
IJE Transactions A: Basics Vol. 21, No. 4, November 2008 - 397 

APPLICATION OF THE SCHWARZ-CHRISTOFFEL 
TRANSFORMATION IN SOLVING TWO-DIMENSIONAL 

TURBULENT FLOWS IN COMPLEX GEOMETRIES 
 
 

R. Moosavi 
 

Department of Mechanical Engineering, Yasouj University 
P.O. Box 75914, Yasouj, Iran 

rmoosavi81@gmail.com 
 

S.A. Gandjalikhan Nassab* 
 

Department of Mechanical Engineering, Shahid Bahonar University 
P.O. Box 76169-133, Kerman, Iran 

ganjali2000@yahoo.com 
 

*Corresponding Author 
 

(Received: March 12, 2008 – Accepted in Revised Form: September 25, 2008) 
 

Abstract   In this paper, two-dimensional turbulent flows in different and complex geometries are 
simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical 
solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering 
the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid 
by means of the Schwarz-Christoffel transformation. The standard k-ε turbulence model is employed 
to simulate the mean turbulent flow field, using a linear low-Re k-ε model for near wall region. The 
governing equations are transformed in the computational domain and the discretized forms of these 
equations are obtained by the control volume method. Finite difference forms of the governing 
equations are solved in the computational plane and the SIMPLE algorithm is used for the pressure-
velocity coupling. The important part of the present work is based on the numerical integration of 
Schwraz-Christoffel transformation in grid generation for simulating fluid flow in different complex 
geometries. To validate the computational results, the theoareticil data is compared with that of 
theoretical results achieved by other investigators, which are in reasonable agreement. 
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در اين مقاله نمونه هايی از جريان های دو بعدی آشفته و غير قابل تراکم با هندسه های پيچيده و چكيده       

يکی از مهمترين قسمت ها در  . حل شده اند(CFD) سيالات محاسباتی متفاوت با بکارگيری تکنيک ديناميک
روش حل عددی جريان سيال، توليد شبکه محاسباتی است که در کار حاضر از طريق نگاشت همديس و 

روش نگاشت همديس استفاده شده مبتني بر . کريستوفل به انجام رسيده است-استفاده از تابع تبديل شوارتز
توان به سادگي و دقت زياد  از مزاياي اين روش مي. باشد كريستوفل مي- دي از تبديل شوارتزانتگرال گيري عد

 اين مطالعه به منظور شبيه سازی  در.آن در عين توانايی قابل ملاحظه در توليد شبکه با هندسه پيجيده اشاره كرد
ام شده و از مدل توربولانس زمان انج  بصورت هماستوكس- ناويری وحل عددي معادلات پيوستگ، جريان سيال

k-ε استاندارد برای محاسبه تنش های ناشی از نوسانات سرعت به همراه يک مدل خطی برای نواحی نزديک 
به اين ترتيب که معادلات حاکم به صفحه محاسباتی منتقل گرديده و با روش حجم . ديواره استفاده شده است

ف محدود اين معادلات توسط آلگوريتم شناخته شده سيمپل محدود مجزا سازی شده اند و نهايتا فرم اختلا
مطابقت نزديك بين پيش بيني هاي روش حاضر و نتايج تئوريک و تجربي . بصورت عددی حل شده است

 .باشد ديگران مويدصحت روش بکار گرفته شده در توليد شبکه و حل عددی معادلات حاکم می
 
 

1. INTRODUCTION 
 
The numerical solution of many problems such as 

fluid flow consists in discretizing the domain upon 
which the governing equations must be solved. 
These equations are linearized inside small control 
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volumes where the conservation equations are 
applied. The fast increase in computer technology 
and data storage have led to the application of  
Computational Fluid Dynamic (CFD) in simulation 
of laminar and turbulent flows with different 
geometries. The application of CFD methods need 
to have a discretized region and it is of great 
importance to be able to generate grid. The 
methods of generating mesh in the domains with 
arbitrary boundaries are divided to, algebraic and 
differential methods and both orthogonal and non-
orthogonal grids can be generated. Normally, for 
all numerical methods, it is better that the  
generated grid is structured and orthogonal. In 
orthogonal grid, the coordinate lines are mutually 
perpendicular to each other. In this type of grid, it 
is an easier application of boundary conditions 
involving the normal derivatives to the boundaries. 
Besides, the transformed forms of governing 
equations in the computational domain with 
orthogonal grid have less number of terms in 
comparison to the non-orthogonal case. 
     One of the accurate method in orthogonal grid 
generation without any restriction on the type of 
flow, is the conformal mapping technique [1-3]. In 
practice, the generated grid lines which are 
perpendicular to each other may be chosen to 
coincide with the streamlines and equipotential 
lines of an equivalent potential flow problem. 
     Several efficient methods have been developed 
using the conformal mapping technique to obtain 
two-dimensional meshes. Traditionally many 
times, this technique has been used to carry out the 
solution of potential flow about complicated 
geometrical shapes [4]. Mansouri, et al [5] used 
simple mapping in orthogonal grid generation for 
external flows over bodies with a variety of shapes. 
In another work by the same investigators, some 
potential flows over bodies with different 
geometries were simulated in which the mesh 
generation was done using the Schwarz-Christoffel 
transformation [6]. 
     In the present work, two-dimensional turbulent 
flows over some bodies with different and complex 
geometries are simulated using orthogonal grid 
generated by conformal mapping technique. The 
mapping of physical plane into computational 
one takes place by the Schwarz-Christoffel 
transformation. The governing equations consisting 
of the continuity and Navier-Stokes equations with 

the equations governing the kinetic energy of 
turbulence and the dissipation rate are transformed 
in the computational plane and solved by CFD 
techniques. To calculate the values of Reynolds 
stresses, combination of the standard k-ε turbulence 
model and a linear low-Re k-ε one for near wall 
region is employed. 
 
 
 

2. THEORY 
 
2.1. Mean Flow Equations   The conservations 
of mass and momentum for a steady 
incompressible two-dimensional turbulent flow 
may be written as: 
 
Continuity 
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in which jU  are the mean velocity components 

and juiu  are the Reynolds stresses. 

 
2.2. Turbulence Model Equations   The 
turbulence model employed in the simulation of 
turbulent flow is the standard k-ε model [7]. In this 
turbulence model, the Reynolds stresses are 
calculated via the eddy-viscosity approximations 
as follows: 
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and the turbulent viscosity, tν , is given by 
 

ε

2k
μctν =  (4) 
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TABLE 1. Empirical Constants for the k-ε Model. 
 

cμ 1cε  2cε  kσ  εσ  θσ  

0.09 1.44 1.92 1 1.3 0.9 

In which the turbulent kinetic energy k and 
turbulent dissipation rate ε are obtained based on 
the standard k-ε model from the following 
transport equations: 
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Where kP  which is the generation rate of 
turbulent kinetic energy that can be computed from 
Equation 7 
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The coefficients in Equations 4 to 6 are given in 
Table 1. 
 
2.3. Near Wall Region   In the present work, for 
modeling the near-wall region, a linear low-Re k-ε 
model is employed. In this turbulence model, the 
turbulent viscosity, tν , is obtained from 
 

εμμ=ν ~
2kfct  (8) 

 
and the transport equations for the turbulence 
kinetic energy, k, and homogenous dissipation 
rate, ε~  are as follows: 
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The homogeneous dissipation rate and damping 
factors are calculated from 
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Where εν= ~/2ktR~  is the local turbulent Reynolds 

number, )jx/iU(juiukP ∂∂−=  the generation rate 

of turbulent kinetic energy and the term E is 
defined as 
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and the extra source term εS  in Equation 10 stands 
for the standard “Yap” correction term which was 
introduced first time by Yap, et al [8]. The details 
of this model with the model coefficients are given 
by Raisee, et al [9]. 
 
2.4. Boundary Conditions   In the numerical 
solution of governing equations, the following 
boundary conditions in the physical plane are 
considered: 
 
• At the inlet section or in the upstream 
region far from body, it is assumed that the fluid 
flow has a uniform velocity distribution equal to 
U with turbulent kinetic energy of 2U001.0k =  
and dissipation rate of tv/2kμρCε =  such that 

10ν/tν = . 
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Figure 1. Mapping of a polygon in z(x,y)-plane onto the upper 
half of γ(ξ,η)-plane. 

• At the outlet section or in the downstream 
region far from body, a zero gradient in stream-
wise direction is considered for all dependent 
variables. 
• On the solid walls, no slip condition is 
employed, the turbulent kinetic energy is equated 
to zero and dissipation rate is computed by [9]: 
 

2)n/k(2ε ∂∂ν=  (15) 
 
in which n stands for normal direction to the solid 
surface. 
 
 
 

3. GRID GENERATION 
 
As noted before, the grid generation in the present 
work is based on the numerical integration of the 
Schwarz-Christoffel transformation. By this 
transformation, a polygon in the z(x,y)-plane, is 
mapped onto the upper half of γ(ξ,η)-plane as 
shown in Figure 1. 
     The relation between the z-plane as physical 
domain to the γ -plane as computational one is as 
follows: 
 

∏
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In the above equation, nα  is the angle of 
counterclockwise rotation at each apex and N  is 
the number of polygon apices. The points nξ  are 
positions on the real axis in γ -plane, where each 
of them corresponds to an apex of the polygon in 
z -plane. The values of parameters nξ  are 
unknown which will be determined iteraively 
during the numerical procedure. Also, in Equation 
16, A  is a complex constant which depends on the 
geometry of physical domain. According to 
Riemann theorem, et al [4], the positions of three 
points of nξ  at the real axis of computational 
plane are arbitrary. The transformation function 

)(z γ  denoting the relation between physical and 
computational axes can be obtained by integration 
of Equation 16 as follows: 
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In Equation 17, B is a complex constant and 0γ  is 
a point on the upper half of computational plane. 
As noted before, the correct selection of points nξ  
involves an iterative procedure. The details of this 
transformation and the related numerical procedure 
are given completely in Reference [6]. It must be 
mentioned in that reference, the Schwarz-
Christoffel transformation was used to generate 
orthogonal grids which also solves some internal 
and external potential flows in different 
geometries. But, in the present work, this grid 
generation technique is employed to simulate 
viscous turbulent flows in a wide variety of 
complex geometries. By this technique, the relation 
between physical and computational planes is 
determined, from which the values of metric 
coefficients, which are needed to transform the 
governing equations into computational domain 
can be obtained. The transformed form of the 
governing equations in the computational plane for 
any dependent variable Ψ , can be written in the 
following common form: 
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Figure 2. Sketch of the problem geometry. 

In which, J is the Jacobian of transformation and 
the values of A, B, Ψ , ΨΓ  and ΨS  are different 
for each governing equation. 
 
 
 

4. OUTLINE OF SOLUTION STRATEGY 
 
The governing equations which were transformed 
in the computational plane have a common form as 
was presented in Equation 18. These partial 
differential equations were made discrete by 
integrating over an elemental cell volume using the 
finite volume methodology. Such that, the 
staggered type of control volumes for the ξ-and η- 
velocity components were used when other 
variables of interest were computed at the grid 
nodes. The discretized forms of all transport 
equations were obtained by employing hybrid 
differencing scheme for approximation of the 
convective terms in these equations and were 
solved by the SIMPLE pressure correction 
algorithm of Patankar, et al [10]. Numerical 
solutions were obtained iteratively through line-by-
line method until the convergence condition was 
achieved. Iterations were terminated when sum of 
the absolute residuals was less than 10-4 for each 
equation. 
     Numerical calculations were coded into a 
computer program in FORTRAN. Based on the 
grid-independent study, the optimum grids with 
350 to 450 intervals in the ζ-direction and 120 to 
180 intervals in the η-direction dependent on the 
flow geometry were employed for the numerical 
analysis along with clustering near the solid 
boundaries and in the regions with sharp gradients. 
Calculations were run with a Pentium 5 personal 
computer and the simulation times ranged from 
3000 to 4000 secs depending on the test case 
conditions. 
 
 
 

5. RESULTS 
 
To verify the performance and accuracy of the 
present method and to simulate two-dimensional 
turbulent flows in different geometries, many test 
cases of fluid flows over different bodies including 
forward/backward steps, one and two cylinders, 

two cubes, two triangular sharp bumps and car 
profile were analyzed here. 
     An interesting type of fluid flow is the flow 
over forward or backward steps. The existence of 
flow separation and reattachment due to sudden 
expansion and contraction in these types of 
geometries, plays an important role in the design of 
many engineering applications. As the first test 
case, the fluid flow over double forward facing 
step (DFFS) was simulated. The basic flow 
configuration is shown in Figure 2. The channel 
has two forward facing steps with heights of h1 and 
h2, respectively. H and L are the height and length 
of the channel, where b, c and a are the length of 
two steps and the length of bottom wall, 
respectively. 
     The stream lines along with the values of 
stream function for fluid flow over DFFS are 
shown in Figure 3a. In this figure, the values of 
geometrical parameters h1/H, h2/H, a/L, b/L, and 
c/L are 0.2, 0.4, 0.625, 0.125 and 0.25, 
respectively. These data are the same as used in 
Reference [11] to make a comparison between 
results. As it is seen, several circulation zones are 
generated on the facing steps. The variation of 
pressure coefficient is shown in Figure 3b. In the 
vicinity of inlet section, the pressure contours are 
vertical to the bottom and top walls until the first 
step, which indicates that the fluid flow becomes 
hydrodynamically developed in that region. The 
value of pressure coefficient decreases in the flow 
direction, such that the pressure coefficient at the 
second step is less than that of the first one. 
Besides, due to the complexity of flow geometry 
near the steps, the pressure coefficient has a very 
complex variation in that region. The contours of 
turbulent kinetic energy (TKE) are plotted in 
Figure 3c. TKE has small values near  the solid 



402 - Vol. 21, No. 4, November 2008 IJE Transactions A: Basics 

 
 

(a) 
 

 
 

(b) 
 

 
 

(c) 
 

 
 

(d) 
 

Figure 3. Streamlines, contours of pressure coefficient and turbulent kinetic energy for DFFS flow at Re = 10000 
(a) Streamlines, (b) Pressure coefficient, (c) Turbulent kinetic energy and (d) Streamlines, Reference [11]. 

boundaries and the maximum values occur at the 
vicinity of the two steps along with a complex 
variation. 

     The fluid flow over DFFS was also studied 
numerically by Yilmaz, et al [11], using 
commercial FLUENT code. The grid was 
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Figure 4. Distribution of x-component of mean velocity in the 
duct at the axial section x = 0.3 m using four different grid 
sizes. 
 
 
 

 
○ Linear low-Re model,  Standard k-ε model 

● Experiment [12], □ DNS [12] 
 
Figure 5. variation of skin friction factor on the surface of 
bottom wall after the step. Re = 5100. 

generated by Gambit pre-processor which was 
good enough to obtain a grid-independent 
solution. In order to validate the present numerical 
procedure, one can compare the computed 
streamlines in Figure 3a, with those obtained in 
Reference [11] shown in Figure 3d. Concerning the 
streamlines and the values of stream function, the 
present numerical results show good agreement 
with the theoretical results obtained by the 
FLUENT code. It should be noted that the x-and y-
coordinate axes in Figure 3d have not the same 
scale factor which makes an apparent difference 
with Figure 3a. However, it can be concluded that 
the applied grid generation method based on the 
Schwarz-Christoffel transformation with the 
present CFD techniques in solving the governing 
equations are very powerful and efficient in 
simulating many turbulent flows with a wide 
variety of flow geometry. 
     For the above test case, the influence of grid 
refinement on the numerical results is also studied. 
The distribution of x-component of the mean 
velocity in the duct at axial section before the steps 
with x = 0.3 m is shown in Figure 4. It is seen that 
the differences between the predicted velocity 
distributions on the fine (200×151) and finer 
(400×151) meshes are fairly small indicating that 
the numerical results are reasonably grid-
independent. A further grid refinement has been 
undertaken with adding 50 nodes in y-direction but 
no major change was shown in the computed 
results. Thereby, results obtained on the (400×151) 
mesh are regarded as grid-independent. 
     It should be noted that in the computation of all 
test cases, the first 20 grid nodes were considered 
within the region near the wall such that, at the 
interface between the near wall and fully 
turbulent region, the value of νρτ=+ /]/wy[y  

was around 50. 
     In Figure 5, a comparison is made between the 
present results with experiment and also with the 
results by DNS method. In this test case, the fluid 
flow over a right angle, backward facing step in a 
duct is simulated. The flow condition and 
geometrical parameters of this test case are given 
in Reference [12]. Figure 5 shows the variation of 
skin friction factor, fc , on the bottom wall after 
the step surface at Re = 5100. Besides, to show the 
effect of using linear low-Re turbulence model 

near the wall region, the results of standard k-ε 
model without any wall function are also compared 
with those obtained by linear model for the region 
near the solid wall. It should be noted that in 
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Figure 6. Comparison of mean velocity profile with
experiment. 

 
Figure 7. Streamlines for turbulent flow over two backward 
steps at Re = 1 × 106. 
 
 
 

 
Figure 8. Streamlines for turbulent flow over a forward step 
with inclination angle of θ = 80˚ at Re = 3 × 104. 
 
 
 

 
Figure 9. Streamlines for turbulent flow over a cylinder at
Re = 2 × 105. 

Figure 5, the x-axis starts after the step surface. 
Figure 5 shows a good consistency between 
theoretical results with experiment noticing that the 
results by linear turbulence model are very close to 
those obtained by DNS method and also with the 
experiment. 
     In another test case the turbulent flow over a 
backward facing step is also simulated and the 
mean velocity distribution at x = 10.1 cm is shown 
in Figure 6 and compared with experiment [13]. In 
the experimental study of Kim, et al [13], the step 
height was H = 11.43 cm, H/H2 = 1.5 and the value 
of Reynolds number based on the duct height H, 
was equal to 1.3 × 105. Figure 6 indicates that the 
axial section x = 10.1 cm is located in the 
recirculation zone such that the fluid velocity is 
negative in the region near the wall. However, the 
model predictions for the mean velocity appear to 
be in good agreement with the experiment. 
     As it was mentioned before, the flow simulation 
for several other test cases were done in the present 
study and the results are shown in the following 
Figures, 7 to 17. Besides, for space saving, the 
pressure contours and TKE distributions are shown 
for some of these test cases. Such as the ones for 
flow over a cylinder, two cubes and car profile, the 
pressure and TKE contours are plotted in Figures, 
10, 13, 14 and 17. These figures indicate small 
value of pressure and large value for turbulent 

kinetic energy in the recirculation zones. The 
computed streamlines and contours of pressure and 
TKE are in agreement with literatures, those used 
different methods in mesh generation and CFD 
techniques [11-13]. 
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Figure 10. Distribution of TKE for turbulent flow over a 
cylinder at Re = 2 × 105. 
 
 
 

 
Figure 11. Streamlines for turbulent flow over two cylinders 
at  Re = 2 × 105. 
 
 
 

 
Figure 12. Streamlines for turbulent flow over two cubes at 
Re = 1 × 106. 
 
 
 

 
Figure 13. Pressure contours for turbulent flow over two 
cubes at Re = 1 × 106. 

 
Figure 14. Distribution of TKE for turbulent flow over two 
cubes at  Re = 1 × 106. 
 
 
 

 
Figure 15. Streamlines for turbulent flow over two sharp 
bumps at Re = 1 × 106. 
 
 
 

 
Figure 16. Streamlines for turbulent flow over a car profile at 
Re = 1 × 106. 
 
 
 

 
Figure 17. Pressure contours for turbulent flow over a car 
profile at Re = 1 × 106. 
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6. CONCLUSION 
 
This paper has presented an efficient method based 
on the Schwarz-Christoffel transformation in 
generating orthogonal grids for simulation of two-
dimensional, incompressible turbulent flows. The 
governing equations are solved by CFD techniques 
using the standard k-ε turbulence model in the 
fully turbulence region and a linear low-Re k-ε 
model for the region near the solid surface. The 
transformed forms of the governing equations in 
the computational domain were discretized with 
finite volume method and solved by the SIMPLE 
Algorithm. The model predictions are compared 
with the available experimental data and a good 
consistency is found. Thereby, it can be concluded 
that by the present method, many turbulent flows 
in different and complex geometries can be 
simulated accurately. 
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