1n
t
n.xn.Tong~ ≤∑

=
∑
=

 

 

t = 1,2,…,T (3) 
 

t
minG

N

1n
t
n.xnTo

N

1n
t
n.xn.Tong~ ≥∑

=
∑
=

 

 

For t = 1,2,…,T (4) 
 
4.1.3. Processing capacity constraints   The total 
tones of ore processed in each period should be 
more than a lower bound (PCmin

t) and less than an 
upper bound (PCmax

t): 
 

t
maxPC

N

1n
t
n.xnTo ≤∑

=
 

 
For t = 1,2,…,T (5) 
 

t
minPC

N

1n
t
n.xnTo ≥∑

=
 

 

For t = 1,2,…,T (6) 
 
4.1.4. Mining capacity constraints   The total 
tones of waste and ore to be mined should be more 
than a lower bound (MCmin

t) and less than an upper 
bound (MCmax

t): 
 

t
maxMC

N

1n
t
n)xnTwn(To ≤∑

=
+  

 

For t = 1,2,…,T (7) 
 

t
minMC

N

1n
t
n)xnTwn(To ≥∑

=
+  

 

For t = 1,2,…,T (8) 
 
4.1.5. Reserve constraints   Reserve constraints 
insure that any block in the model mined only 

once: 
 

∑
=

=
T

1t
1t

nx  

 
For n = 1,2,…,N (9) 
 
4.1.6. Slope constraints   These constraints insure 
that all blocks which directly restrict the mining of 
a given block b must be completely mined out 
before the mining of block b starts. To represent 
the restricting blocks a cone template can be made 
either contains 5 (Figure 1a) or 9 blocks (Figure 
1b) above block b. In this study a cone template 
with 9 blocks will be used. There are two methods 
for implementing these constraints [18]: 
     Using one constraint for each block per period: 
 

∑
=

≤∑
=

−
e

1l
0

t

1r
r
lxt

be.x  

 

For t = 1,2,…,T,   b = 1,2,…,N (10) 
 
Using e constraints for each block per period: 
 

0
t

1r
r
lxt

bx ≤∑
=

−  

 

For t = 1,2,…,T, 
 

b = 1,2,…,N,   l = 1,2,...,e (11) 
 
Ramazan and Dimitrakopoulos showed that in 
large size models it may be better to use Equation 
11 [19]. Although using Equation 14 will increase 
the size of the model, but in some cases it may 
significantly decrease the computing time by 
decreasing the search space. 
 
4.2. Stochastic Formulation of the Multi-
Period Long-term Production Planning 
Model   As mentioned before, ore block’s grade 
( ig~ ) are not known with certainty at the beginning 

of each planning period. We only have statistical 
information about the random grades; therefore, 
objective function and constraints 3 and 4 contain 
random parameters. The main difficulty of such 
models is due to optimal decisions that have to 
be taken prior to the observation of random 
parameters. 
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i 

1 

2 3 4 

5 

b 
e=5 

 
(a) 

 

i 

1 2 3 

4 5 6 

7 8 9

b e=9 

 
(b) 

 
Figure 1. Two types of cone templates to model the slope 
constraints. 

     There are several approaches to handle 
uncertainty of this problem. The two most common 
approaches are; Two stage stochastic programming 
method and Chance-constrained stochastic 
programming method. In the first apprroach, 
decision maker takes some action in the first place, 
after which a random event occurs affecting the 
outcome of the first stage decisions. A recourse 
decision can then be made in the second stage that 
would compensates for any adverse outcome that 
might have been experienced as a result of the 
first-stage decision. Constraints violation caused 
by unexpected random effects, can be balanced 
afterwards, by some compensating decisions in 
second stage. As long as the costs of compensating 

decisions are known, these may be considered as a 
penalization for constraint violation. In this method 
the stochastic constraints have to be surely held, i.e., 
they are to be satisfied with probability of one [21]. 
     In many applications, however, compensations 
simply do not exist or can not be modeled as costs 
in any reasonable way. In such circumstances, one 
would rather insist on decisions guaranteeing 
feasibility “as much as” possible. This loose term 
refers once more to the fact that constraints 
violations, can almost never be avoided because of 
the extreme events, i.e., a low percentage 
realization of the random parameters, leads to 
constraints violation under this fixed decisions. 
This approach is called chance constrained 
programming. 
     Chance-constrainted programming was 
formulated originally by Charnes, et al [22,23] and 
then developed and applied by Charnes, et al [24]. 
     In this section the chance constrained 
programming approach is exploited to handle 
block grade uncertainty for the proposed binary 
integer model. 
     As stated before, among the model constraints 
only constraints 3 and 4 contain random 
parameters. The generic way to express such 
constraints is: 
 

tα
t
maxG

N

1n
t
n.xnTo

N

1n
t
n.xn.Tong~Pr ≥

⎥
⎥
⎦

⎤

⎢
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≤∑

=
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For t = 1,2,…,T (12) 
 

tα
t
minG

N

1n
t
n.xnTo

N

1n
t
n.xn.Tong~Pr ≥

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
≥∑

=
∑
=

 

 
For t = 1,2,…,T (13) 
 
The value of αt ∈  [0,1]is called the probability 
level, and it is chosen by the decision maker in 
order to model the safety requirements. It should 
be noted that higher values of αt results in fewer 
feasible solutions xi

t in constraints 17 and 18, 
hence yields optimal solution at lower NPV. 
Henrion stated that usually αt can be increased over 
quite a wide range without affecting too much the 
optimal value of some problem, until it closely 
approaches 1 and then a strong decrease of NPV 
becomes evident [25]. 

e = 5 
b 

e = 9 
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     With regard to the stochastic nature of the 
objective function and also constraints 12 and 13, 
above problem is not well defined; consequently, a 
revision of modeling process is necessary, leading 
to so-called deterministic equivalents for stochastic 
programming model, i.e. one which does not 
contain any probabilistic element any more. 
 
4.3. Deterministic Equivalent of Chance 
Constrained Binary Integer Programming 
Model   In this section the chance constrained 
binary integer programming model of long-term 
production planning problem is reduced to its 
deterministic equivalent. 
 
4.3.1. Objective function   As is clear from 
equation 2 due to stochastic nature of t

nC , Z is also 
a random variable with the expected value and 
variance of: 
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 (15) 
 
Several classes of objective function can be 
identified which result in different solutions. These 
include [24]: 
 
• Expected value optimization objective 
• A minimum variance objective 
• A maximum probability model 
 
We setup our objective to maximization of 
expected value of net present value and 
minimization of standard deviation simultaneously; 
as a result, the objective function of open pit long-

term production planning can be written as: 
 

)Z(Var.k)Z(E.kZ  Maximize 21 −=  (16) 
 
Where k1 and k2 are nonnegative coefficients and 
reflect the relative importance of maximization of 
expected value and minimization of standard 
deviation of net present value. If k1 = k2 then these 
two objectives are of the same importance for the 
decision maker. Thus the objective function can be 
re-written as follows: 
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In zero-one integer programming we have 

t
ix

2t
ix =⎟
⎠
⎞⎜

⎝
⎛ ; because of this, the final shape of 

objective function has a form of: 
 

mn2
1

)}mg~,ng~.Cov(t
m.xt

n.xm.R.TotSPtP

T

1t

N

1n

N

1m
n.R.TotSPtP)ng~.Var(t

n.x

T

1t

N

1n

2
n.R.TotSPtP{2td)(1

1
2k

t
n)).xt

cw.Mn(Twn].Tot
coMt

cP).Rng~.E(

T

1t

N

1n
)tSPt(P[(td)(1

1.1kZMaximize

≠⎥⎦

⎤
⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ −

∑
=

∑
=

∑
=

×⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ −+

⎢
⎢
⎣

⎡
∑
=

∑
=

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ −

+
−

⎭
⎬
⎫
⎥⎦
⎤−−−

∑
= ⎪⎩

⎪
⎨
⎧
∑
= ⎢⎣

⎡ −
+

=

 

 (18) 
 
4.3.2. Stochastic constraints   In this section we 
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will obtain the deterministic equivalents of stochastic 
constraints. In Equation 12 and 13 let us define: 
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Thus, Equation 12 can be re-written as: 
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As mentioned before, td is the average grade of 
blocks to be scheduled in period t which is a 
random variable. According to the Central Limit 
Theorem, the distribution of dt can be 
approximated by a normal distribution function 
with the following mean and variance: 
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if we minus E(dt) from both side of Equation 20, 
and then divide by )tvar(d , it can be re-written as: 
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By defining 
)tVar(d

)tE(dtd
tD

−
= , then Dt has a 

standard normal distribution function which has a 
zero mean and unit standard deviation. A value of 
Kat can then be determined from the area under 
normal curve such that: 
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Thus, combining Equations 23 and 24 yields: 
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With the combination of Equations 21, 22 and 25 
the deterministic equivalent form of constraints 12 
can be stated as follows: 
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Similarly, the deterministic equivalent of Equation 
13 is of the form: 
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Where: 
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it is clear from the above relations, the 
deterministic equivalents of probabilistic 
constraints are nonlinear. However, other constraints 
are themselves deterministic and remain unchanged. 
 
4.4. Linearization of the Nonlinear Model 
for Long Term Production Planning   A 
major difficulty in using chance constrained 
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programming is the need for a nonlinear algorithm. 
In this section linear approximation method is used 
for solving the nonlinearity of the problem; 
therefore, the objective will be, to linearize the 
functions and constraints so that linear 
programming algorithms can be used. 
     Suppose that xi and xj are two dependent 
random variables. The definition of the correlation 
between variables xi and xj is: 
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This means that the maximum amount of the 
covariance of two variables would be the product 
of standard deviation of each. Hence replacing 
cov(xi,xj) with )jVar(x)iVar(x ×  in Equation 18 

and considering 2
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variables) the linear equivalent of the objective 
function can be written as: 
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Let define: 
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Thus the objective function can be simplified as: 
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As can be seen from the Equation 34 the final shape 
of objective function has a linear form. Similarly, the 
upper bound of Var(dt) can be achieved by replacing 
cov(xi,xj) with )jVar(x)iVar(x ×  in Equation 22: 
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by combining relations 21, 25 and 35 the upper 
bound grade blending constraints can be written as: 
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TABLE 1. The Final Form of Long-Term Production Planning Problem in a Stochastic Environment. 
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Similarly, the lower bound grade blending 
constraints is converted to the following inequality: 
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Hence using this approximation, objective function 
and grade blending constraints are linearized. It 
should be noted that this linear approximation 
would involve less error if positive covariance 
existed, because in this case cov(xi,xj) is nearer to 

)jVar(x)iVar(x × . Clearly, the error would be 

greater in the case of negative covariance. Also 
linear approximation in constraints 37 and 38 are 

tighter than their nonlinear form; consequently, 
linear approximation is more conservative than that 
of nonlinear original. 
     The final form of long-term production 
planning problem in a stochastic environment is 
summarized in Table 1. 
     Therefore, the final shape of long term 
production planning with regard to grade 
uncertainty has a linear form with zero-one 
variables. Now this model can be solved by Branch 
and Bound, Cutting Plane and Branch and Cut 
techniques. 
 
 
 

5. CONCLUSION 
 
In this paper we extended a chance constrained 
programming, with the probabilistic parameters 
and binary integer variables, to an open pit long-
term production planning problems. The model 
integrates ore grade uncertainty explicitly, 
generates an optimal and economical life of mine 
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production and also schedules' to meet the required 
targets, with a high level of confidence and low 
risk. At first, a probabilistic form of the long term 
production planning model was developed, which 
containd a stochastic objective function and a 
series of deterministic and stochastic constraints. 
The stochastic objective function and also 
constraints could not be handled directly in the 
optimization process; consequently, using chance 
constraints, a deterministic form of the model was 
obtained. This process led to converting stochastic 
linear equations to deterministic nonlinear 
equivalents. In this model objective function and 
grade blending constraints are nonlinear. Because 
of the difficulties in solving large scale nonlinear 
models, a linearization process was applied and 
nonlinear functions are approximated by linear 
ones. The resultant linear model can be solved by 
using popular linear zero-one programming 
algorithms; therefore, this model can be applied in 
large size open pit mines. The results obtained 
from this model seems to be more economical in 
the long run, than those obtained from the previous 
models, because the objective function will force 
the model to derive the mining sequence through 
zones, where the risk of not achieving the 
production targets, is minimized; therefore, the 
resultant schedule is feasible in terms of meeting 
the production targets with a high level of 
confidence. 
 
 
 

6. REFFERNCES 
 
1. Rovenscroft, P. J., “Risk Analysis for Mine Planning 

by Conditional Simulation”, Trans. Instn Min. 
Metall., (Sec. A: Min. Industry), The Institution of 
Mining and Metallurgy, Vol. 101, (May-August 1992), 
A82-A88. 

2. Dowd, P. A., “Risk Assessment in Reserve Estimation 
and Open Pit Planning”, Trans. Instn Min. Metall., 
(Sec. A: Min. Industry), The Institution of Mining and 
Metallurgy, Vol. 103, (September-November 1994), 
A148-A154. 

3. Denby, B. and Schofield, D., “Inclusion of Risk 
Assessment in Open Pit Design and Planning”, Trans. 
Instn. Min. Metall., (Sec. A: Min. Industry), The 
Institution of Mining and Metallurgy, Vol. 104, 
(January-April 1995), A67-A71. 

4. Dimitrakopoulos, R. and Ramazan, S., “Uncertainty 
based production scheduling in open pit mining”, SME 
Annual Meeting and Exhibit, Cincinnati Ohio, U.S.A., 
Vol. 316, (February 24-26, 2003), 106-112. 

5. Godoy, M. and Dimitrakopoulos, R., “Managing Risk 
and Waste Mining in Long-Term Production Planning 
of Open Pit Mine”, SME Annual Meeting and Exhibit, 
Cincinnati Ohio, U.S.A., Vol. 316, (February 24-26, 
2003), 43-50. 

6. Ramazan, S. and Dimitrakopoulos, R., “Traditional and 
New MIP Models for Production Planning with in-Situ 
Grade Variabulity”, International Journal of Surface 
Mining, Reclamation and Environment, Vol. 18, No. 
2, (2003), 85-98. 

7. Gholamnejad, J., Osanloo, M. and Karimi, B., “A 
Chance-Constrained Programming Approach for Open 
Pit Long-Term Production Scheduling in Stochastic 
Environments”, The Journal of the South African 
Institute of Mining and Metallurgy, Vol. 106, (2006), 
105-114. 

8. Vallee, M., “Mineral Resource + Engineering, 
Economic and Legal Feasibility = Ore Reserve”, CIM 
Bulletin, Vol. 90, (2000), 53-61. 

9. Smith, M. L., “Integrating Conditional Simulation and 
Stochastic Programming: an Application in Production 
Planning”, Proceeding of Application of Computers 
and Operations Research in the Mineral Industry, 
(2001), 230-207. 

10. David, M. A., “Hand Book of Applied Advanced 
Geostatistical Ore Reserve Estimation”, Elsevier 
Scientific Publisher, Nehterland, (1988). 

11. Journel, A. G. and Huijbregts, C., “Mining 
Geostatistics”, Academic Press, New York, U.S.A., 
(1978), 600. 

12. Dowd, P. A., “A Review of Recent Developments in 
Geostatstics”, Computers and Geostatistics, Vol. 17, 
No. 10, (1992), 1481-1500. 

13. Dowd, P. A., “Risk In Minerals Projects: Analysis, 
Perception and Management”, Trans. Instn Min. 
Metall., (Sec. A: Min. Industry), The Institution of 
Mining and Metallurgy, Vol. 106, (January-April 1997), 
A9-A18. 

14. Lerchs, H. and Grossman, F., “Optimum Design of 
Open-Pit Mines”, Transaction CIM, Vol. 58, No. 633, 
(1965), 47-54. 

15. Zhao, H. and Kim, Y. C., “A New Optimum Pit Limit 
Design Algorithm”, 23rd International Symposium on 
The Application of Computers and Operations 
Research in the Mineral Industries, AIME, Littleton, 
Co, (1992), 423-434. 

16. Johnson, T. B. and Barnes, J., “Application of Maximal 
flow Algorithm to Ultimate Pit Design”, Engineering 
Design: Better Results through Operations Research 
Methods. North Holland, (1988), 518-531. 

17. Yegulalp, T. M. and Arias, J. A., “A Fast Algorithm to 
Solve Ultimate Pit Limit Problem”, 23rd International 
Symposium on the Application of Computers and 
Operations Research in the Mineral Industries, AIME, 
Littleton, Co, (1992), 391-398. 

18. Ramazan, S. and Dimitrakopoulos, R., “Production 
Planning Optimization in a Nickel Laterite Deposites: 
MIP and LP Application and Infeasibility in the 
Presence of Orebody Uncertainty”, International 
Symposium on Mine Planning and Equipment 
Selection, Kalgoorelie, Australia, (April 23-25, 2003). 



418 - Vol. 21, No. 4, November 2008 IJE Transactions A: Basics 

19. Ramazan, S. and Dimitrakopoulos, R., “Recent 
Applications of Operations Research in Open Pit 
Mining”, SME Annual Meeting and Exhibit, Cincinnati 
Ohio, U.S.A., Vol. 316, (February 24-26, 2003), 73-78. 

20. Gangwar, A., “Using Geostatistical Ore Block Variance 
in Production Planning by Integer Programming”, 17th 
APCOM Symposium, (1982), 443-460. 

21. Kall, P. and Wallace, S. W., “Stochastic Programming”, 
First Edition, John Wiley and Sons, Chichester, 
England, (1994), 50-95. 

22. Charnes, A., Cooper, W. W. and Symonds, G. H., “Cost 
Horizons and Uncertainty Equivalents: an Approach to 
Stochastic Programming of Heating Oil”, Management 
Science, Vol. 4, No. 3, (April 1958), 235-263. 

23. Charnes, A. Cooper, W. W., “Chance-Constrained 
Programming”, Management Science, Vol. 6, (1959), 
73-79. 

24. Charnes, A. and Coper, W. W., “Deterministic 
Equivalents for Optimizing and Satisficing under 
Chance-Constraints”, Operation Research, Vol. 11, 
(1963), 18-39. 

25. Henrion, R., “Introduction to Chance-Constrained 
Programming”, Http://Stoprog.Org/Spintro/INTRO2CCP. 
HTML, (September 15, 2005). 

26. Richmond, A. J.,”Maximum Profitability with Minim 
Risk and Effort”, Proceeding of Application of 
Computers and Operations Research in the Mineral 
Industry, (2001), 45-50. 

 


